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The NCRC Grid Scheduling Environment 

Frank Indiviglio, Geophysical Fluid Dynamics 
Laboratory and Don Maxwell, Oak Ridge National 
Laboratory 

ABSTRACT: In support of the NCRC, a joint computing center between NOAA and 
ORNL, a grid-based scheduling infrastructure was designed to allow geographically 
separate computing resources to be used as production resources in climate and weather 
research workflows.  These workflows require job coordination between the two centers 
in order to provide a complete workflow of data staging, computation, post-analysis and 
archival.  This paper details the design, implementation and initial production phase of 
the infrastructure and lessons learned from the process. 
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1. Introduction 

     The National Climate-Computing Research 
Center(NCRC) is located at Oak Ridge National 
Laboratory and is a joint computing center between 
NOAA and ORNL.  The NCRC supports NOAA’s 
Research and Development production modelling in 
climate and weather.  The NCRC supports the NOAA’s 
R&D community across the country and represents a 
significant paradigm shift in NOAA’s computing strategy.  
The NCRC is the first remote production computing 
facility in NOAA’s history and presented significant 
challenges in the preserving users’ scientific workflows.  
With the NCRC, users’ production model runs would run 
on Gaea, the NCRC’s main compute resource, and 
supporting jobs such as post processing, archival, and 
automated analysis would have to run at the users’ home 
centers.  This workflow model required the design and 
implementation of a grid based scheduling environment 
that would allow for automated and seamless integration 
of the multiple sites and scientific workflows.  In response 
to this, engineers from NOAA and ORNL designed and 
implemented a multi-site scheduling architecture to allow 
for the implementation of these workflows across the 
grid.   

2. Design 

      The core design of the scheduling environment for 
NCRC needed to support three base requirements of the 
NOAA scientific community: 

• The entire workflow would need to be 
automated.  This would include archival and 
post-processing jobs that would run at the 
users local sites, separate from production 
runs on Gaea. 

• The entire workflow should be able to be 
tied together using a scheduling platform.  
This would allow other sites or centers to be 
added into the environment with the same 
platform and little change to the underlying 
workflow. 

• Provide enough abstraction to workflow 
developers to allow workflow components 
to be generic for all centers and sites.      

 
These requirements formed the basis of the design for the 
scheduling environment that would tie the all of the user 
centers and sites into a common framework.  These three 
requirements also allow current frameworks to be adapted 
to this new multi-site workflow structure in a concise and 
easy manner, by providing similar workflow architecture 

at each site independent of underlying hardware or 
software.   
 
To better demonstrate how this scheduling architecture 
was to support this multi-site workflow, we will take a 
closer look at the hardware located at ORNL and at 
GFDL.  Oak Ridge National Laboratory selected Cray to 
provide Gaea, a 30,912 core XT6 during the first phase of 
production.  Along with the core XT6 infrastructure, Gaea 
also includes 4 schedulable eslogin nodes, 16 schedulable 
local data transfer nodes, and 8 schedulable remote data 
transfer nodes.  This hardware forms the base of the 
GFDL’s production compute as it moved from local HPC 
resources to Gaea.  In addition to Gaea, GFDL has a post-
processing and analysis cluster consisting of 60 post-
processing nodes and 6 analysis nodes.  Also located at 
GFDL is a 25PB DMF archive that supports and stores 
the entirety of GFDL experimental data.  This archive 
serves as the data repository for input conditions at 
ORNL, and for all post-processing and analysis work 
locally run at GFDL. 
 
Additionally GFDL’s Modelling Services group provides 
the Flexible Modelling System (FMS).  This software 
infrastructure is meant to abstract the computational 
hardware and intricacies of each platform a user may run 
on, allowing the user to concentrate on scientific 
experimentation and not the details of the system.  The 
FMS infrastructure provides a runtime environment, 
which generates scripts for climate models, and an 
application infrastructure so that models that use FMS 
have common application characteristics.    
 
