A uGNI-Based MPICH2 Nemesis Network Module for Cray XE
Computer Systems

Howard Pritchard Igor Gorodetsky

Cray Inc.

Abstract

Recent versions of MPICH2 have featured Nemesis - a scalaiglle-performance, multi-network communication subsys-
tem. Nemesis provides a framework for developing Networkdies (Netmods) for interfacing the Nemesis subsystem to
various high speed network protocols. Cray has developeskaLevel Generic Network Interface (UGNI) for interfagiMPI
implementations to the internal high speed network of CriyaXd follow-on compute systems. This paper describes sigrie
of a uGNI Netmod for the MPICH2 nemesis subsystem. MPICH#operance data on the Cray XE will be presented. Planned
future enhancements to the uGNI MPICH2 Netmod will also Iseuksed.

1 Introduction 2 Generic Network Interface APl Overview

The Generic Network Interface (GNI) provides a low—level

The Cray XE represents a fundamental change in network 5| for network middleware to efficiently utilize the Cray

chitecture from its predecessor XT systems [1]. The Cray network. GNI is primarily intended for user—space and

Gemininetwork provides user—space applicgtions with a Io\ﬁ'érnel—space network applications whose communication pa
overhead, programmed 1/O (PIO) mechanism for accessiiths are message—based in nature, and where the ability to

?eTIC\)Ary on re?ote nocltlaps: |nt;1_truhe odne—S|ded fashtlon. Tertrpggover from network faults is of importance. The APl is not
d?‘s i emory Accesg- RI%’MA:S a:j Wa_rte SUpde; S I€MO§tended for use by End-User applications. GNI is also not
Irect memory access () read, write, and atomic me ptimal for middleware which supports applications like-Pa

ory operations (AMOSs) to memory at remote nodes. Tlﬁ oned Global Address S -
o . pace (PGAS) compilers and other
Gemini also has a Block Transfer Engine (BTE) to offlo plications requiring high performance for very fine—grai

RDMA read an_d_wrlte operations fr_om the host processor. ote memory access.
addition, Gemini was designed with fault—tolerance relate . o
features that allow software to recover from various nekwoft layered approach was taken in designing GNI. A lowest
errors more reliably than on the predecessor XT system. level Generic Hardware Abstraction Layer (GHAL) is used to

interface to particular instantiations of Gemini. Thisdays

Reflecting these fundamental differences between the U€kd to mask specific details of hardware registers etc. from

networks, the Message Passing Interface (MPI) MPICH2 "ﬁlfe upper level components. Other components of the GNI

plementation deployed on XE systems is SUbSt""ntia"y'diﬁ%tack includekGNI - the upper level device driver which also

ent from the Portals—based MPICH2 deployed on predece%ﬁﬂflements the kernel level GNI API, anduGNI library

XT systems. which implements the API for user-space applications. Al-
The intent of this paper is to provide an overview of thiough the software is layered, it should be pointed out that
MPICH2 uGNI Network Module that interfaces to the Cragore components are shared between the kernel (kGNI) and
XE, the software layer it uses to interface to the underlyser—space (UGNI) interfaces. This approach facilitates d
ing network, as well as other support software the Netwovklopment, maintenance, and testing. For example, changes
Module utilizes to obtain maximum possible performancean be made to a core component and first tested in user—
The paper is organized as follows: important elements of tsgace MPI testsuites and applications before being ineorpo
Generic Network Interface (GNI) are presented, an overvieated into kernel level services like the Lustre’s LNET san

of MPICH2 Nemesis and its Network Module framework folport layer. Likewise, fault tolerance features, which may b
lows, after which details of the uGNI Network Module anéasier to stress test using kernel-level components can the
related support software are presented. Some basic petberreused in user—space without extensive additionahtesti
mance data on Cray XE is presented. The paper ends WAthure 1 depicts the layered view of the GNI software stack
a discussion of future work planned for the uGNI Netwonkith two sample clients — the MPICH2 in user—space, and
Module. GNILND (Lustre LNET) in kernel space. The various major

components of the API, how they map to the XE hardwatezNI driver should handle NIC errors that can be traced back
and typical software usage models are described below. to the application, etc.

2.2 NIC Handles

The CDM is essentially a software construct, and cannot be
used directly for launching network transactions. Thumrpr
[UGNl } user space to initiating any communication with other peers, a process
must first attach a CDM to a Gemini Network “Card” (NIC).
This is somewhat analogous to the IP sodket operation.
A GNI NIC Handleis returned to the application as part of
this attach operation. A CDM can be attached to multiple
VW% Gemini NICs, i.e. multiple NIC handles can be associated
with a given CDM. By taking this approach, GNI can be used
[kGNI } both for current XE systems where there is only a single Gem-
ini NIC per node, as well as allowing for the flexibility to sup

port multiple NICs per node in possible future system config-
[GNI Core j urations.

e

Once a process has obtained a NIC handle by binding a CDM
to a Gemini,End Pointscan be created. GNI uses the End
Point (EP) construct for managing data exchange between
peers within a CDM. This construct is not directly related to
any Gemini resources, but is useful for resource management
associated with network transactions. An EP can be bound to
a given GeminNic AddressandRemote Inst le-the unique
32-bitidentifier provided by the peer when it joined the CDM.

