

Cray User Group 2011 Proceedings 1 of 15

Tips and Tricks for Diagnosing Lustre

Problems on Cray Systems

Cory Spitz, Cray Inc. and Ann Koehler, Cray Inc.

ABSTRACT: As a distributed parallel file system, Lustre is prone to many different

failure modes. The manner in which Lustre fails can make diagnosis and serviceability

difficult. Cray deploys Lustre file systems at extreme scales, which further compounds

the difficulties. This paper discusses tips and tricks for diagnosing and correcting Lustre

problems for both CLE and esFS installations. It will cover common failure scenarios

including node crashes, deadlocks, hardware faults, communication failures, scaling

problems, performance issues, and routing problems. Lustre issues specific to Cray

Gemini networks are addressed as well.

KEYWORDS: Lustre, debugging, performance, file systems, esFS

1. Introduction

Due to the distributed nature and large scale of Cray

deployed Lustre file systems, administrators may find it

difficult to get a handle on operational problems.

However, Lustre is a critical system resource and it is

important to quickly understand problems as they

develop. It is also important to be able to gather the

necessary debug information to determine the root cause

of problems without lengthy downtime or many attempts

to reproduce the problem.

This paper will touch on a broad range of common

Lustre issues and failures. It will offer tips on what

information to acquire from the Lustre /proc interfaces

on the clients, routers, and servers to aid diagnosis and

problem reporting. Some of the more common and

cryptic Lustre error messages will be discussed as well.

Both the traditional Cray Lustre product, which

consists of direct-attached systems where Lustre servers

are embedded on I/O nodes (SIO or XIO) within the Cray

mainframe, and external services File Systems (esFS)

offered by the Cray Custom Engineering Data

Management Practice (CE DMP) will be covered.

The intended audience for this paper is system

administrators, operators, and users that are familiar with

Lustre terms and components. Please refer to the Lustre

1.8 Operations Manual (1) included in your CLE release

documentation or http://www.lustre.org for definitions.

The paper does not address common cases discussed in

the Lustre Operations Manual, especially the

troubleshooting or debugging chapters.

2. Working with Console logs

One of the first places to look when you suspect a

Lustre problem is the console log. On Cray direct-

attached systems, most of the console output from Lustre

clients and servers are funnelled into the console log on

the SMW. Some of the minor printk-level Lustre,

LNET, and LND messages are recorded in the syslog

messages file on the SDB node as well. On systems

with esFS, the logs could be spread out over the servers or

funnelled up to the external service Maintenance Server

(esMS), but the client and router messages are still routed

up to the mainframe‟s console log on the SMW.

Lustre log messages can be overwhelming as Lustre

is extremely chatty, especially at scale. For instance if an

OSS fails, each client and the MDS will become quite

vocal as requests fail and are subsequently retried. In

systems with thousands of clients, Lustre can easily

generate hundreds of thousands of lines of console output

for a single problem. printk limiting can only go so far

and tricks need to be employed by administrators to make

sense of it all.

http://www.lustre.org/

Cray User Group 2011 Proceedings 2 of 15

2.1 How to read a console log

The first thing you should do when investigating

console logs is to separate the server logs from the clients

and from one another. When the Lustre logs are so

voluminous that sequential messages from a single host

can span pages, they can be very difficult to follow;

separating each server‟s logs makes it much easier to

understand what is going on with a given server for a

given timeframe. Cray has written a script,

lustrelogs.sh [Appendix A], that pulls the server

identities from the logs and writes out per-server logs.

Since the tool does not require the configuration from the

Lustre MGS or the <filesystem>.fs_defs file, it can

be used even if failover occurred.

After the logs are separated, it is much easier to see

what is happening and to identify which clients are

affected. Those clients can then be inspected separately.

Since Lustre is a client-server architecture, understanding

the interaction is imperative to determining the root cause

of failure.

Lustre identifies endpoints based on their LNET

names and you will need to understand this to identify

which nodes are specified in the logs. On Cray systems,

you can determine what nodes messages refer to by the

strings <#>@ptl or <#>@gni. The number indicated is

the nid number and the second half of the name is the

LNET network. For example, 10@gni identifies

nid00010. Unfortunately, Cray console log messages

are prefixed with the Cray cname so it will be beneficial

to cross-reference the nid name with the output from

xtprocadmin or the /etc/hosts file. Endpoints on the

esFS Infiniband network look like <IP-address>@o2ib.

The IPoIB address is used as a name even though IP is not

used for o2iblnd LNET traffic.

Lustre error messages often include strings of cryptic

data with an embedded error type or return code, typically

rc, that clarifies the error once the code is deciphered.

These return codes are simply Linux/POSIX errno values.

Keeping errno-base.h and errno.h from

/usr/include/asm-generic handy will make

scanning the logs much more efficient. Then when a

node complains that, „the ost_write operation

failed with -30‟, you will know that it was because

the file system was mounted (or re-mounted as) read-only

as -30 equates to EROFS.

2.2 What to look for in the console logs

The next step is to identify any major system faults.

Look for the strings „LBUG‟, „ASSERT‟, „oops‟, and

„Call Trace‟. Cray systems enable panic_on_lbug,

so the first three will result in node panics. „Call

Trace‟ messages may be the result of watchdog timers

being triggered, but typically, if you find any one of these

messages, the node most likely hit a software bug. You

will need to dump the node and warmboot.

Next, verify that Lustre started correctly. Due to the

resilient nature of Lustre, problems that occur while

starting the file system may not always be obvious. The

console log contains a record of the start process. The

section below entitled “Lustre Startup Messages”

describes what to look for.

Once you have ruled out a system panic or Lustre not

starting, then examine the log for other common failures.

These are commonly signalled by the strings „evict‟,

„suspect‟, and „admindown‟. Messages containing

these strings may be the result of a bug or some transient

condition. You will need to keep looking to further

diagnose the issue.

2.2.1 Lustre Startup Messages

Each server issues an informational message when it

successfully mounts an MDT or OST. In Lustre 1.8.4, the

message is of the form „Now serving <object> on

<device>‟. The string „Now serving‟ uniquely

identifies these messages. In earlier Lustre versions, the

message is „Server object on <device> has

started‟. Search the log for the string „Lustre:

Server‟. There may not be a message for each OST due

to message throttling, but there should be at least one such

message from each server. These messages tend to be

clustered together in the log. When you find one,

examine the surrounding messages for indications of

mount failures. For example, if quotas are enabled, the

file system can start but fail to enable quotas for OSTs. In

this case, you will see the message „abort quota

recovery‟.