In addition to supporting FMS, the scheduling 
environment had to be flexible enough to also allow 
support for other NOAA developed workflow managers. 
To allow for this, the scheduler environment would have 
to provide both basic and advanced features to support 
multiple workflow managers to allow for job control and 
workflow management.   
 
 
In addition to these requirements and infrastructure 
available the scheduling environment had to provide a 
platform for centralized reporting, for accounting / 
allocation management.  These features are essential in 
the shared environment, as the users from several centers 
must share these computing resources.  This would be 
essential to allow allocation committees to make 
decisions based on monthly usage patterns of the 
aggregated user base.   
 
To address these requirements, a grid based scheduling 
and allocation platform was conceived to allow for 
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workflow management, reporting and allocation across all 
of the potential user centers and computational sites.  This 
platform would allow a centralized view of the HPC 
enterprise and provide both users and management with 
the features that would allow easy management of 
experiments and of the HPC enterprise.  This design 
would consist of a centralized grid node that would 
provide users with a centralized submission and 
management point for all of their experiments. 
 
In addition to grid job scheduling, grid authentication and 
data transfer facilities would need to be integrated into the 
workflow.  This would facilitate the data migration to 
post-processing, and pre-staging the data from the 
computation site to the user’s center.  In previous 
workflows data movement depended highly on local tools 
and no authentication was required as the entire 
experiment happened inside a single HPC realm.  In the 
new environment, jobs and user data cross in and out of 
different organizational security domains, so a common 
and reliable method for authentication was also needed to 
facilitate a truly capable multi-site workflow.    
 
For this environment, MyProxy was selected as an 
authentication platform.  This provided x.509 based 
security to the grid and provided a manageable way to 
trust user data flow in and out of centers and sites.  This 
integration of a security method allows for the centralized 
management of user keys for data transfer and user 
authentication across the grid.   
 
Key management is controlled via a MyProxy backend 
providing centralized authentication across user centers 
and computational sites.  This MyProxy database is made 
highly available via MyProxy’s replication services.  
These replication services allow for failover throughout 
the grid and multiple stores across the grid.  Key control 
and assignment is currently controlled via the bastion host 
to Gaea, or other clusters.  Users setup up a new master 
certificate once a year, and have their proxy certificate, 
which allows for remote authentication of data transfers, 
automatically renewed in the login process.  The proxy 
certificate lasts 30 days, so a user may not login for this 
duration and his or her jobs will continue to run and 
automated data transfers will continue until the proxy 
certificate reaches its expiration date.   The certificate is 
automatically propagated into the user’s environment via 
provided scripts that are custom tailored for each center.   
 
The estimated peak data transfer rates for the grid are 
about 85TB per day.  This is 5TB of input transfer into 
Gaea, and 80TB of output generated per day.  To allow 
this volume of data, NOAA in partnership with ORNL, 
Internet2, Indiana University, and others built the 

NWAVE network that provides direct, high-speed 
connections between NOAA user centers and 
computational sites.  
 
To enable accounting and allocation across the grid, a 
tightly coupled distributed allocation management system 
was designed using Gold from Adaptive Computing.  The 
allocation will allow centralized grid reporting from the 
grid-head or from the Users centers.  This is achieved by 
deploying a local Gold instance to all resources, and at a 
scheduled interval synchronizing the central database at 
the grid-head.  This synchronization can happen at an 
hourly or daily intervals as needed by the users or 
management.  Initially the design called for a centralized 
allocation system with a highly available backup system, 
however it was later determined the distributed 
synchronization model would provide a better model for 
fault tolerance and general scheduling performance.   
Currently charges are incurred at job exit and pre-
withdrawing time at execution start is not enabled.  This 
was done to support the FMS model of requesting the 
max wall clock limit to allow for the most model 
interactions per run script.  
 