. . . EPs can be used for session management (see Section 2.4),
Since the Gemini allows for remote direct memory aCCES8h jing messages to a remote peer, and/or RDMA transac-

from user-space, a hardware protection mechanism ex{% s. The API provides a function for unbinding an EP from

to vahd_ate.all remote- Memory access request.s generaiQfic address and remote instid. For EPs that are used exclu-
b_y appllcauons_. To utilize the_ hardware prot(_actlon me.Chgﬁlely for session management setup and/or RDMA transac-
nism, GNI provides software with@mmunication Domain ;. /- - unbinding an EP and rebinding the EP to a new NIC ad-

(CDM) construct. ProcesseBeery use a previously agreec]ldress/remote instid is a lightweight operation. In thesesa

upor;Pri)r':ecgoerl Lag(pté:lgl_) tot deff:ne antd joina CDMt' For eX'th(%(\junbind operation does not involve communication with a
ample, the —based Lustre file system uses a ptag resetved . | peer or system calls,

for it system wide. Each peer must also supply a 32Aisitid
which is unique within the CDM. For user space applications,
the ALPS [4] job launch system provides a ptag value foreaghy Session M anagement

job. On production XE systems, user—space applications are

not permitted to choose arbitrary ptag values. GNI provides session management functions to support net-

GNI provides additional privileged functions specificaity Work applications which manage messaging channels (Sec-
ALPS to use when launching a job, including functions féion 2.8) between peers dynamically. Peers can exchange in-
configuring the Gemini Node Translation Table (NTT), an@rmation concerning channel setup using these session man
various NIC resource limits. The NTT provides greater fle@gement functions. GNI also supports the notiowidicard

ibility in allocation of ptags for user space applicatioifie datagrams which can be used, for example, by client/server

usage of the NTT is transparent to user-space software uWels in which the.server peers wait for incoming connec-
the GNI API. tion requests from client peers.

ssedAq so
[3001

Figure 1. GNI Software Stack with MPICH2 and
LNET(GNILND) example clients

2.1 Communication Domains

A modesargument supplied to the interface which creates

the CDM can be used to specify additional characterist2s M emory Registration

of the CDM. Examples are options for handling Copy—on—

Write (COW) problems that can occur when a process whikthorder for the Gemini to directly access a memory region on
has registered memory with the Gemini dodstk, how the a remote node, the memory region at the remote node must

have been previously registered with the Gemini at the s#eps. First, the application binds an EP to the remote NIC
mote node. Also, in order for the Gemini’'s BTE and FMAddress and remote inst id that is the target of the transac-
hardware to access a local memory region, the memory redion. A post descriptois created with information about the
must be registered with the local Gemini. GNI provides merransfer including pointers to source and target buffdrs, t
ory registration interfaces for applications to registegnm required MHs, etc. This descriptor is then posted to the EP.
ory with the Gemini. The interface allows for the applicatioThe particular function used to post the descriptor to the EP
to specify access permissions and memory ordering requietermines whether or not the BTE or FMA hardware will be
ments with respect to the local processor interface. It alssed to handle the transaction.

enables the application to associat@ampletion Queu€Q) The BTE is generally preferred for moving all bulk message

with the registered memory region. GNI .remms an oPagyi as it offloads the work of moving the data from the host
Memory HandlgMH) structure to the application upon suc-

:) . . rocessor to the NIC. Also, on XE systems, the BTE is gen-
cessful invocation of one of the memory registration fung
tions. The MH can then be used for RDMA transactions an
messaging.

éally more efficient at moving data through the node’s inter
| coherent HyperTransport interconnect as well. The FMA
hardware is best used for shorter control data and AMOs. The
FMA hardware may also give better results when there are
2.6 Completion Queue Management many processes on the node trying to issue medium size (2-8
KB) RDMA transactions in a synchronized, bursty fashion.

Gemini Completion Queue&CQ) provide a light-weight no- S€€ Section 5.2.
tification mechanism for software to determine when

e the data in a RDMA Write or non-fetching AMO trans—2'8 Messaging Facility

action has been delivered to the target Gemini, .) .) ,
The Gemini provides a specialized RDMA Write with re-

¢ the result data for RDMA Read or fetching AMO transmote notification operation which is used by GNI to provide a
action has been delivered into local memory, messaging API for applications. For user-space applicafio

. here are two types of messaging facilities available.
e a message from a remote peer has been delivered {o a yp ging

previously registered local memory region. The GNIShort MessagéSMSG) facility provides the highest
performance in terms of latency and short messages rates, bu

GNI provides an interface for creating and destroying CQomes at the expense of memory usage, which grows linearly
Generally software uses@X” CQ for the first two types with the number of peer-to-peer connections. Two peers in
of notifications, and a separdt®X” CQ for the third type. a CDM can establish a SMSG channel using the following
For RDMA transactions using the FMA hardware, the appfprocedure:

cation binds a CQ to a NIC handle. When using the BTE

for RDMA transactions an application can specify the CQ in e Each peer creates an EP and binds it to the NIC address
the Post Descriptodefining the transaction (see Section 2.7). and remote inst id of the peer with which an SMSG chan-
An application can bind a CQ to a registered memory region nel is to be established

to receive notifications for messages arriving in that mgmor _ _
region. e Each peer then createsmilboxfor its end of the SMSG

channel by allocating memory and registering it with the
Gemini using functions described in Section 2.5. The
resulting MH and other info is used to initialize a SMSG

channehttributesstructure.

An application can check for presence@impletion Queue
Events(CQESs) on a CQ in either polling or blocking mode.
A CQE includes application specific data, information about
what type of transaction is associated with the CQE, and
whether or not the transaction associated with the CQE come The peers exchange these attributes using the Session
pleted successfully or not. Sufficient information is paed Management methods described above in Section 2.4,

in the CQE error field to allow an application to discriminate) R))
between errors arising due to transient errors in the nétwor ® The pairs then initialize the SMSG channel using their

or target node of the transaction, and those related to acdtw local attributes structure and the remote attributes struc
errors at the source or target. ture obtained from the peer. Messages can now be ex-

changed between peers of the SMSG interface.