Once the devices are mounted, the MDS and OSSs

attempt to connect with one another. Connection failure

messages are normal at this stage since the servers start at

different rates. Eventually, all OSSs will report

„received MDS connection from <#>@<network>‟.

If they do not, look for networking errors or signs that a

server is down.

If all the servers start successfully, then each client

will report mounting Lustre successfully with the message

„Client <fsname>-client has started‟.

You can find more information about events during

start up in the output from the `/etc/init.d/lustre

start` or `lustre_control.sh

<filesystem>.fs_defs start` command. A copy

of the output is logged to a temporary file on the boot

node named /tmp/lustre_control.id. If you suspect

a problem with the file system configuration, try running

the `lustre_control.sh <filesystem>.fs_defs

verify_config` command for clues to what may be

wrong. The verify_config option checks that the

device paths for targets match what is specified in the

Cray User Group 2011 Proceedings 3 of 15

<filesystem>.fs_defs file. You may also want to

try logging onto the server and issuing the `mount -t

lustre` command directly. Alternatively, you can

sometimes gain insight by mounting the device as an

ldiskfs file system, just use `mount –t ldiskfs`

instead. In that case mounting the device read-only is

preferable. The journal will be replayed upon mount. If

there are errors received here, it is an indication that

major corruption has occurred and that the device needs

repair.

2.2.2 Client Eviction

Client eviction is a common Lustre failure scenario

and it can occur for a multitude of reasons. In general,

however, a server evicts a client when the client fails to

respond to a request in a timely manner or fails to ping

within two ping intervals, which is defined as one-quarter

of the obd_timeout value. For example, a client is

evicted if it does not acknowledge a glimpse, completion,

or blocking lock callback within the ldlm_timeout. On

Cray systems, the ldlm_timeout defaults to 70 seconds.

A client can be evicted by any or all of the servers. If

a client is evicted by all or many servers, there is a good

chance that there is something truly wrong with that

client. If however, a client is only evicted by a single

server, it could be a hint that the problem is not on the

client or along its communication path and might instead

indicate that there is something wrong with that server. In

addition, for these cases, interesting behavior can occur if

a client is evicted from an MDS, but not the OSSs as it

might be able to write existing open files, but not perform

a simple directory listing.

A client does not recognize that it has been evicted

until it can successfully reconnect to a server. Since the

server is unable to communicate with the client, there is

little reason to attempt to inform it since that message

would likely fail as well. Eventually the client will notice

that it is no longer connected. You will see „an error

occurred while communicating‟ along with the

error code -107, which is ENOTCONN. The client will

then attempt to reconnect when the next ping or I/O

request is generated. Once it reconnects, the server

informs the client that it was evicted. Eviction means that

all outstanding I/O from a client is lost and un-submitted

changes must be discarded from the buffer cache. The

string „evicting client‟ will denote when the server

drops the client and the string „evicted‟ will pinpoint

when the client discovered this fact. The client message

is, „This client was evicted by service; in
progress operations using this service will

fail‟.

During this time, the client‟s import state changes to

EVICTED. Use `lctl get_param *.*.state` or

`lctl get_param *.*.import` to get detailed

information about the history and status for all

connections. More information about the import interface

is detailed in section 3.2.

Attempted I/O during this window will receive error

codes such as -108, ESHUTDOWN. Most common would

be -5, EIO. Typically, applications do not handle these

failures well and exit. In addition, EIO means that I/O

was lost. Users might portray this as corruption,

especially in a distributed environment with shared files.

Application writers need to be careful if they do not

follow POSIX semantics for syncs and flushes.

Otherwise, it is possible that they completed a write to the

buffer cache that was not yet committed to stable storage

when the client was evicted.

There are twists on this common failure scenario.

One of which is when a client is evicted because it is out

of memory, the so-called OOM condition. OOM

conditions are particularly hard on Cray systems due to

the lack of swap space. When the Linux kernel attempts

to write out pages to Lustre in order to free up memory,

Lustre may need to allocate memory to set up RDMA

actions. Under OOM, this can become slow or block

completely. This behavior can result in frequent

connection and reconnection cycles and not necessarily

include evictions. This will generate frequent console

messages as the kernel can move in fits and starts on its

way out of OOM.

Router failures could be another cause of client

evictions. In routed configurations for esFS, both clients

and servers will round-robin messages through all

available routers. Servers never resend lock callbacks, so

clients could be evicted if the router completely fails or

drops the callback request. Clients will eventually retry

RPC transmissions so they are not as prone to suffer

secondary faults after router failure. The point here is to

examine all routers between the client and server for

failure or errors if clients are unexpectedly evicted.

2.2.3 Watchdog timers

In the case where server threads stall and the Lustre

watchdog timer expires, a stack trace of the hung thread is

emitted along with the message, „Service thread pid

<pid> was inactive for <seconds>s‟. These

timers monitor Lustre thread progress and are not the

Linux “soft lockup” timers. Therefore, the time spent

inactive is not necessarily blocking other interrupts or

threads. The messages generally indicate that the service

thread has encountered a condition that caused it to stall.

It could be that the thread was starved for resources,

deadlocked, or it blocked on an RPC transmission. The

bug or condition can be node or system wide so multiple

service threads could pop their watchdog timers at around

the same time. Cray configures servers with 512 threads,

so this can be a chatty affair.

Cray User Group 2011 Proceedings 4 of 15

2.2.4 Lost communication

Another class of problem that is easiest to identify

from console messages are connection errors such as -

107 and -108, ENOTCONN and ESHUTDOWN respectively.

Connection errors indicate problems with the Lustre

client/server communications. The root cause of

connection failures can lie anywhere in the network stack

or the Lustre level. No matter where the root problem

lies, there will be information from the LNET Network

Driver, or LND, since it is the interface to the transport

mechanism. On Cray SeaStar systems, the LND is

ptllnd and on Gemini systems, it is named gnilnd.