Given these requirements and design decisions, it was 
realized early on in the implementation that a phased 
approach was needed to fully implement the design over 
time and feature maturity.  The initial phase of production 
uses GFDL as a focal point of user interaction with Gaea 
and the grid scheduler.   
 
 
 
 
3.  Current Production 
3.1 Workflow 

The workflow needed to support NOAA users 
depends on tightly coupled events from initial submission 
to analysis.  The current workflow, while allowing for 
submission at either site, begins on Gaea. During this 
initial phase of production users’ workflows and the 
workflow itself is designed to begin on the login nodes on 
Gaea.  This workflow itself is heavily automated by the 
Flexible Modelling System, which is developed and 
maintained at GFDL.  The modelling system provides 
users with a common platform to run their 
experimentation over the local and remote sites.  

 
An experiment can be treated as eight steps: 
• Experiment Creation/Submission  
• Data Transfer  
• Pre-process  
• Model segment run  



 
 

Cray User Group 2011 Proceedings 4 of 9 
 

• Combination/Packaging  
• Data transfer  
• Archive  
• Post-processing 
 
Each step is critical in the job run as it forms the basis for 
the next step to complete successfully. In order to better 
define the process, we will need to define each step and 
its effects on the following steps. 
 
1. Experiment Creation/Submission- 
The creation and submission of the experiment and 
provides the general structure of the job including: 
experiment duration and computational sites where the 
job will run, run time, data treatment, etc. The submission 
step provides structure for the rest of the job. 
 
2. Data Transfer- 
This data transfer step will move data from the local 
center to the remote site. The initial transfer of data is 
about 1/16th of the returning data stream but can vary 
based on experiment and model type to up to 1/5th of the 
returning data. 
 
3. Pre-preprocess –  
The preprocessing step prepares to transfer recently 
created input data for the next segment run. For some 
experiments this step may also require file checksumming 
of data that was recently moved, underwent format 
changes, data resizing, or other data transformations to 
prep for the model run. 
 
4. Model segment run – 
 The experiment segment runs in this job stage. During 
the segment execution two types of data may be 
produced: history/forecast data and restart data. The 
history data will be further processed in the job chain, the 
restart data can be re-linked for use in the next segment 
run as input conditions. This re-linking would happen in 
the pre-process stage. In the event of a failure on the 
executable, the job segment should resubmit itself for re-
run. Administration staff should be notified of the failure. 
A second failure should push the job stream into the hold 
queue for analysis. 
 
5. Combination/Packaging –  
This stage can perform two actions. The first action, if 
needed, is the combination of history data into a more 
concise dataset for post- processing. This step may not be 
needed for all job streams. The second function, needed 
for all job streams, is to copy the data created from the 
preceding run to the Long Term Scratch file system and to 
put the dataset into an archive format. Currently tar and 
cpio are the most widely used archive formats, the 

decision on file format is based on user and framework 
preference. 
 
6. Data Transfer- 
This version of the data transfer is the outbound data 
transfer to the local centers from the remote computing 
center. This type of transfer will account for a vast 
majority of data transfers. In addition to copying data 
from computational site to the users’ center this job stage 
will also provide data verification services in the form of 
checksumming data at each end of the transfer. In the 
event that the generated checksums do not match the job 
will notify the administrators and attempt the transfer a 
second time. In the event of a second failure, the job 
should be moved into a hold queue for failure analysis. 
 
7. Archive –  
This step commits the newly arrived data from an 
intermediary storage medium (if needed), to the local 
center’s archive. Currently each Center has its own 
archive and archive manager. In addition to transferring to 
the archive a secondary transfer into a secondary 
filesystem, which will be used as a starting point for post- 
processing or analysis. In GFDL’s case this filesystem 
will most likely be named ptmp; the naming of this 
filesystem will vary by Center. 
 