2.7 Remote Direct Memory Access Transac- GNI also provides alessage Queu@MSGQ) facility that
tions user-space applications may use. MSGQs provide lower per-
formance, particularly in terms of short message rate, tut a
GNI provides an interface for initiating RDMA transactionsiuch more scalable in terms of memory usage than SMSG
using either the Gemini BTE or FMA hardware. To initichannels. Memory usage scales as the numbeodésin
ate an RDMA transaction, the application takes the foll@gvitthe job rather than peers. Setup of MSGQs is similar to that

described above for SMSG connections, but is done on a per-

node rather than per-peer basis, with many of the steps being

hidden within the uGNI layer. The maximum size message & M\&&\ N
that can be sent using the MSGQ facility is 128 bytes. In MPI Interface

theory SMSG can be used to deliver messages up to 16MB
[MPICH2 || ROMIO |

in size, but owing to memory footprint constraints and per-
formance considerations, the practical upper limit is ia th
kilobyte range. For both facilities, messages are delivare ADI3 Interface |_ADIO |
order. .
[CH3 Device }

Both the SMSG and MSGQ facilities exploit design features
of the Gemini write with remote notification hardware to im-
plement a reliable messaging protocol. Using this mecha-

nism, the target Gemini of an incoming message will only [
deliver the notification flag if the message was successfully

received. At the sender, or initiator Gemini,T&X CQEis Netmod Interface

generated for each message sent. The error field component 2
of the CQE will indicate whether or not . e

e the message was successfully received at the target Gem-
ini

e anetwork timeout or other transient error occurred eitherFigure 2. MPICH2 and Nemesis CH3 channel software stack
in the delivery of the message to the target node, or the/ith sample Network Modules
delivery of the hardware responses back from the target
Gemini to the initiator Gemini

aJisn
S4d9

Nemesis]

Network hardware vendors can choose to port MPICH2 to a

e asoftware error related problem occurrgd atthe receivglistom interconnect by implementing an ADI3 device. This
such as a procesegfaulthat was to receive the messaggnnroach may allow for better utilization of a custom net-

work. This was the approach taken for the port of MPICH2
The GNI SMSG and MSGQ software makes use of the errgfyhe cray XT. However, developing and maintaining a com-

if any, reported in th&'X CQE in conjunction with a sliding piete custom ADI3 device can be very expensive, and fre-
window protocol, to determine whether a message needs tQ,ignly |eads to redundant development that contributtéss li
retransmitted or has been successfully received at thettajg (e way of differentiation of a custom interconnect. Addi

node. tionally, the pace of development of MPICH2 at Argonne has
The GNI API provides a function for applications to use taccelerated recently, partially driven by the desire tol@np
determine whether or not the error reported inTeCQEis ment proposed MPI-3 extensions to MPI.

atransient, and thus recoverable, error. An alternative to developing a full ADI3 device is to imple-

ment achannelfor the CH3 ADI3 device that comes with
MPICH2. In principle this interface requires significarliégs
development effort to code to, while still delivering reaso
@ple performance. However, as the availability of commyodit

This interface can be used in conjunction with the error-noffPMA capable networks increased, and thus the interest in

fications provided in CQEs to enhance error reporting andRg"ing MPICH2 to networks using protocols other than TCP
facilitate debugging of application and system problems. sockets, deficiencies with the channel APl became apparent.
Vendors and other organizations more often than not just re-

worked the CH3 ADI3 device for a particular network, rather
3 MPICH2NEMESIS than using the channel interface.

This was one of the motivations for the introduction of a new
MPICH2 is a widely used, open—source implementation Nemesishannel to the CH3 ADI3 device. The goals of the
MPI developed and maintained by Argonne National Labblemesis channel, as stated by the authors, are scalability,
ratory (ANL) [6]. The software is implemented in a layeretligh performance intra—node communication, high perfor-
fashion depicted in Figure 2. At the top level of MPICH2nance internode communication, and multi-network inter—
is an Abstract Device Interface - version 3 (ADI3) devicemode communication [2]. Although the ultimate goal is to
It presents an MPI-2.2 compliant interface to applicatiomaake Nemesis a self—standing ADI3 device, it was found suf-
while presenting the ADI3 interface to tidevicelayer below ficient at the time to make modifications to the CH3 device
it. itself to better support the Nemesis package as a channel.

2.9 Asynchronous Error Reporting

GNI provides an asynchronous error notification interfa

The major components of Nemesis are a highly optimized on-e maximum eager message size - this is not a callback
node messaging system and a multi-method capable frame- function, but a Netmod sets this value to control when
work for implementingNetwork ModulegNetmod) within Nemesis switches from an eager to rendezvous proto-
Nemesis. The framework is flexible and can be used for a va- col for the VC. Note that this field is ignored for certain
riety of interconnects as evidenced by existing moduleb suc kinds of transfers.

as Myrinet MX and GM and a recent IB module available

ip the MVAPICH2_version of MPICH2 [8]. The basic func— e iStartContigMsg - the Netmod callback Nemesis in-
tion of a Ne_tmod is to move control messages — which can gkes to enqueue a message for sending on a VC

be application messages — and data across a network. The

upper components of Nemesis implement the MPI portion, . , . ,))

e.g. message matching, handling of unexpected messages, SendContig - an optimized version of iStartContigMsg
etc. There are hooks in Nemesis to support Netmods that have that potentially allows the Netmod to avoid initializing
MPIl-awareness such as hardware message matching in their 8" MPI request structure

networks.

e pause send_vc - callback function for Nemesis to invoke

Nemesis uses a callback—function approach to interfade wit when pausing or quiescing a VC at checkpoint time

Netmods. Callback functions can be roughly divided into
three sets. One set of callbacks is associated with the Net-

mod as a whole. Some of the most important of these are @ restart_vc - callback function for Nemesis to invoke
when restarting a VC during the restart procedure for

« Initialization - does any initialization specific to the @ checkpointed job

Netmod. Itis invoked by Nemesis as part of the MFRit
procedure. e various callbacks associated with th@ng Message
Transfer Protocol
e Finalization - does any finalization specific to the

Il\\l/lel;tlml?i(rjlélizg I?O(I:ne\ijoukreed by Nemesis as part of thﬁ third set of callbacks is associated wittCammunication
- P ' Operationsstructure defined by the Netmod. This can be used

e Checkpointing - does any checkpoint specific activitie§_°r Netmods which elect to implement higher level MPI func-

required by the Netmod. Itis invoked when a job is beinttf’”s like MPLIsend, etc. directly. These callbacks are not
checkpointed. Note MPICH2 uses the BLCR packa?é'”e”“y used by the uGNI Netmod and so are not discussed
for checkpointing. urther here.