The Infiniband OFED driver, which is used for the

external fabric of esFS installations, is called o2iblnd.

Look for the LND name, i.e., ptllnd, gnilnd, or

o2iblnd to help pinpoint the problem. Those lines by

themselves may not be that useful so be sure to look at the

preceding and following messages for additional context.

For example, on SeaStar systems, you might find

„PTL_NAL_FAILED‟ and „beer‟ (Basic End-to-End

Reliability) messages, surrounding ptllnd messages that

would indicate that portals failed underneath the LND.

Alternatively, on a Gemini system, you might find

„No gnilnd traffic received from <nid>‟,

which could suggest a potentially failed peer. The

gnilnd keeps persistent connections with keep alive and

the local side will close a connection if it does not see

receive (rx) or keep alive traffic from the remote side

within the gnilnd timeout. The default gnilnd

timeout is 60 seconds. The gnilnd will close those

connections with the message above when there is no

traffic and later re-establish them if necessary. This will

result in extra connect cycles in the logs.

If messages with the LND name do not pinpoint the

problem, look for a downed node, or SeaStar or Gemini

HW errors to explain the lost connection. Generally, in

the absence of any of these messages the problem is the

higher level Lustre connection. Connection problems can

be complicated especially in routed configurations and

you may have to collect additional data to diagnose the

problem. We will cover data collection for gnilnd and

routers in future sections.

Very high load and, as discussed earlier, OOM

conditions may trigger frequent dropped connections and

reconnect cycles. The message containing the strings

„was lost‟ and „Connection restored‟ bound the

interval.

2.2.5 Node Health Checker

The Cray Node Health Checker (NHC) executes

system integrity checks after abnormal application exit.

Usually, a Lustre file system check is included. The NHC

Lustre test checks that the compute node can both

perform metadata and I/O by executing a statfs() and

creating, opening, unlinking, then writing a single file.

That file is created with no explicit file stripe settings and

so the test does not necessarily check every OST in the

file system.

If the test passes then it will do so silently and you

can be assured that most of Lustre is working well. If the

test fails, the node will be marked as suspect as seen by

xtprocadmin. Then the test is repeated, by default,

every 60 seconds for 35 minutes. Oftentimes if there is a

server load issue or transient network problem, then a

node can be marked as suspect and later pass the test

and return to the up state.

If the test fails all retry attempts, „FAILURES:

(Admindown) Filesystem_Test‟ will appear in the

console logs and the node is marked admindown. NHC

will also stop testing the node. If there is a failure, look at

the LustreError messages that appear between the time

the node is set suspect and the time it is set admindown as

those messages may offer stronger clues to what has gone

wrong.

2.2.6 Cray Failover and Imperative Recovery

Lustre failover on Cray direct-attached systems

leverage both Lustre health status and Cray‟s RCA

heartbeat mechanism to determine when to begin failover.

(2) Failover for esFS is built around esfsmon. (3) For

either solution, the backup server reports that it „will be
in recovery for at least <time> or until

<#> clients reconnect‟.

If imperative recovery is enabled, which is only

available for Cray direct-attached systems, the message

„xtlusfoevntsndr: Sent ec_rca_host_cmd:‟

indicates that the imperative directive to clients was sent.

„Executed client switch‟ indicates that the client

side imperative recovery agent, xtlusfoclntswtch,

made the import switch. „Connection switch to

nid=<nid> failed‟ indicates failure.

2.2.7 Hardware RAID errors

 Linux, and in turn Lustre, do not tolerate HW I/O

errors well. Therefore, Lustre is sensitive to HW RAID

errors. These errors are not included in the console log

and may not be included in the messages.sdb log either.

Typically, errors stay resident on the RAID controller, but

SCSI errors will be seen in the console log if, for

example, the device reports a fatal error or the SCSI

timeout for a command is exceeded. When this happens,

the kernel forces the block device to be mounted read-

only. At that time, Lustre will encounter the errno, -30,

or EROFS, on the next attempt to write to that target. Be

sure to match that up with „end_request: I/O error‟

to ensure it was a HW and not a Lustre error that caused

the target to be remounted read-only.

Cray User Group 2011 Proceedings 5 of 15

2.2.8 Gemini HW errors

Hardware errors reported about the HSN are recorded

in special locations such as the

hwerrlog.<timestamp>, netwatch.<timestamp> or

consumer.<timestamp> event log, but the errors will

be evident in the console log as well. These errors are not

necessarily fatal, however.

Cray XE systems have the ability to reset the HSN on

the fly in order to ride through critical HW errors that

would traditionally have resulted in kernel panics, a

wedged HSN, or both. The `xthwerrlog –c crit –f

<file>` command will show the critical HW errors.

When the Gemini suffers such a critical error, the gnilnd

must perform a so-called stack reset, as all outstanding

transmissions have been lost with the HW reset.

When a stack reset occurs, there will be lots of

console activity, but you will see the string „resetting

all resources‟. You will also see the error code -

131, ENOTRECOVERABLE. Remote nodes communicating

with the node that underwent the stack reset should

receive the error code -14, EFAULT, indicating that the

RDMA action failed. Thus if that error is emitted then the

remote peer should be checked for a stack reset condition.

Additional gnilnd error codes and meanings are

explained in Appendix C.

The goal of the stack reset is to keep the node from

crashing. The Gemini NIC must be reset to clear the

errors, but Lustre can often survive the HW error because

the gnilnd pauses all transfers and re-establishes

connections after the reset completes. However, a stack

reset can be tricky and the “old” memory used by the

driver for RDMA cannot be reused until it is verifiably

safe from remote tampering. The n_mdd_held field in

the /proc/kgnilnd/stats interface shows how many

memory descriptors are under “purgatory” hold.

Cray XE systems also have the capability to quiesce

the HSN and re-route upon link or Gemini failure. To

accommodate this feature, Cray configures both the

minimum Adaptive Timeout, at_min, and the

ldlm_timeout to 70 seconds. The long timeouts allow

Lustre to “ride through” the re-route, but this is typically

an extremely chatty process as many errors are emitted

before the system can be automatically repaired.