8.Post-Processing-The final step for each segment is 
having its data post-processed for analysis. This process 
retrieves data from the archive or a ptmp like filesystem 
and performs data operations on the segment, which may 
cause the data to grow by a factor of 4. The end result is 
then placed into the archive for use in analysis jobs. 
 
Currently the workflow as implemented is more of a peer-
scheduling environment.  This allowed us to initially 
support two post-processing environments.  This was 
needed to as the initial environment needed to utilize the 
existing legacy post-processing equipment at GFDL, prior 
to the installation of the new post-processing hardware in 
December of 2010.  The peer-to-peer schema was 
selected to allow the production workflow to exist on the 
legacy equipment and development on both gaea and the 
new post-processing equipment.   
 

3.2 Batch Implementation 
 
The batch vendor selected to provide the primary 

workflow implementation was Adaptive Computing™ 
using their Moab Workload Manager®, Moab Grid 
Suite®, TORQUE Resource Manager and Gold 
Allocation Manager products.  The current batch 
implementation has certainly evolved as different phases 
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have been added to the workflow and as scale has 
dictated.  Many lessons were learned during the evolution 
that will be covered in a later section of the paper.   

As described in the workflow discussion above, jobs 
must flow among several different compute resources 
even at times in different administrative domains for the 
entire process to complete.  This complexity required the 
introduction of the Moab Grid Suite® to complement the 
Moab Workload Manager®.  The grid software directs the 
job to the appropriate Moab instance responsible for 
scheduling the requested resources.  Once there, the 
workload manager software provides the engine needed to 
schedule jobs on each compute resource.  The scheduler 
will not select a job for execution unless an allocation can 
be obtained from the Gold Allocation Manager.  Finally, 
the batch cycle completes with the TORQUE Resource 
Manager that actually launches jobs that are selected for 
execution.  The process is illustrated in Figure 1. 

 

 

 
As illustrated, the grid software provides the user 

with the flexibility to launch jobs from a single point to 
many compute resources that could exist in 
geographically dispersed locations.  This was indeed a 

requirement for the GFDL workflow with compute 
resources located at ORNL and post-processing and data 
archival resources located at GFDL.  With that in mind, a 
design was developed to not only meet that requirement 
but also to meet GFDL job scheduling priority 
requirements.   

To briefly recap, the resources currently involved in 
scheduling are listed below in Table 1. 
 
Compute Resource Purpose 
C1 Cray XT6 Compute Resource 
T1 Cray XT6 Test Resource 
esLogin Login Nodes 
LDTN Local Data Transfer Nodes 
RDTN Remote Data Transfer Nodes 
GFDL Post Processing and Archival 

Table 1. 
 
All of these resources are located at ORNL except the 

resource labelled GFDL.  Several issues led to the need to 
maintain multiple Moab servers to schedule all of these 
resources.  First, GFDL being remotely located and in a 
different administrative domain dictated the need for a 
separate Moab instance to reside at that site.  This 
provides the ability to more easily separate scheduling 
policies, user bases, administrative responsibilities and 
privileges, etc.  So, at least two Moab instances were 
needed from the outset to provide grid communication 
between ORNL and GFDL.  Next, due to the current 
requirement that a Moab instance reside inside a Cray X* 
system for scheduling that particular system, other Moab 
instances had to be established for each Cray resource.  
That brings the total Moab instances in the current grid 
configuration to four.  Early on, there was a requirement 
that every Moab instance see every job from every other 
Moab instance.  This turned out to not actually be a 
requirement and caused some issues that will be discussed 
later, but keeping that in mind, Figure 2 attempts to 
illustrate the connections that exist between the various 
Moab instances. 

 

Moab 
Grid 

Moab Schedulers 

Gold  

TORQUE 
Resource 
Managers 

Figure 1. Moab Software Job Flow 



 
 

Cray User Group 2011 Proceedings 6 of 9 
 

 
Figure 2. 