» L] A Netmod invokes th&/IPID_nemhandlepktfunction to de-

* Restart - does any restart specific activities required Qyer gata coming off the network up into Nemesis on the re-
the Netmod. It is invoked when a previously checksejye side. This function takes as arguments the VC associ-
pointed job is being restarted. ated with the message data, a pointer to the data coming off

. . L the wire, and the length of the data. Nemesis expects this dat

¢ thugl Connectlop In|t|a}l|;§t|pn) dpes any Ne“T‘Od to be delivered in the same order it was sent from the sending
specific step required to initialize tvrtual connection rank. Nemesis can handle receiving messages as fragments.

(VC) structure used by the CH3 device to manage M{Spon return fromMPID_nemhandlepktthe Netmod can as-

saging between ranks_ln t_he job. T_h|s step does not N&Gme its safe to reuse any buffers or resources associated wi
essarily mean the VC iactive Additional steps may bethe data packet

needed to send messages over the VC.
Nemesis features hong Message TransfétL.MT) protocol

e VC terminate - does any connection termination spehat facilitates implementation of zero-copy transferd¥et-
cific to the Netmod for a given VC. This is currently inimods interfacing to networks that support these types of op-
voked by Nemesis at MBFinalize, or when disconnect-erations. If a Netmod defines the LMT callbacks on its VC’s,
ing from a group started using MPI-2 process creatitilen Nemesis will use that method for sending messages
functions. larger than the rendezvous threshold. When the LMT path
is used, only short control messages actually move through
e VC destroy - does any Netmod specific steps requirafle Nemesis stack itself. The bulk message data can be trans-
to clean up resources associated with a VC. This is Crred in a zero—copy fashion from the application’s send
rently invoked by Nemesis at MEfinalize, or when dis- puffer into the application’s receiver buffer. Note there a
connecting from a group started using MPI-2 processme exceptions to when the LMT is used, even when the
creation functions. message size is greater than the eager message size defined
in the VC struct. Ready send messages do not use the LMT
The second set of callbacks are associated with the VC stroath. Messages generated from MPI-2 RMA functions do not
ture. The most important are currently use this path.

4 TheuGNI Netmod to the application.

When using the GNI MSGQ facility, it is simpler to build all
The Gemini NIC has a number of characteristics which egfthe per—node connections prior to returning frivtR1_Init.
able good MPI performance. The most significant is thethis case, the Netmod initialization function registecsll-
FMA hardware, which provides a low—overhead, os—-bypassck with Nemesis to run connection setup prior to returning
pathway for injecting short messages into the network. THiem MPI_Init to the application.

enables the MPICH2 on Cray XE to realize much lower I,:-i. Netmod returns a MPICH2 CHBusiness cardBC)

tencies and vastly higher message rates than with the pr c]ﬂ'el
cessor XT s ster?;s gThe BTE aﬁows for offloading of guloeNemesis as part of the Netmod initialization procedure.
Y : 9 gon return from the Netmod’s initialization callback func

data movement fro”.‘ the host processor, providing one of Elon, Nemesis commits the BC to the Process Manager Inter-
components essential for realizing independent progrbs%o &’s (PMI) key—value space (KVS)
MPI messages. Other factors which significantly influenced” Y P '

the design of the uGNI Netmod were the requirement to Bé the last stage of the overall Nemesis channel initidbzrat
able to handle transient network faults, interoperabilitth Nemesis runs any callbacks that the Netmod’s initializatio
other program models, reuse of as much of the existing ioutine had registered.

frastructure in MPICH2 as possible, and extensibility tp-su

ort at least some of the proposed MPI-3 Fault Tolerance fea- .
tpures [3]. Prop 4.2 Connection Setup

When running in dynamic connection mode, SMSG chan-
nels are only established when a given rank in the job needs
to send a message to another rank. If a channel has not
been established yet, the sender allocates an SMSG mailbox,
%nd prepares a channel establishment message describing th
Ghailbox location within the pool of registered memory from

. : . which the mailbox was allocated. This channel establishimen
M_PI_Inlt_thread A CDM IS created using thetagvalue Sup- message is then sent via the GNI session management (Sec-
plled_ by ALPS‘. I|_1_add|t|on to thetag ALPS also s_upphes tion 2.4) protocol to the target remote NIC address and re-
the list of Gemini interfaces that the ranks of the job on ﬂ?ﬁote inst id. The remote NIC address is obtained from the
local node.can use. AIthngh it is. qot anticipated that t%l KVS. In most cases, one of the intended receiveitd-

4.1 Initialization

The uGNI Netmod’s initialization method is invoked b
Nemesis as part of the overall MPI initialization proc
dure that takes place when an application cBI_Init or

be able to use multiple Gemini NICs. The Netmod then Hon ab : : :
t Ibox th h d for hagdl
taches the CDM to all available Gemini NICs. The resultir] P aboutany matibox e receiver has prepared for hagdin

NIC hand| th d for the followi ; Hcoming connection requests. As part of the session man-
andies are then used for the foflowing steps. agement code within the kGNI driver, thvéldcard datagram,