On the console, the string „All threads paused!‟

will be emitted when the quiesce event completes. Then,

„All threads awake!‟ will indicate that operations

have resumed. When the quiesce event occurs, the

gnilnd pushes out all timers so that none will expire

during the quiescent period. Moreover, no LND threads

are run and new requests are queued and are processed

after the LND threads resume. This minimizes the

number of failed transmissions.

If an LNET router was affected by either a stack reset

or lost a link that was repaired with a quiesce and re-

route, then it is more likely that a client could be evicted.

This is because although clients can suffer RPC failures

and resend, the servers do not resend blocking callbacks.

2.2.9 RPC Debug messages

When you see a message like „Lustre:
10763:0:(service.c:1393:ptlrpc_server_handl

e_request()) @@@ Request x1367071000625897

took longer than estimated (888+12s);

client may timeout. req@ffff880068217400

x1367071000625897/t133143988007 o101-

>316a078c-99d7-fda8-5d6a-

e357a4eba5a9@NET_0x40000000000c7_UUID:0/0

lens 680/680 e 2 to 0 dl 1303746736 ref 1

fl Complete:/0/0 rc 301/301‟ you would gather

that the server took an extraordinary amount of time to

handle a particular request, but you might throw your

hands up at trying to understand the rest. The message is

very concise to keep the logs readable, but it is very terse.

Messages of this type deserve explanation because they

are common and will appear even at the default debug

level.

The information in the second half of the message

starting at req@ is pulled from the ptlrpc_request

structure used for an RPC by the DEBUG_REQ macro.

There are over two hundred locations in the Lustre source

that use this macro.

The data is clearly useful for developers, but what

can casual users take from the message? You will quickly

learn the pertinent details, but the following explains the

entire macro. After the request memory address denoted

by req@ the XID and Transaction Number (transno) are

printed. These parameters are described in Section 19.2,

Metadata Replay, of the Lustre Operations Manual. Next

is the opcode. You will need to reference the source, but

you quickly learn that o400 is the obd_ping request and

o101 is the LDLM enqueue request, as these will turn up

often. Next, comes the export or import target UUID and

portals request and reply buffers. lens refers to the

request and reply buffer lengths. e refers to the number

of early replies sent under adaptive timeouts. to refers to

timeout and is a logical zero or one depending on whether

the request timed out. dl is the deadline time. ref is

reference count. Next fl refers to “flags” and will

indicate whether the request was resent, interrupted,

complete, high priority, etc. Finally, we have the

request/reply flags and the request/reply status. The

status is typically an errno, but higher numbers refer to

Lustre specific uses. In the case above, 301 refers to

“lock aborted”.

The transno, opcode, and reply status are the most

useful entries to parse while examining the logs. They

can be found easily because the DEBUG_REQ macro uses

Cray User Group 2011 Proceedings 6 of 15

the eye catcher „@@@‟. Therefore, whenever you see that

in the logs, you will know that the message is of the

DEBUG_REQ format.

2.2.10 LDLM Debug messages

Another useful error message type is the

LDLM_ERROR macro message. This macro is used

whenever a server evicts a client and so it is quite

common. This macro uses the eye catcher „###‟ so it can

be easily found as well.

An example client eviction looks like,

„LustreError:
0:0:(ldlm_lockd.c:305:waiting_locks_callbac

k()) ### lock callback timer expired after

603s: evicting client at 415@ptl ns: mds-

test-MDT0000_UUID lock:

ffff88007018b800/0x6491052209158906 lrc:

3/0,0 mode: CR/CR res: 4348859/3527105419

bits 0x3 rrc: 5 type: IBT flags: 0x4000020

remote: 0x6ca282feb4c7392 expref: 13 pid:

11168 timeout: 4296831002‟. However, the

message differs slightly depending upon whether the lock

type used was extent, ibits, or flock. The type field

will read EXT, IBT, or FLK respectively.

For any lock type, ns refers to the namespace, which

is essentially the lock domain for the storage target. The

two mode fields refer to the granted and requested mode.

The types are exclusive mode (EX), protective write (PW),

protective read (PR), concurrent write (CW), concurrent

read (CR), or null (NL). The res field can be particularly

handy as it refers to the inode and generation numbers for

the resource on the ldiskfs backing store. Finally, for

extent locks the extent ranges for the granted and

requested area are listed respectively after the lock type.

Do not fret what appears to be an extremely large extent

size as extent locks are typically granted for a full file,

which could support the maximum file size. The typical

range is 0->18446744073709551615 which is simply

0xffffffffffffffff or -1.

3. Collecting additional debug data

It is often times necessary to gather additional debug

data beyond the logs. There is a wealth of Lustre

information spread across servers, routers, and clients that

should be extracted. Some of the information is human

readable from the /proc interface on the specific node.

First, we will cover some tools that you can use to gather

the data and then we will point out some especially useful

interfaces.

3.1 Lustre debug kernel traces

Lustre uses a debug facility commonly referred to as

the dk log, short for debug kernel. It is documented in

Chapter 24, Lustre Debugging, of the Lustre Operations

Manual and the lctl man page. However, there are

some additional quick tips that are useful, especially when

recreating problems to collect data for bug reporting.

Lustre routines use a debug mask to determine

whether to make a dk log entry. The default debug mask

is a trade off between usefulness and performance. We

could choose to log more but then we suffer from reduced

performance. When debugging problems it useful to

unmask other debug statements in critical sections. To

enable all logging, execute `lctl set_param debug=-

1; lctl set_param subsystem_debug=-1`.

The dk log is a ring buffer, which can quickly

overflow during heavy logging. Therefore, when

enhancing the debug mask you should also grow the

buffer to accommodate a larger debug history. The

maximum size is roughly 400 MiB, which can be set with

`lctl set_param debug_mb=400`.

The current debug mask can be read with `lctl

get_param debug` and can easily be updated using

“+/-” notation. For example, to add RPC tracing, simply

run `lctl set_param debug="+rpctrace"`.

Desired traces will depend upon the problem, but

“rpctrace” and “dlmtrace” are generally the most useful

trace flags.

The debug log with a full debug mask will trace entry

and exit into many functions, lock information, RPC info,

VFS info, and more. The dk log will also include all

items inserted into the console log. These details are

invaluable to developers and support staff, but because so

much information is gathered, it can be difficult to

correlate the logs to external events such as the start of a

test case. Therefore, the logs are typically cleared with

`lctl clear` when beginning data collection and

annotated with `lctl mark <annotation>` with

updates.