 
The arrows in Figure 2 are used to indicate the 

communication patterns used by Moab and the users.  For 
instance, users submit jobs from all of the compute 
resources to the Moab grid head (moab01) and cannot 
submit directly back to the compute resource on which 
the current job is running.  The exception to this is GFDL 
where there is a double arrow for both users and Moab.  
All jobs can be seen on both moab01 and the GFDL 
Moab instance due to this communication and users can 
submit jobs in both directions.  However, looking at the 
single arrows for C1 and T1, while moab01 migrates jobs 
destined for those resources to the appropriate Moab, C1 
and T1 do not see any other jobs except those that are 
running in the respective Moab instance.  Again, this 
became an important point that will be discussed later.  
As Cray X* systems require a Moab instance locally for 
scheduling, they also each have a TORQUE instance 
running locally.  While this configuration is probably not 
entirely necessary given the architecture of TORQUE, it 
seems appropriate to map to each Moab instance.  This 
configuration may be modified at a later date to centralize 
TORQUE services onto the grid head.  There is currently 
a TORQUE server running on the grid head that serves as 
the resource manager for esLogin, LDTN and RDTN 
services.  The final piece of the figure is the Gold 
Allocation Manager that resides at GFDL.  Each job that 
is submitted to the grid head attempts to obtain an 
allocation from the Gold server.  If an allocation is 
overdrawn for the account requested, the job is placed 
into an account with a very low priority allowing the job 
to run only when others that still have allocation are not 

running.  This serves a couple of needs since it gives users 
who have not exceeded their allocation priority while also 
providing good machine utilization when those jobs are 
not running.  

Finally, once a job arrives at the appropriate 
destination, it must be appropriately prioritized based on 
other jobs that are currently waiting.  The GFDL job 
scheduling priority requirements were provided and the 
priority table below is a result of those requirements. 
 

Factor Unit of  
Weight 

Actual 
Weight 
(Minutes) 

Value 

Class # of 
days 1440 

Urgent (10)  
 Persistent  (5) 
Debug (2) 
Batch  (1) 
Windfall (-365) 

Fairshare  # of 
minutes 1 

(<>)5% user 
 (+/-) 30 minutes  
 
(<>)5% class 
 (+/-) 60 minutes 

Queue 
Time 

1 
minute 1 Provided by Moab 

Table 2. 
 

While Table 2 does not cover the scope of every 
requirement, it is a good summary of most of the 
requirements.  Generally, there are five queues or classes 
that have a given priority with an accompanying project 
allocation in Gold. Fairshare targets are used to attempt to 
provide approximately 50% of the compute resources to 
the urgent and persistent classes. A fairshare target in 
Moab provides the capability of giving objects such as 
users, groups, accounts, classes, etc. a targeted percentage 
of the system, and this target is adjusted based on 
parameters that are configurable.  In this case, any time a 
class configured with a fairshare target is above or below 
five percent of its target it is adjusted in the appropriate 
direction by 60 minutes.  It should be noted that all 
priorities have been normalized to minutes since queue 
time is provided by Moab in minutes.  Having a single 
unit of priority tends to make priority discussions less 
complicated.  

A couple of other noteworthy requirements not 
covered above that are provided by Moab are a standing 
debug reservation of ten percent of the machine which 
also services interactive jobs, and a novel queue which 
gathers jobs greater than twenty-five percent of the 
machine for later execution.  The novel queue generally 
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remains on hold until after a maintenance period.  GFDL 
does not typically run capability jobs in their standard 
workflow and chose not to generally allow the machine to 
drain in order to run a large job outside of the workflow. 
 

4. Future 

4.1 Workflow 
As the workflow becomes more mature, 

improvements in job management and overall grid 
management will certainly be needed as computational 
resources become larger and the workflow as a whole 
becomes more complex.  Improvements in job tracking 
and job “trees” are desired to allow users to trace job 
lineage and hierarchy.  This will also allow users to better 
track job and experiment flow through the grid.  Initially 
the idea of a control job was developed for management 
of an entire experiment.  This job would be created during 
phase one of the workflow and serve as an information 
store on the grid for the experiment over its segment runs. 
These changes and are planned for the workflow from the 
scheduler perspective to provide better information to the 
users and workflow developers.   