The Netmod next initializes a registration cache (see Seadter having been matched, is sent back to the sender. As the
tion 4.7), TX and RX CQs are created using the NIC hasender and receiver return into MPI, they dequeue the com-

dles, DMA buffers are registered with the NIC handles, angeted datagram sessions and use the information to caenplet

freelist of transaction management structures is credikd. the SMSG channel. The sender then delivers the original ap-

transaction management structures serve multiple puspogdication message using the SMSG channel.

to avoid overflow of the TX CQ by limiting the total NUMy\when using SMSG channels, but with this dynamic connec-

!oer_ of transac_tlo_ns the Netmod has outstanding at any PQIBh approach disabled, this same procedure is used, batis n
'”.“F"e’ assoma’qng CQEs pulleq off the TX CQ back tf) ﬂ]‘Bnger driven by application MPI send requests. Rather, all
original tran;acuon, and for_holdmg state and data regito SMSG channels are setup prior to returning frdR1_Init.
handle transient network failures. All mailboxes are allocated upfront. This can use a signifi-
Depending on which GNI interface is selected at run time foant amount of memory for large jobs. Startup time at scale
sending short messages — SMSG or MSGQ - two differendy increase significantly when dynamic connections are dis
steps are taken during initialization of the Netmod. abled.

If the SMSG method is selected, an initial set of SM®@il- If the MSGQ facility is used, docal leaderrank on each
boxesis created and registered with the NIC handles. A sabde creates a GNI MSGQ. It then exchanges MSGQ channel
of EPs are created in order to pegtdcard datagrams with setup requests with the local leader ranks on the other nodes
each of the NIC handles. If dynamic connections are enabledhe job, using the GNI session management interfaces to
— the default — no further steps are taken during initialirat exchange any required MSGQ channel setup data. A node—
of the Netmod. If dynamic connections are disabled, the N&ieal barrier is performed, and then the other ranks on each
mod registers a callback with Nemesis to run the Connectionde attach to the MSGQ the local leader had previously cre-
Setup phase to connect all ranks prior to return fMRI_Init ated and connected.

.) . gueuing of incoming messages is driven by the RX CQ (Sec-
Table 1. SMSG Maximum Message and Mailbox Size tion 2.6) associated with the SMSG mailboxes (Section 4.2).
Job Size | Max. Msg. Size Mailbox Size (bytes) The receiver polls the RX CQ to determine which SMSG
including CH3 hdr | per channel mailboxeshave messages to dequeue. The application spe-

< 1024 | 1024 4672 cific data in the CQE indicates which mailbox to check for
> 1024 512 2624 . .
< 16384 messages. In the unlikely event that the RX CQover-

= 16334 | 256 1088 run, the receiver scans all active mailboxes for incoming mes-
sages. Processing of incoming messages is driven by the tag
value of the message. To maintain correct MPI ordering re-
quired by Nemesis, a per-VC pending receive queue was im-
plemented.

4.3 Eager Message Path

Owing to the relatively short messages that can be deliveMfien a message with tag EO is received on the channel, and
by GNI SMSG and especially MSGQ methods, the eager p#igre are no pending receives, the message is handed off di-
in the GNI Netmod actually uses two paths. If the applicatidgactly to Nemesis using thBIPID_nemhandlepkt There
message data and internal MPICH2 CH3 header is underah@ nomemcpycalls within the GNI Netmod for this case,
maximum size message possible for the SMSG mailboxalthough there may be a memcpy to handle unexpected mes-
MSGQ, then the message is delivered using this path alosges within Nemesis itself. If there are any pending resgiv
The SMSG and MSGQ API’s allow for the Netmod to includéien a pending receive structure is allocated off of a frete li

an internatag with the message. Note this tag has nothing @&nd the message is copied out of the SMSG/MSGQ channel
do with MPI tags used in applications. The tag facilitatéed into the pending receive structure. The pending receive
handling of packets as the receiver dequeues them from adéed to the tail of the queue.

other end of the SMSG/MSGQ channel. For purposes of thgen 4 E1 or E1D tag is received, a pending receive structure
discussion, a tag value &0 will be used for the case where,nq 5 pMA buffer are allocated. Based on the information in
the entire message can be delivered using SMSG or MS§@ small control message, either the FMA or BTE is used

methods. The use of the tag will be discussed in more detgilnitiate a RDMA read of the message data from the send
below. buffer. The pending receive is marked as waiting for com-

By default, the maximum size message that can be sent ugitgjion of the RDMA read and is appended to the tail of the
SMSG varies with the job size, with smaller mailboxes beifgnding receive list. A special DMA buffer is reserved for
used as the job size increases (see Table 1). This was dbgepending receive structure at the head of the list to avoid
in order to decrease the amount of memory used for SM8eadlock. In the most recent version of the Netmod, the main
mailboxedfor larger jobs. The maximum size message — 1280l of DMA buffers is managed usingoaiddyallocator.

bytes — deliverable using the MSGQ is constant irrespectiyg CQEs associated with these RDMA read requests are
of job size. With the default ;ettings, the MSGQ.faciIity 8S&ulled off the TX CQ, the pending receives are marked as
about 74 KB/node for each inter—node connection. Thus {Qfmplete. When the CQE for the head of the pending receive
a job spanning 10,000 nodes, about 740 MB is required @ js processed, the message associated with the receive i
each node for the MSGQ. passed up to Nemesis using t1@ID_nemhandlepkt For a
If the message is larger than can be delivered using GRI message, the first part of the data is the CH3 header.

SMSG or MSGQ, an RDMA read path is used. The sendegimple ACK protocol is employed in order for the sender to

process allocates one of the DMA buffers created duringoyer DMA buffers after the receiver has completed RDMA
the Netmod initialization phase (Section 4.1), and cofies tg5gs.