The log is dumped with `lctl dk <filename>`.

This method will automatically convert the output format

into a human readable format. However, this processing

on a busy node may interfere with debug progress. You

can also dump the log in a binary format by appending a

„1‟ with `lctl dk <filename> 1`. This saves a lot of

time for large logs on the local node and ensures timely

data collection. You can post-process the binary dk log

and turn it into a human readable format later with `lctl

df <binary_dklog> <output_filename>`.

Lustre dk logs can be configured to dump upon

timeouts or eviction with the tunables

dump_on_timeout and dump_on_eviction

respectively. The dk logs can be dumped for other

reasons in addition to timeouts and evictions as well. It

will be evident in the logs that a dump has occurred

because „LustreError: dumping log to <path>‟

will be added to the console log. The path is configurable

via /proc/sys/lnet/debug_path and defaults to

Cray User Group 2011 Proceedings 7 of 15

/tmp/lustre-log. The dumps should be collected if

possible. Since the path is well known, there is no reason

to first extract the file names from the error messages.

When one of these events occurs, the logs are

dumped in binary format and so they will need to be

converted with `lctl df` after they are collected. In

addition, the log will contain entries that may be out of

order in time. Cray has written sort_lctl.sh included

in Appendix B that will reorder the entries

chronologically. Another handy utility included in

Appendix B is lctl_daytime.sh, which converts the

UNIX time to time of day.

3.2 State and stats

In addition to the console and dk logs, there are some

special files in the /proc interfaces that can be useful.

Snapshots of these files prove useful during investigations

or when reproducing a problem for a bug report. The

llstat tool can be used to clear stats and display them

on an interval.

The client import state /proc interface contains a

wealth of data about the client‟s server connections.

There is an „import‟ file on the client for each metadata

client (mdc) and object storage client (osc). All of the

files can be retrieved with `lctl get_param

..import`. The import interface shows connection

status and rpc state counts. This file can be monitored to

get a quick read on the current connection status and

should be gathered when debugging communication

problems.

The import file will also include the average wait

time for all RPCs and service estimates, although they are

brought up to the adaptive timeout minimum (at_min)

floor, which again by default on Cray systems is 70

seconds. The timeouts file includes real estimates on

network latency. For stats on a per operation basis,

inspect `lctl get_param *.*.stats` to see service

counts, min (fastest) service time in µsecs, max (slowest)

service time in µsecs, and sum and sum squared statistics.

Failover and recovery status can be acquired with
`lctl get_param

obdfilter.*.recovery_status` for an OSS or

`lctl get_param mds.*.recovery_status` for

the MDS. It is useful to periodically display the progress

with /usr/bin/watch. It is also useful to monitor a

select client‟s import connection as well. This

information could be useful if the recovery does not

complete successfully.

The nis, peers, and if appropriate with esFS,

buffers, routes, and routers files should be gathered

from /proc/sys/lnet when investigating LNET and

LND problems. They provide the state of the LNET

resources and whether peers and routers are up or down.

These interfaces are detailed later in section 4.3.

4. Performance

This section will not necessarily tell you how to tune

your Lustre file system for performance, but instead it

details the causes of performance problems and common

sense approaches to finding and mitigating performance

problems.

4.1 Metadata performance

One of the biggest complaints about Lustre is slow

metadata performance. This complaint is most often

voiced as the result of user experiences with interactive

usage rather than metadata performance for their

applications. Why is that?

Lustre clients are limited to one concurrent

modifying metadata operation in flight to the MDS, which

is terrible for single client metadata performance. A

modifying operation would be an open or create.

Although close is not a modifying operation, it is treated

as one for recovery reasons. Examples of non-modifying

operations are gettatr and lookup.

With enough clients, aggregate metadata rates for a

whole file system may be just fine. In fact, across

hundreds of clients the metadata performance can scale

very nicely in cases like file-per-process style application

I/O. But when there are many users on a single node then

you‟ve got a problem. This is exactly the situation one

finds with the model used on Cray systems with login

nodes. Fortunately, any reasonable number of login

nodes is supported. Because the nodes cannot use swap,

additional login nodes are added to the system as

interactive load and memory usage increases. However,

if users are dissatisfied with the interactive Lustre

performance it would also make sense to add additional

login nodes to support more simultaneous modifying

metadata operations.

The client‟s mdc max_rpcs_in_flight parameter

can be tuned up to do more non-modifying operations in

parallel. The value defaults to 8, which may be fine for

compute nodes, but this is insufficient for decent

performance on login nodes, which typically use metadata

more heavily.

Lustre includes a feature to „stat‟-ahead metadata

information when certain access heuristics are met like

`ls –l` or `rm –rf` similar to how data is read-ahead

upon read access. Unfortunately, statahead is buggy and

Cray has had to disable the feature
1
.

In addition to poor single client metadata

performance, users often make the problem worse by

issuing commands to retrieve information about the file

system, which further clogs the MDS and the pipe from

each client. Typically, users just want to know if the file

system is healthy, but the commands that they issue give

1
 Lustre bug 15962 tracks a deficiency in statahead.

Cray User Group 2011 Proceedings 8 of 15

them much more information than they might need and

thus are more expensive. Instead of /bin/df which

issues expensive stat() or statfs() system calls, a

simple `lfs check servers`
2
 will report the health of

all of the servers. Also, `lctl dl` (device list) will

cheaply (with no RPC transmission) show the Lustre

component status and can be used on clients to see

whether OSTs are UP or IN (inactive).

Another way that users can further reduce the

metadata load is to stop using `ls –l` where a simple

`ls` would suffice. Also be advised the `ls –color`

is also expensive and that Cray systems alias ls to `ls –

color=tty`. The reason it is expensive is that if file

size or mode is needed then the client must generate extra

RPCs for the stat() or file glimpse operation for each

object on an OST. Moreover, the request cannot be

batched up into a single RPC so each file listed will

generate multiple RPCs (2). This penalty can be very

large when files are widely striped. For instance if the file

striping is set to „-1‟, then up to 160 RPCs for that single

file will need to be generated (160 is the maximum stripe

count.)