 
This type of enhancement will need to include 

advanced features of the scheduler such as triggers and 
job templating.  This work is being planned in the next 
phase of development to provide a richer feature set to the 
user. Further work in automated job stream checking, job 
order checking and the ability to show better statistics and 
job relationships across the grid is also underway to 
provide the user base and workflow developers a base to 
enhance the scientific platform across the R&D 
enterprise.  Feature enhancements are already being 
worked on to provide job dependencies on job names, the 
ability to group jobs onto similar nodes to facilitate data 
sharing between runs, and the implementation of the grid-
head which will provide a centralize view to the workflow 
instead of across peers which may limit job tracking and 
relationship. 

4.2 Batch Implementation 
 
While scheduling has reached somewhat of a steady 

state, there is certainly room for improvement with the 
current system.  A few of the deficiencies are multiple job 
numbers for the same job when using a grid 
configuration, potential job starvation at the grid head 
when a migration policy of JUSTINTIME is enabled, and 
the inability to easily define and maintain policies and 
priorities for multiple Moab instances.  A few steps are 
being taken to address these issues as outlined below. 

A common complaint from users in the Moab grid 
environment is the fact that multiple job numbers must be 
tracked for the same job.  When a job is submitted to the 
grid, a job number is generated that reflects the Moab 
instance the client is communicating with along with the 
next numeric job number (i.e., gaea.774862).  Once that 
job is migrated to the destination Moab instance and is 
visible to the TORQUE Resource Manager serving those 
particular compute resources, it gets a TORQUE job 
number (i.e., 426102).  The TORQUE job number is what 
is commonly used to identify output and error files, but 
the user generally only sees the initial grid job number 
upon submission, a situation that leads to confusion.  
While there are tools to correlate these job numbers 
(showq –v), it can be a source of confusion for both the 
user and administrators attempting to troubleshoot an 
issue.  This problem has been resolved in new versions of 
both Moab and TORQUE whereby Moab will provide the 
job number to TORQUE, and it will be accepted by 
TORQUE.   

Job dependencies necessary for chaining together the 
workflow also proved to be somewhat of a challenge in 
the grid environment.  In order to accommodate these 
dependencies, a job migration policy of JUSTINTIME 
had to be configured on the grid head.  This policy will 
only migrate the job to the final Moab instance once it is 
ready to run.  In other words, all job dependencies must 
be met and there must be available compute resources to 
run the job.  This latter attribute of JUSTINTIME means 
that larger jobs could potentially be starved if smaller jobs 
continue to be migrated as slots become available.  If a 
small job completes making room for another small job, a 
new small job will be migrated creating a cycle that could 
starve a larger job.   

Multiple Moab instances generally require 
maintaining policies and priorities on each instance that 
can prove to be challenging.  In a grid environment, 
centralizing these policies and priorities on the grid head 
at a single control point should solve the problem.  
However, certain parameters are not yet instance or RM 
aware making it more difficult to provide different 
policies for each instance from the grid head.   

These latter two issues and others can be addressed 
by first moving to an existing grid configuration of 
master/slave and eventually to a new development effort 
underway to remove the Moab instance from the Cray X* 
systems completely.  Some development effort to make 
more parameters instance or RM aware will be required 
for each scenario.  The requirement for a Moab instance 
to run locally on each Cray X* is based purely on the 
inability of the Cray job launch software dubbed ALPS 
(Application Level Placement Scheduler) to communicate 
outside of the Cray.  In a master/slave configuration, all 
scheduling decisions are moved to the grid head 
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simplifying the need to maintain policies and priorities in 
multiple places and removing the need for JUSTINTIME 
and the problems associated with it.  However, a Moab 
instance must still run locally on the Cray due to the 
ALPS constraint.   