MPICH2 CH3 header and as much of the message data as

possible into the buffer. A small control message is ther sen

through the SMSG/MSGQ channel to the receiver. The més4 Rendezvous M essage Path

sage includes the information necessary for the receiver to

be able to do a RDMAead of the message data from thdhe Nemesis LMT path is used for delivering messages ex-
sender's memory. A different tag valuEl) is used to dis- ceeding the eager message size threshold. As described on
tinguish this message from that used for the path descriltled Nemesis API wiki [7], the LMT path supports read, write,
above for EO short messages. If there is more message dath cooperative data transfer mechanisms. The uGNI Net-
to be delivered, additional DMA buffers are allocated arel tlmod employs a read method for smaller LMT transfers and a
remainder of the message data is copied into these buffere&ofperative, RDMA write—based method for longer transfers
small control message is sent for each data buffer used) agdie short control messages Nemesis uses for steering an ap-
with another tag valu&€1D. It is okay for the DMA buffer plication’s MPI messages through the LMT procedure all use
pool to become depleted. The rest of the message is delivehedEQ path described above in Section 4.3.

in correct MP1 order as buffers again become available. This path utilizes a memory registration cache (Sectio. 4.7

On the receive side, when using the SMSG approach, d&e bandwidth achieved using the LMT path is sensitive to

the efficiency with which the registration cache is being ud.7 UDREG Library and Memory Registra-
lized. The efficiency of the RDMA read path is also sensi- tion
tive to the alignment of the send and receive buffers. Best

performance is obtained for this path when the send and Aeregistration cacheuDREG was implemented to hide or
ceive buffers start at the same relative offset into a cael at |east reduce the overhead of memory registration foelarg
RDMA writes are much less sensitive to alignment of the seftbssage transfers. Since it was known early on in devel-
and receive buffers. opment of the Cray XE software communication stack that
other software would also need a registration cache, it was d
cided to implement the cache as a standalone libtdDREG
is based on the registration cache implemented in MVA-
45 Finalization PICH2 [8].

In order to reduce pressure on memory registration ressurce
Care was taken to fully implement the VC terminate and Nefre uGNI Netmod does a runtime check for whether or not
mod finalize callback functions. This was motivated by tlm'] app"ca’[ion is USIH@MAPP[Q], ie. app”cations on Cray
near—term need to support checkpoint/restart, and thelenge systems using SHMEM, UPC, or CoArray Fortran. If
term desire to support MPI-3 fault tolerance, which esseBMAPP is being used by the application, the Netmod doesn't
tially entails that an MPI implementation be able to clean yge the UDREG library directly, but invokes DMAPP mem-
resources associated with failed processes, as well adée gf registration functions to register memory regions ffiL
to build new connections with reconstituted processes. transfers. This allows for both DMAPP and the uGNI Netmod
to share the same memory registration resources. The uGNI
Netmod queries the Gemini NICs to determine the optimal
large pagesize to use for SMSG mailboxes and DMA buffers.
4.6 Network Fault Tolerance This also reduces pressure on the NICs registration ressurc
used for registration of 4KB pages.

As discussed in Section 2.8, the GNI SMSG and MSGQ fahere are well known pitfalls to using a user—-space memory
cilities guarantee reliable delivery of messages betwaen tregistration cache in the context of the GNU/Linux environ-
EPs. However, GNI does not deal with failed FMA or BTEnent[10]. To avoid the problems cited in [10], a small device
initiated RDMA transactions. As long as an application retriver was developed which utilizes the Linux MMU Notifier
quests a TX CQE for each RDMA transaction, the initiat@cility to inform uDREG when virtual memory (VM) activity
can determine whether or not the transaction succeedechy process has resulted in invalidation of entries in tige re
checking the CQE for errors. A GNI helper function allowgstration cache. The user—space interface of the devigerdri
the Netmod to distinguish between recoverable CQE errgesscribed in [10] was retained, although the core of the de-
(e.g. network timeouts) and non-recoverable ones. vice driver was completely rewritten and simplified to make

The Netmod implements fault tolerance with respect to tra#s€ of MMU Notifiers. Note that VM issues attributable to
sient network errors as follows. RDMA transactions are neJ@'k operations and the Linux Copy—on-Write (COW) fea-
used directly as a notification mechanism. adeptive rout- ture are handled by kGNI. The application specifies the actio
ing policy is selected for all RDMA transactions. This help@ken during the fork operation based modebits supplied
reduce the number of transactions that may need to be&epPart of the CDM creation. kKGNI makes use of extensions
played as the result of downed routers. Notification messadfethe MMU Notifier package to handle fork.

go exclusively over the reliable channels made available by

SMSG and MSGQ. This allows the initiator of, for example,

an FMA RDMA read, to replay the transaction until it sucs Basic Performance Characteristics

ceeds. Notifications, such as the buffer acks for the E1 path,

are sent_ over an SMSG or MSGQ ch:_;mnel once th_e RDM’?’Ie intent of this section is to provide basic performanda da
_transactlon succ_eeds. AMOS are avoided as It is dlfrlCUItrté)levant to the uGNI Netmod and to explain how the data re-
|mplemgnt alg(_)nthms which allow for recovery when Suclgtes to both to the internal operation of the Netmod as well
transactions fail with errors. as the Gemini NIC and the Cray XE node architecture. A
The Netmod is only one component of the Cray XE netwobasic knowledge of the node architecture is assumed in these
fault tolerance/fault recovery strategy. Basically thet-Nediscussions. For reference, a depiction of the Cray XE node
mod’s role is to ensure that MPICH2 can recover from sormsing AMD Magny Coursl2—core sockets is shown in Figure
dropped messages. Other components include the Hardv@arAll performance results were obtained on a Cray XE with
Supervisory System (HSS), the Cray XE rerouting softwatMagny Cours 12—core socket nodes running at 2.0 GHz. The
and the compute node operating system (CLE). A complefgerating system was CLE 3.1.61 and the MPICH2 packaged
description of the mechanism is beyond the scope of this paMPT 5.3.0.5. Large pages were not used except for one of
per. the bandwidth the tests. Unless explicitly mentioned, aliéfa

MPICH2 Inter-node OSU Latency test

socket O socket 1 3 : : : . .

time (usecs)

between adjacent gemini cores

<+—> 16 bit HT link I . . 5 hetwork hop separation -~ |
V,// ,,,,,,, i i 0 0 100 200 300 400 500
{)/‘9'///,’///2 < > 8 blt HT Ilnk message length(bytes)

Figure 4. MPICH2 Latency for different network hop counts
Figure 3. Basic diagram of a Cray XE compute node with a5 measured using the OSU Latency test.