Due to the way that the Lustre Distributed Lock

Manager (LDLM) handles parallel modifying operations

in a single directory, threads can become blocked on a

single resource. Moreover, threads must hold a resource

until clients acknowledge the operation. Even though

Cray systems configure 512 service threads, they can all

become quickly consumed due to the blocking. If most of

the service threads become serialized then all other

metadata services including those for unrelated processes

will degrade. This will occur even if there are extra login

nodes to spread out the metadata load because the

bottleneck is on the server side. Long delays are thus

inserted and it can take many minutes to clear out the

backlog of requests on large systems. This behavior

typically occurs when large file-per-process applications

are started that create large numbers of files in a single,

shared directory.

There is no good way to identify this condition, but it

is useful to inspect metadata service times for file system

clients. This can be done quickly by monitoring the mdc

import and stats files as described in section 3.2.

4.2 Bulk read/write performance

Lustre provides a variety of ways to measure and

monitor bulk read/write performance in real time. In

addition, other Linux tools such as iostat and vmstat

are useful, but will not be covered here.

2
 Lustre bug 21665 documents a recent regression with `lfs

check servers` that resulted in EPERM errors for non-root users.

This regression has been fixed in Lustre 1.8.4 included in CLE

3.1 UP03.

On the client side, `lctl get_param

osc.*.rpc_stats` will show counts for in-flight I/O.

DIRECT_IO is broken out separately from buffered I/O.

This and other useful utilities for monitoring client side

I/O are covered in Section 21.2, Lustre I/O Tunables, of

the Lustre Operations Manual (1). On the server side, the

obdfilter brw_stats file contains much useful data

and is covered in the same section of the manual.

Use the brw_stats data to monitor the disk I/O

sizes. Lustre tries very hard to write aligned 1 MiB

chunks over the network and through to disk. Typical

HW RAID devices work faster that way. Depending on

the RAID type, expensive read-modify-write operations

or cache mirroring operations may occur when the I/O

size or alignment is suboptimal. There are a number of

causes to fragmented I/O and brw_stats will not

indicate why I/O was not optimal, but it will indicate that

something needs investigation.

The brw_stats file also gives a histogram of I/O

completion times. If you are seeing a large percentage of

your I/O complete in seconds or even tens of seconds, it is

an indication that something is likely wrong beyond

heavy load. Oftentimes disk subsystems suffer poor

performance without error, or a RAID rebuild is going on.

That activity is not visible to Lustre unless the

degradation becomes extreme.

The main brw_stats file contains all the data for a

particular OST. However, per client stats are broken out

into obdfilter.*.exports.*.brw_stats. This can

be used to isolate I/O stats from a particular client.

As part of the Lustre install, the sd_iostats patch is

applied to the kernel, which provides an interface in

/proc/scsi/sd_iostats/*. This file can be used to

corroborate the brw_stats. It is useful because it

includes all I/O to the block device, which includes

metadata and journal updates for the backing ldiskfs file

system. As the name implies, the brw_stats only track

the bulk read and write stats.

Because Lustre performance can degrade over time,

it is useful to always keep a watchful eye towards

performace. Use llobdstat to get a quick read on a

particular OST (see Section 21.3.1.2 in the Lustre

Operations Manual). The Lustre Monitoring Tool is

useful for both real-time (5) and post-mortem

performance analysis (6) and is a good best practice to

employ. In addition, other best practices such as constant

functionality testing and monitoring thereof (7) can be

used on a regular basis to spot performance regressions.

The OSS read cache is built on top of the Linux

buffer cache and so it follows the same semantics. Thus

increased memory pressure will cause the read cache to

be discarded. It also works the other way. Increased

cache usage can cause other caches to be flushed. Linux

does not know what caches are most important and can at

Cray User Group 2011 Proceedings 9 of 15

times flush much more important file system metadata,

such as the ldiskfs buddy maps. Cray Lustre contains an

optimization for O_DIRECT reads and writes that cause

them to always bypass the OSS cache. This extends the

POSIX semantics of O_DIRECT to the OSS that say, “do

not cache this data”. However, buffered reads and writes

can still exert considerable memory pressure on the OSS

so it can be valuable to tune the maximum file size that

the OSS can cache. By default the size is unlimited, but it

is of little value to cache very large files and we can save

the cache and memory space. The read-cache can be

tuned by issuing, for example, `lctl set_param

obdfilter.*.readcache_max_filesize=32M`. It

can also be set permanently for all OSSs in a file system

from the MGS via `lctl conf_param

<fsname>.obdfilter.readcache_max_filesize=3

2M`.

4.3 LNET performance

LNET performance is critical to overall Lustre

performance. LNET uses a credit based implementation

to avoid consuming too many HW resources or spending

too many resources for communication to a specific host.

This is done for fairness. Understanding that credits are a

scarce resource will allow for better tuning of the LNET.

Each LND is different, but the ptllnd, gnilnd, and

o2iblnd all have a concept of interface credits and peer

credits, which is a resource that can only be consumed for

a specific peer. There are four kinds of credits relevant to

tuning performance: network interface (NI) transmit (tx)

credits, peer tx credits, router buffer credits and peer

router buffer credits.

The interface credit count is the maximum number of

concurrent sends that can occur on an LNET network.

The peer credit count is the number of concurrent sends

allowed to a single peer. LNET limits concurrent sends to

a single peer so that no peer can occupy all of the

interface credits.

Sized router buffers exist on the routers to receive

transmissions from remote peers and the router buffer

credits are a count of the available buffer slots. The peer

router buffer credits exist for the same reason that LNET

peer tx credits do, so that a single peer cannot monopolize

the buffers.

4.3.1 Monitoring LNET credits

The credits are resources like semaphores. Both an

interface credit and a peer credit must be acquired

(decremented) to send to a remote peer. If either interface

or peer credits are unavailable then the operation will be

queued.

 /proc/sys/lnet/nis lists the maximum number

of NI tx credits and peer credits along with the current

available NI tx credits per interface. When there are

insufficient credits, operations queue and the credit count

will become negative. The absolute value is the number

of tx queued. /proc/sys/lnet/nis also records the

low water mark for interface credits, which is marked as

“min”. If this number becomes negative, then more

credits may be needed.

