
Tips and Tricks for
Diagnosing Lustre Problems

on Cray Systems

Cory Spitz and Ann Koehler

Cray Inc.

5/25/2011

Introduction

Lustre is a critical system resources

Therefore, problems need to be quickly diagnosed

Administrators and operators need to collect the necessary

debug data the first time a problem arises

Can‟t interrupt production workload to investigate problems

Can‟t depend on Cray to reproduce

Performance is important too

Cray systems are supercomputers after all

The paper and this talk cover a broad range of topics

The paper covers much more

5/25/2011 Cray Inc. Proprietary Slide 2

Agenda

Working with console logs and the syslog

How to read console logs

What to look for

Common failures

Collecting additional debug data

Performance

5/25/2011 Cray Inc. Proprietary Slide 3

Working with console logs and the syslog

Console logs are the go-to resource for Lustre problems

But, Lustre logs can be overwhelming, especially at scale

Lustre is chatty ;)

Sequential messages from a single node can span pages

printk rate limiting can only go so far

Use lustrelogs.sh to separate server console logs

Writes out per-server logs with unambiguous names

Even if failover occurred

E.g. oss1.c1-0c0s0n3.nid00131.OST0001

Appendix A of paper

Minor printk level messages go to the syslog

5/25/2011 Cray Inc. Proprietary Slide 4

How to read console logs

Understand node references

Lustre identifies endpoints based on their LNET names

<#>@<lnet>, e.g. 100@gni identifies nid00100

Console logs are prefixed with Cray cname

Cross-reference names via xtprocadmin or /etc/hosts

For esFS, the IPoIB address identifies an external node

But, IPoIB not used for transport

Understand error codes

Lustre uses standard Linux/POSIX errno values

E.g. “the ost_write operation failed with -30”

Keep errno-base.h and errno.h from

/usr/include/asm-generic handy

5/25/2011 Cray Inc. Proprietary Slide 5

What to look for in console logs

Identify major (node) faults
LBUG

Cray enables panic_on_lbug by default

ASSERT

Oops

Call Trace

Not necessarily fatal

Stack trace emitted

Also look for file client specific problems
evict

suspect

admindown

Ensure sane configuration and proper startup
`lustre_control.sh <fsname>.fs_defs verify_config`

boot:/tmp/lustre_control.<id>

5/25/2011 Cray Inc. Proprietary Slide 6

Client eviction

Eviction results in lost data but clients can stay „up‟

Can even pass NHC file system test

Users may characterize this as corruption

Common causes

Client fails to ping server within 1.5x obd_timeout

Client fails to handle blocking lock callback within ldlm_timeout

Failed or flaky router or routes

Although clients resend RPCs

Servers do not resend lock callbacks

5/25/2011 Cray Inc. Proprietary Slide 7

Client eviction examples

Client side:

LustreError: 11-0: an error occurred while communicating

with 135@ptl. The ldlm_enqueue operation failed with -107

LustreError: 167-0: This client was evicted by test-MDT0000;

in progress operations using this service will fail.

Server side:
Lustre: MGS: haven't heard from client 73c68998-6ada-5df5-

fa9a-9cbbe5c46866 (at 7@ptl) in 679 seconds. I think it's

dead, and I am evicting it.

Or:

LustreError: 0:0:(ldlm_lockd.c:305:waiting_locks_callback())

lock callback timer expired after 603s: evicting client

at 415@ptl ns: mds-test-MDT0000_UUID lock:

ffff88007018b800/0x6491052209158906 lrc: 3/0,0 mode: CR/CR

res: 4348859/3527105419 bits 0x3 rrc: 5 type: IBT flags:

0x4000020 remote: 0x6ca282feb4c7392 expref: 13 pid: 11168

timeout: 4296831002

5/25/2011 Cray Inc. Proprietary Slide 8

Client eviction examples

Client side:

LustreError: 167-0: This client was evicted by lustrefs-

OST0002; in progress operations using this service will

fail.

Server side:
LustreError: 138-a: lustrefs-OST0002: A client on nid

171@gni was evicted due to a lock blocking callback to

171@gni timed out: rc -4

And:

LustreError: 0:0:(ldlm_lockd.c:305:waiting_locks_callback())

lock callback timer expired after 105s: evicting client

at 171@gni ns: filter-lustrefs-OST0002_UUID lock:

ffff8803c11a8000/0x69ba7544a5270d3d lrc: 4/0,0 mode: PR/PR

res: 136687655/0 rrc: 3 type: EXT [0->18446744073709551615]

(req 0->4095) flags: 0x10020 remote: 0x59d12fa603479bf2

expref: 21 pid: 8567 timeout 4299954934

5/25/2011 Cray Inc. Proprietary Slide 9

Gemini HW errors and resiliency features

“Stack reset” upon critical HW errors
Gather critical errors via `xthwerrlog –c crit –f <file>`

NIC is reset

gnilnd pauses all transfers and re-establishes connections

Mechanism to ensure no lagging RDMA

n_mdd_held field in /proc/kgnilnd/stats

errno -131, ENOTRECOVERABLE for gnilnd, but Lustre can recover

Quiesce and reroute for failed links
at_min and ldlm_timeout tuned up to 70s

Appendix C in paper describe gnilnd codes and meanings

LNet: critical hardware error: resetting all resources (count 1)

LNet:3980:0:(gnilnd.c:645:kgnilnd_complete_closed_conn()) Closed

conn 0xffff880614068800->0@gni (errno -131): canceled 1 TX, 0/0

RDMA

LNet: critical hardware error: All threads awake!