AMD Magny-Cours 12 core sockets. A separate memory con-
troller is attached to each die.
placed local to the MPI ranks. One observes that very good
latency is observed for small messages even when there are
MPICH2 environment variables were used. Results for tha ranks/node up to 1024 bytes. It is at this point that the
MSGQ approach are not included in this paper, as the versi@pICH2 switches to the E1 protocol and the DMA buffers
of MPICH2 supporting this feature will not be released tihegin to be used. At the largest message lengths shown in the
later in 2011. figure, the latency is beginning to be dominated by the serial
izing effect of the BTE. This effect should be diminished in
the next major release of CLE, in which multiple channels of
5.1 Message Rateand Latency the BTE will be available to applications.
The aggregate message rate for short and medium
The OSU 3.3 MPI latency test was used to measure thedge Mmpj messages is shown in Figure 6. These
tency for MPICH2. Results for various network hop counffeasurements were made also made with the
are shown in Figure 4. The latency between adjacent Gemigis|cH.GNI_MBOX_PLACEMENT environment
for these test conditions was measured to be a little over }3ispie set to specify nic placement. The
psecs. The cost of a network hop for a MPI message is abpif|cH. GNI_.RDMA_THRESHOLD environment vari-
150-200 nsecs. The one-way cost of the intra-node hop (89 was not set for these measurements. The maximum
shown on the figure) from one of the cores not adjacent to thgssage rate realized with this placement option, and using
Gemini NIC was measured to be about 90 nsecs. 2.0 GHz processors, is about 8 million MPI messages/sec.
Although the MPI latency for a single sender/receiver pdkates over 9 million messages per second are measured
is useful to know, a more important metric for applicawith faster processors. The drop off in message rate at 1024
tions which are typically run using multiple MPI ranks pebytes is due to the switch from the EO to the E1 protocol
node is the latency when multiple sender/receivers are tt$ection 4.3).
ing to exchange messages across a network interface. Fig-
ure 5 shows the results from the OSU 3.3 multi-laten .
(multlat) test. The test was run between two adjaceq\‘;;\/l2 Bandwidth
ggg‘mlesl:gsési t:;z HPTOO;Elfg%l\t/lhx#agpééQ%Lgeedr:?n%gndwidth measureme_nts were made using the IMB 3.2.2
vironment variable was set to 16384 for this test. T éngPong t_est and various OSU 3.3 bandwidth tess. . Un-
MPICH.GNI.MBOX_PLACEMENT environment variable €S (_)ther\lee mentioned, all tests were run between atjace
was set to specifyiic placement for the SMSG mailboxes an&aemInI NICs.
CQs. Thisresults in the GNI Netmod placing the SMSG malResults of the IMB PingPong test are shown in Figure 7 for
boxes and CQs on the memory of die0 (see Figure 3). Owerious ways of handling large messages. As shown in the fig-
ing to the way the coherent HyperTransport protocol handle®, the best bandwidth is obtained when using the LMT path
upstream traffic from an 1/O device into the node, this givelescribed in Section 4.4 and also usiagy memory dereg-
much better performance than if the mailboxes and CQs &teation for the registration cache. Lazy memory deregist

50

MPICH2 OSU Multi Latency

45 [

40 [

35 |-

30 -

25 -

time (usecs)

20 |-

T
1 rank per node

2 ranks per node
4 ranks per node
8 ranks per node
16 ranks per node
24 ranks per node

Figure 5. MPICH2 Latency for multiple sender/receiver pair

per node.

1e+07

1e+06

Messages per second

100000

10000
1

message length(bytes)

MPICH2 OSU Multibandwidth Multirate Benchmark

1 rank per node
2 ranks per node

4 ranks per node --
6 ranks per node -

8 ranks per node

16 ranks per node -
24 rankslper node -- -+ --

100 1000
message length(bytes)

tion is the default policy used by MPICH2. The bandwidth
drops significantly if the lazy memory registration policy i
not used. Not using the LMT path at all has a similar effect
on the bandwidth for large messages. The drop in bandwidth
between 512 and 1024 bytes is again due to the switch from
the EO to E1 protocol in the eager path. The differences in
bandwidth for the longer transfers methods only appear at 8
KB and above because that is the default threshold for switch
ing from the eager to the rendezvous protocol.

Since many MPI applications are typically run with multiple
processes per node, bandwidth results when using multiple
MPI send/receive pairs are shown in Figure 8. For this test,
the MPICHGNI_RDMA_THRESHOLD environment vari-
able was again set to 16384. The bandwidths are derived from
the latencies obtained using the OSU 3.3 mialtitest. These

are the results in bandwidth rather than latency, for messag
longer than those shown in Figure 5. At transfer sizes beyond
16384 bytes, the available bandwidth per rank is dominated
by the effects of sharing the BTE between the ranks for trans-
ferring the message data. The reason for the dip at 512 KB
and 1 MB transfer lengths for the single rank per node case is
under investigation.