LNET and the LNDs also keep track of per peer

resources and make them visible in

/proc/sys/lnet/peers. Most importantly for this

view, the two “min” columns track the low water mark

for peer router buffer credits and peer tx credits.

These LNET interfaces are documented in Section

21.1.4 in the Lustre Operations Manual.

4.3.2 LNET router performance

The primary consideration for LNET routers is

having enough bandwidth to take full advantage of the

back-end bandwidth to disk. However, due to the nature

of credit based resource allocation, it is possible for

LNET routers to choke aggregate bandwidth. For

communication to routers, not only must a NI tx credit

and peer tx credit be consumed, but a global router buffer

and peer router buffer credit are needed.

The LNET kernel module parameters

tiny_router_buffers, small_router_buffers,

and large_router_buffers account for the global

router buffer credits and are visible in the

/proc/sys/lnet/buffers file. The global router

credits really pertain to memory pools of size less than

one page, one page, and 1 MiB for the tiny, small, and

large buffer tunables respectively. Again, negative

numbers in the “min” column indicate that the buffers

have been oversubscribed. If the load seems reasonable,

you can increase the number of router buffers for a

particular size to avoid stalling under the same load in the

future.

The number of peer router buffer credits defaults to

the LND peer tx max credit count. Therefore, the LNET

module parameter peer_buffer_credits should be

tuned on the routers to allow the global router buffers to

be fully consumed.

5. Conclusion

Lustre is a complex distributed file system and as

such, it can be quite difficult to diagnose and service. In

addition, since Lustre is a critical system resource, it is

important to investigate and fix issues quickly to

minimize down time. The tips and techniques presented

here cover a broad range of knowledge of Cray Lustre

systems and are a primer on how to investigate Lustre

problems in order to achieve quick diagnosis of issues.

Cray User Group 2011 Proceedings 10 of 15

6. References

1. Oracle. Lustre Operations Manual S-6540-1815.

CrayDoc. [Online] March 2011.

http://docs.cray.com/books/S-6540-1815.

2. Automated Lustre Failover on the Cray XT. Nicholas

Henke, Wally Wang, and Ann Koehler. Atlanta :

Proceedings of the Cray User Group, 2009.

3. Cray Inc. esFS FailOver 2.0. 2011.

4. Feiyi Wang, Sarp Oral, Galen Shipman, Oleg

Drokin, Tom Wang, Isaac Huang. Understanding

Lustre Filesystem Internals. http://www.lustre.org/lid.

[Online] 2009.

http://wiki.lustre.org/lid/ulfi/complete/ulfi_complete.html

#_why_em_ls_em_is_expensive_on_lustre.

5. Chris Morrone, LLNL. Lustre Monitoring Tool

(LMT) . Lustre Users Group 2011. [Online] April 2011.

http://www.olcf.ornl.gov/wp-content/events/lug2011/4-

13-2011/400-430_Chris_Morrone_LMT_v2.pdf.

6. Andrew Uselton, NERSC. The Statistical Properties

of Lustre Server-side I/O. Lustre Users Group 2011.

[Online] April 2011. http://www.olcf.ornl.gov/wp-

content/events/lug2011/4-12-2011/1130-

1200_Andrew_Uselton_LUG_2011-04-11.pdf.

7. Nick Cardo, NERSC. Detecting Hidden File System

Problems. [Online] 2011. http://www.olcf.ornl.gov/wp-

content/events/lug2011/4-13-2011/230-

300_Nick_Cardo.pptx.

7. Acknowledgments

Many thanks to the Cray benchmarking and SPS staff

including the field support for always providing the

needed data, insights, and operational support in whose

experience the authors based this paper on.

Also, thank you to the CUG 2010 attendees for

requesting this type of contribution from the Cray Lustre

team.

Finally, thank you to Nic Henke for providing insight

into gnilnd internals. Questions not covered in this

paper pertaining to the gnilnd internals can be directed

to nic@cray.com.

This material is based upon work supported by the

Defense Advanced Research Projects Agency under its

Agreement No. HR0011-07-9-0001. Any opinions,

findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not

necessarily reflect the views of the Defense Advanced

Research Projects Agency.

8. About the Authors

Cory is the team lead for Lustre integration at Cray.

His email address is spitzcor@cray.com. Ann is a file

systems engineer at Cray. Ann can be reached at

amk@cray.com. Cory and Ann can both be reached at

380 Jackson Street, St. Paul, MN, 55101.

mailto:nic@cray.com
mailto:spitzcor@cray.com
file:///C:/Users/nordlund@cray.com/Desktop/amk@cray.com

Cray User Group 2011 Proceedings 11 of 15

Appendix A

lustrelogs.sh

Extract Lustre server messages from console log into separate files

Copyright 2011 Cray Inc. All Rights Reserved.

#!/bin/bash

Usage: <script> <console log> [<hosts>]

usage () {

 echo ""

 echo "*** Usage: $(basename $0) [-h] <console_log>"

 echo ""

 echo "*** Extracts MDS and OSS messages from the specified console"

 echo "*** log and places them in separate files based on node id."

 echo ""

 echo "*** File names identify server type, cname, nid, and objects"

 echo "*** on the server. The OST list in file name is not guaranteed"

 echo "*** to be complete but the gaps in the numbers usually makes "

 echo "*** this obvious."

 echo ""

 echo "*** Options:"

 echo "*** -h Prints this message."

 echo ""

}

while getopts "h" OPTION; do

 case $OPTION in

 h) usage

 exit 0

 ;;

 *) usage

 exit 1

 esac

done

shift $((OPTIND - 1))

if ["$1" == ""]; then

 usage

 exit 1

fi

CONSOLE_LOG=$1

Parses cname and Lustre object from console log messages of the form:

[2010-10-12 04:16:36][c0-0c0s4n3]Lustre: Server garnid15-OST0005 on device /dev/sdb has started

Finds cname/nid pairings for server nodes. Record format is:

2010-10-12 04:13:22][c0-0c0s0n3] HOSTNAME: nid00003

Builds filenames: <oss | mds>.<cname>.<nid>.<target list>

Extracts records for cname from console file and writes to <filename>

Lustre Version 1.6.5 and 1.8.2

srch[1]="Lustre: Server"

objfld[1]=4

Version 1.8.4 and later

srch[2]="Lustre: .*: Now serving"

objfld[2]=3

Produces: mds:c#-#c#s#n:.MDT0000.MGS or

oss#:c#-#c#s#n:.OST####.OST####...