Ultimately, removing Moab from running locally on 
the Cray solves several problems.  Centralization is a key 
reason as already mentioned, but it also provides the 
flexibility of provisioning resources as needed to meet the 
needs of running a complex Moab configuration.  The 
Cray service nodes have traditionally lagged in 
technology refreshes and are often lacking in the 
resources needed to efficiently run Moab.  With no 
requirement for Moab to run internally, customers can 
acquire the appropriate resources to run Moab more 
efficiently.  The current development effort underway to 
accomplish this task involves the use of a new Adaptive 
Computing product called Moab Service Manager 
(MSM).  This product will run locally on the Cray and 
basically provide a socket connection to the Moab engine 
in order to provide the required connection to ALPS.  
This should provide a much more efficient grid 
configuration by eliminating the need to run multiple 
Moab instances at a given site.  

 

5. Lessons Learned 

5.1 Workflow 
Early on the workflow development team planned to 

use a large number of specific scheduler options such as 
triggers and advanced API features.  In the end they 
switched to a more basic approach in an effort to deliver a 
workflow that would be flexible and general enough for 
several platforms.  These decisions allowed an accelerated 
on boarding of the enhanced workflow.  In addition it let 
the development and system team to debug grid-issues 
and more rapidly repair shortcomings since the workflow 
compartmentalizes most of the steps of the workflow into 
single jobs.    

Most of the lessons learned were the based on 
adaption to the new platform using its expanded feature 
set.  FMS packages run information (such as diagnostic 
selection) in the run script.  These run scripts were found 
to be larger than the expected limit of moab, they also 
stress the overall system as the transportation of these 
scripts becomes taxing as job volume increases.  The 
ability to submit from each scheduler also added 
complexity as the workflow developers needed to pay 
attention to the amount of submissions and number of 
hops from the destination.  These issues were able to be 
handling and address via configuration changes.  Other 
lessons learned with respect to submission were that the 
developers had to take into account the networking 

aspects of grid scheduling.  Large volumes of 
simultaneous submittals caused timeouts and delays in 
interactive response for the workflow and interactive 
users.  These issues are being addressed both on the 
scheduling side through software enhancement and 
through the workflow by inserting delays and checking 
for timeouts at submission time.   

5.2 Batch Implementation 
 
Early on, with Moab instances running on the grid 

head and locally on each Cray X*, it seemed appropriate 
to just use the standard configuration whereby all service 
node Moab clients inside a particular Cray pointed to the 
Moab instance running on that respective Cray.  The 
primary login nodes (esLogins) utilized point to the grid 
head Moab instance, but not the Cray clients.  This 
configuration meant that each Cray needed the ability to 
see every other Moab instance in order to provide users 
with the capability of submitting a job to any Moab 
instance from another job.  This configuration proved 
problematic with timeouts, hop counts being exceeded, 
job migration confusion, etc.  Finally, after taking a closer 
look due to all of the issues, it seemed a better outcome 
could be achieved by pointing all clients at the grid head 
making it the focal point for all job submissions and 
removing the spaghetti configurations that pointed all 
Moab instances to all Moab instances.  The grid head 
could see all instances and with this configuration, there 
was no loss of functionality.  This configuration has 
proven to be much more stable and has solved the 
problems mentioned.   

 

Conclusion 

The initial implementation of the NCRC grid scheduling 
environment has evolved into tool that can support the 
production system spanning NOAA and ORNL. This 
system provides flexibility by providing key features that 
allow multiple workflow managers to function across 
computational centers and user sites. As the commercial 
and provided software mature they will offer more grid 
capable features. This maturation will provide users with 
even more capable tools with which to manage their job 
flows.  The resulting increase of capability will allow for 
further growth of existing resources and further expansion 
of the R&D environment at both NOAA and ORNL. 
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