Figure 9 is included to show effects of the MPICH2 Nemesis
design on the bandwidth realized using different MPI meth-
ods for transferring data, and also to show results of the OSU
bidirectional bandwidth test. As discussed in Section thd,
Nemesis device currently does not use the LMT path for MPI-
2 RMA transfers. Thus, the realized bandwidth for MRIt

and MPLGet operations is similar to that obtained for long
MPI_Send messages when the LMT path is disabled (Fig-
ure 7). Again the dip between 512 and 1000 byte transfers
arises from the EO to E1 transition. For the dsu test using
base 4KB pages for the send and receive buffers, a bandwidth
of around 3.8 GB/sec was measured, at 16384 byte message
sizes, and 4.4 GB/sec for LMB message sizes. The decreasing
bandwidth above 1MB for the MBPut and MPIGet prob-

ably is due to caching effects associated with the buffered
transfer protocol used. The figure also includes resultswhe
using large pages for the awv test. Large pages give much
better performance for longer messages, approaching the pe
formance obtained using DMAPP. Modifying the dsw test

to test larger message sizes, an asymptotic bandwidth of 6
GB/sec is realized for very large messages (64 MB) when us-
ing large pages.

6 FutureWork

One of the main areas of focus for enhancement of the uGNI

Figure 6. MPICH2 message rate measured using the OSWemod is providing better support for independent progres

mbw_mr test with different numbers of MPI ranks per node.

of the state—engine, and hence allowing for opportunities f
better overlap of computation with communication. Cur-
rently, KGNI provides some level of support for offloading
to the Gemini BTE by allowing applications to queue BTE
transfer requests in the kernel. As the BTE processes trans-

10

MPICH2 Bandwidth for various OSU BW tests

10000 ———1—————————7
A,;"-“-F::';-""—"'-*‘:‘
L Seell
1
MPICH2 Inter-node Bandwidth using IMB PingPong
T T T T T T
2 1000 | e 4
1000 =
]
z £ Using MPI_Isend/MPI_Irecv
4 MPI_Isend/MPI_Irecv large pages ------
MPI_Put -------
100 MPI_Get e
g MPI_lsend/MPI_Irecv bidirectional =:=-=:-
100 1 1 1 1
100 1000 10000 100000 1e+06
message length(bytes)
LMT-tazymer crapad ——m Figure 9. Comparison of realized bandwidth for
LMT path disabled ==----
10 L L 10(;02‘; = i-oe MPI_Send/MPIRecv and MPIPut and MPIGet. Also
e+
message length(bytes) shown is bidirectional bandwidth obtained using the OSU
bibw test.

Figure 7. MPICH2 Inter-node IMB PingPong Bandwidth us-

ing various options for handling long messages.] .
fer requests, kGNI is able to enqueue more requests into the

BTE's hardware request queues without the application hav-
ing to make MPI calls. The uGNI Netmod will need to be
enhanced to leverage this support. Approaches being invest
gated include enhancing of the existing asynchronousathre
infrastructure within MPICHZ2, as well as more complex ap-
proaches (e.g. [5]) which make use of the core—speciaizati
features available in CLE.

Longer—term, work on the Netmod will include adding sup-
port for MPI-3 features such Fault Tolerance and extended
MPI-3 RMA functionality.

MPICH2 OSU Mulilatency (BW)
10000 - . . .

7 Acknowledgments

The authors would like to thank Steve Oyanagi (Cray) for col-

1000] lecting much of the data presented in this paper. The authors

] would also like to acknowledge Kim McMahon (Cray) for

P - 1 enhancing the Cray PMI library to support the KVS function-
I T | ality required by Nemesis.

MB/sec

1 rank per node
2 ranks per node ----- L

This material is based upon work supported by the Defense

1§E§EE§E§E§§§ R Advanced Research Projects Agency under its Agreement
ool o o, Zrankspernode - No. HR0011-07-9-0001. Any opinions, findings and con-
1000 10000 100000 1e+06 clusions or recommendations expressed in this material are

message length(bytes)

those of the author(s) and do not necessarily reflect thesview

Figure 8. MPICH2 bandwidth per rank for multiple ranks per of the Defense Advanced Research Projects Agency.

node as derived from the latency measurements obtainegl usin
the OSU multilat test.
References

[1] Robert Alverson, Duncan Roweth, and Larry Kaplan.
The Gemini System Interconnectligh-Performance

11

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Interconnects, Symposium,dn83-87, 2010.

Darius Buntinas, Guillaume Mercier, and William
Gropp. Design and Evaluation of Nemesis, a Scalable,
Low-Latency, Message-Passing Communication Sub-
system. ICCGRID’06 pages 521-530, 2006.

Fault Tolerance Working Group. Run-though Stabiliza-
tion Interfaces and Semanticssvn. npi - f or um
org/trac/ npi-forumweb/w ki/ft/run_

t hrough_stabi li zati on.

Michael Karo, Richard Lagerstrom, Marlys Kohnke,
and Carl Albing. Application Level Placement Sched-
uler (ALPS). InProceedings of Cray User Group 2006

2006.

Ping Lai, Pavan Balaji, Rajeev Thakur, and Dha-
baleswar K. Panda. ProOnE: a General-purpose Proto-
col Onload Engine for Multi- and Many-core Architec-
tures.Computer Science - R&[pages 133-142, 2009.

MPICH2. www. nts. anl . gov/ research/
proj ect s/ nmpi ch2/.

MPICH2-Nemesis. Nemesis Network Module API.
wi ki . nts. anl . gov/ mpi ch2/ i ndex. php/
Nernesi s_Net wor k_NModul e_API .

Network—Based Computing Laboratory. MVAPICH:
MPI over Infiniband, 10GigE/iWARP and RoCE.
nvapi ch. cse. ohi o- st at e. edu/ overvi ew
nvapi ch2.

Monika ten Bruggencate and Duncan Roweth.
DMAPP-an API for One—sided Program Models on
Baker Systems. IfProceedings of Cray User Group
201Q 2010.

Pete Wyckoff and Jiesheng Wu. Memory Registration
Caching Correctness. IRroceedings of CCGridQ5
IEEE Computer Society, 2005.

12