Cray User Group 2011 Proceedings 12 of 15

find_servernodes () {

 local obj_field=$1

 local srch_string=$2

 SERVERS=$(\

 grep "${srch_string}" $CONSOLE_LOG | sort -k ${obj_field} -u | \

 awk -v fld=$obj_field \

 '{match($2, /c[0-9]+-[0-9]+c[0-9]+s[0-9]+n[0-9]+/, cn);

 obj=$(fld)

 sub(/^.*-/, "", obj);

 nodes[cn[0]] = sprintf("%s.%s", nodes[cn[0]], obj);

 }

 END {

 ndx=0

 for (cname in nodes) {

 if (match(nodes[cname], /OST/)) {

 printf "oss%d:%s:%s ", ndx, cname, nodes[cname];

 ndx++;

 }

 else

 printf "mds:%s:%s ", cname, nodes[cname];

 }

 }'

)

}

Main

SERVERS=""

for idx in $(seq 1 ${#srch[@]}); do

 find_servernodes ${objfld[$idx]} "${srch[$idx]}"

 if ["${SERVERS}" != ""]; then

 break

 fi

done

nid_file="/tmp/"$(mktemp .nidsXXXXX)

grep "HOSTNAME" ${CONSOLE_LOG} > ${nid_file}

echo "Creating files:"

for name in ${SERVERS}; do

 nm=(${name//:/ })

 prefix=${nm[0]};

 cname=${nm[1]};

 objs=${nm[2]};

 nid="."$(grep ${cname} ${nid_file} | awk '{print $4}')

 fname=${prefix}.${cname}${nid}${objs}

 echo " "$fname

 grep "${cname}" ${CONSOLE_LOG} > ${fname}

done

rm ${nid_file}

Cray User Group 2011 Proceedings 13 of 15

Appendix B

sort_lctl.sh

#!/bin/bash

Sort Lustre dk log into chronological order

Copyright 2011 Cray Inc. All Rights Reserved.

INF=$*

for inf in $INF; do

 cat $inf | sort -n -s -t: -k4,4 > $inf.sort

done

lctl_daytime.sh

#!/bin/bash

Convert dk log into time of day format

Copyright 2011 Cray Inc. All Rights Reserved.

if [$# -lt 2]; then

 echo "usage: $(basename $0) <input_file> <output_file>"

 exit 1

fi

awk -F":" '{ format = "%a %b %e %H:%M:%S %Z %Y"; $4=strftime(format,

$4); print}' $1 > $2

Cray User Group 2011 Proceedings 14 of 15

Appendix C

gnilnd error codes and meanings from Cray intranet http://iowiki/wiki/GeminiLNDDebug

NOTE: The text description from errno.h is provided to reference the string printed from things like strerror and doesn't reflect

the exact use in the gnilnd. Some errors are used in a bit of a crafty manner.

Error code (name)

text description from errno.h - description of error(s) in the gnilnd
-2 (-ENOENT)

No such file or directory - could not find peer, often for lctl --net peer_list, del_peer, disconnect, etc.

-3 (-ESRCH)

No such process - RCA could not resolve NID to to NIC address.
-5 (-EIO)

I/O error - generic error returned to LNET for failed transactions, used in gnilnd for failed IP sockets reads, etc

-7 (-E2BIG)

Argument list too long - too many peers/conns/endpoints

-9 (-EBADF)

Bad file number - could not validate connection request (datagram) header - like -EPROTO, but for different fields
that should be more static. Most likely a corrupt packet - it will be dropped instead of the NAK for -EPROTO.

-12 (-ENOMEM)

Out of memory - memory couldn't be allocated for some function; also indicates a GART registration failure (for now)

-14 (-EFAULT)

Bad address - failed RDMA send due to fatal network error

-19 (-ENODEV)

No such device - connection request to invalid device

-53 (-EBADR)

Invalid request descriptor - couldn't post datagram for outgoing connection request

-54 (-EXFULL)

Exchange Full - too many SMSG retransmits

-57 (-EBADSLT)

Invalid slot - datagram match for wrong NID.

-70 (-ECOMM)

Communication error on send - we couldn't send an SMSG (FMA) due to a GNI_RC_TRANSACTION_ERROR to
peer. This means that there was some HW issue in trying the send. Check for errors like SMSG send error to
29@gni: rc 11 (SOURCE_SSID_SRSP:REQUEST_TIMEOUT) to find the type and cause of the error.

-71 (-EPROTO)

Protocol error - invalid bits in messages, bad magic, wire version, NID wrong for mailbox, bad timeout. Remote peer
will receive NAK.

-100 (-ENETDOWN)

Network is down - could not create EP or post datagram for new connection setup

-102 (-ENETRESET)

Network dropped connection because of reset - admin ran lctl --net gni disconnect

-103 (-ECONNABORTED)

Software caused connection abort - could not configure EP for new connection with the parameters provided from

remote peer

-104 (-ECONNRESET)

Connection reset by peer - remote peer sent CLOSE to us

-108 (-ESHUTDOWN)

Cannot send after transport endpoint shutdown - we are tearing down the LND.

-110 (-ETIMEDOUT)

Connection timed out - connection did not receive SMSG from peer within timeout

-111 (-ECONNREFUSED)

Connection refused - hardware datagram timeout trying to connect to peer.

Cray User Group 2011 Proceedings 15 of 15

-113 (-EHOSTUNREACH)

No route to host - error when connection attempt to peer fails

-116 (-ESTALE)

Stale NFS file handle - older connection closed due to new connection request

-117 (-EUCLEAN)

Structure needs cleaning - admin called lctl --net gni del_peer

-125 (-ECANCELED)

Operation Canceled - operation terminated due to error injection (fail_loc) - not all injected errors will do this.

-126 (-ENOKEY)

Required key not available - bad checksum
-131 (-ENOTRECOVERABLE)

State not recoverable - stack reset induced TX or connection termination