LNet: successful reset of all hardware resources

5/25/2011 Cray Inc. Proprietary Slide 10

Collecting debug kernel traces (dk log)

Lustre Operations Manual Chapter 24, Lustre debugging

Turn on full debug:
`lctl set_param debug=-1`

Increase the size of the ring buffer:
`lctl set_param debug_mb=400`

Start fresh:
`lctl clear`

Annotate:
`lctl mark <annotation>`

Collect (“1” not a typo, fast binary mode):
`lctl dk <file> 1`

Or, enable dump_on_timeout or dump_on_eviction

Convert dk log to human readable format and time scale
sort_lctl.sh and lctl_daytime.sh in Appendix B of paper

5/25/2011 Cray Inc. Proprietary Slide 11

Additional debug data

There is a wealth of data in Lustre /proc interfaces

Most everything is documented in the Lustre Ops Manual

Watch the clients “import” files
Shows connection status, rpc state counts, service estimates

`lctl get_param *.*.import`

Example on next slide

Cleint and server side “stats”
`lctl get_param *.*.stats` or `llstat`

Shows counts, min and max time in μsecs, sum and sum squared

Recovery status on servers
`lctl get_param *.*.recovery_status`

LMT or llobdstat for real-time monitoring

5/25/2011 Cray Inc. Proprietary Slide 12

Client import file

import:

name: lustrefs-OST0001-osc-ffff8803fd227400

target: lustrefs-OST0001_UUID

state: FULL

connect_flags: [write_grant, server_lock, version,

request_portal, truncate_lock,

max_byte_per_rpc, early_lock_cancel,

adaptive_timeouts, lru_resize,

alt_checksum_algorithm, version_recovery]

import_flags: [replayable, pingable]

connection:

failover_nids: [26@gni, 137@gni]

current_connection: 26@gni

connection_attempts: 1

generation: 1

in-progress_invalidations: 0

[…]

rpcs:

inflight: 0

unregistering: 0

timeouts: 0

avg_waittime: 24121 usec

service_estimates:

services: 70 sec

network: 70 sec

transactions:

last_replay: 0

peer_committed: 403726926456

last_checked: 403726926456

read_data_averages:

bytes_per_rpc: 1028364

usec_per_rpc: 41661

MB_per_sec: 24.68

write_data_averages:

bytes_per_rpc: 1044982

usec_per_rpc: 21721

MB_per_sec: 48.10

5/25/2011 Cray Inc. Proprietary Slide 13

Metadata performance

Metadata performance is one of Lustre‟s biggest complaints

Usually voiced as the result of interactive usage

Clients are limited to a single modifying metadata operation

Only way to get more ops in flight is to add more nodes

max_rpcs_in_flight parameter is for non-modifying ops

Tune up on interactive login nodes

Users tend to make it worse

`ls –l` is expensive on Lustre

Be careful, ls is aliased to `ls –color=tty`

Really, it is stat() that is expensive

Use `lfs check servers` instead of `/bin/df`

5/25/2011 Cray Inc. Proprietary Slide 14

Bulk read/write performance

Client side: `lctl get_param osc.*.rpc_stats`

Server side: `lctl get_param obdfilter.*.brw_stats`
I/O times are reported

Looking for 1 MiB writes all the way through to disk

Avoid read-modify-write in HW RAID controller

And/or avoid cache mirroring depending on RAID type

Use sd_iostats data to see the effect of fs metadata (e.g. journals)

Unoptimal I/O is not an error

Could be silent errors (sector remapping, etc.)

Could be RAID rebuild

Per client stats: `lctl get_param obdfilter.*.exports.*.brw_stats`

OSS Read Cache
O_DIRECT cache semantics

`lctl set_param obdfilter.*.readcache_max_filesize=32M`

5/25/2011 Cray Inc. Proprietary Slide 15

LNET performance

Credits are key
Network Interface (NI) transmit (tx) credits

Maximum number of concurrent sends for the LNET

Peer tx credits

Number of concurrent sends to a single peer

Credits are like semaphores

NI and tx credits must be acquired to send to a remote peer

If a credit isn‟t available the send is queued

Monitor credit use
/proc/sys/lnet/nis

/proc/sys/lnet/peers

Negative numbers indicate queued sends

“min” column shows low water mark

If “min” is negative for „normal‟ operation, consider tuning credits

5/25/2011 Cray Inc. Proprietary Slide 16

LNET router performance

Two more credits need to be acquired for router tx

Router buffer credits
Router buffers hold bulk data for network bridging (RDMA)

Less than a page tiny_router_buffers

Page sized small_router_buffers

1MiB large_router_buffers

Peer router buffer credits
Number of router buffers used for a single peer

Defaults to LND peer tx credit count

Consider tuning lnet.ko module parameter peer_buffer_credits

Monitor router credits
/proc/sys/lnet/buffers

/proc/sys/lnet/peers

Again, negative numbers indicate queued operation

5/25/2011 Cray Inc. Proprietary Slide 17

5/25/2011 Cray Inc. Proprietary Slide 18

Questions?

