
A uGNI-Based MPICH2 Nemesis Network Module for Cray XE
Computer Systems

Howard Pritchard Igor Gorodetsky

Cray Inc.

Abstract

Recent versions of MPICH2 have featured Nemesis - a scalable, high-performance, multi-network communication subsys-
tem. Nemesis provides a framework for developing Network Modules (Netmods) for interfacing the Nemesis subsystem to
various high speed network protocols. Cray has developed a User-Level Generic Network Interface (uGNI) for interfacing MPI
implementations to the internal high speed network of Cray XE and follow-on compute systems. This paper describes the design
of a uGNI Netmod for the MPICH2 nemesis subsystem. MPICH2 performance data on the Cray XE will be presented. Planned
future enhancements to the uGNI MPICH2 Netmod will also be discussed.

1 Introduction

The Cray XE represents a fundamental change in network ar-
chitecture from its predecessor XT systems [1]. The Cray XE
Gemininetwork provides user–space applications with a low-
overhead, programmed I/O (PIO) mechanism for accessing
memory on remote nodes in a true one–sided fashion. Termed
Fast Memory Access(FMA), this hardware supports remote
direct memory access (RDMA) read, write, and atomic mem-
ory operations (AMOs) to memory at remote nodes. The
Gemini also has a Block Transfer Engine (BTE) to offload
RDMA read and write operations from the host processor. In
addition, Gemini was designed with fault–tolerance related
features that allow software to recover from various network
errors more reliably than on the predecessor XT system.

Reflecting these fundamental differences between the two
networks, the Message Passing Interface (MPI) MPICH2 im-
plementation deployed on XE systems is substantially differ-
ent from the Portals–based MPICH2 deployed on predecessor
XT systems.

The intent of this paper is to provide an overview of the
MPICH2 uGNI Network Module that interfaces to the Cray
XE, the software layer it uses to interface to the underly-
ing network, as well as other support software the Network
Module utilizes to obtain maximum possible performance.
The paper is organized as follows: important elements of the
Generic Network Interface (GNI) are presented, an overview
of MPICH2 Nemesis and its Network Module framework fol-
lows, after which details of the uGNI Network Module and
related support software are presented. Some basic perfor-
mance data on Cray XE is presented. The paper ends with
a discussion of future work planned for the uGNI Network
Module.

2 Generic Network Interface API Overview

The Generic Network Interface (GNI) provides a low–level
API for network middleware to efficiently utilize the Cray
XE network. GNI is primarily intended for user–space and
kernel-space network applications whose communication pat-
terns are message–based in nature, and where the ability to
recover from network faults is of importance. The API is not
intended for use by End-User applications. GNI is also not
optimal for middleware which supports applications like Par-
titioned Global Address Space (PGAS) compilers and other
applications requiring high performance for very fine–grain
remote memory access.

A layered approach was taken in designing GNI. A lowest
level Generic Hardware Abstraction Layer (GHAL) is used to
interface to particular instantiations of Gemini. This layer is
used to mask specific details of hardware registers etc. from
the upper level components. Other components of the GNI
stack includekGNI - the upper level device driver which also
implements the kernel level GNI API, and auGNI library
which implements the API for user-space applications. Al-
though the software is layered, it should be pointed out that
core components are shared between the kernel (kGNI) and
user–space (uGNI) interfaces. This approach facilitates de-
velopment, maintenance, and testing. For example, changes
can be made to a core component and first tested in user–
space MPI testsuites and applications before being incorpo-
rated into kernel level services like the Lustre’s LNET trans-
port layer. Likewise, fault tolerance features, which may be
easier to stress test using kernel–level components can then
be reused in user–space without extensive additional testing.
Figure 1 depicts the layered view of the GNI software stack
with two sample clients – the MPICH2 in user–space, and
GNILND (Lustre LNET) in kernel space. The various major

components of the API, how they map to the XE hardware,
and typical software usage models are described below.

Figure 1. GNI Software Stack with MPICH2 and
LNET(GNILND) example clients

2.1 Communication Domains

Since the Gemini allows for remote direct memory access
from user-space, a hardware protection mechanism exists
to validate all remote memory access requests generated
by applications. To utilize the hardware protection mecha-
nism, GNI provides software with aCommunication Domain
(CDM) construct. Processes (Peers) use a previously agreed
uponProtection Tag(ptag) to define and join a CDM. For ex-
ample, the GNI–based Lustre file system uses a ptag reserved
for it system wide. Each peer must also supply a 32-bitinst id
which is unique within the CDM. For user space applications,
the ALPS [4] job launch system provides a ptag value for each
job. On production XE systems, user–space applications are
not permitted to choose arbitrary ptag values.

GNI provides additional privileged functions specificallyfor
ALPS to use when launching a job, including functions for
configuring the Gemini Node Translation Table (NTT), and
various NIC resource limits. The NTT provides greater flex-
ibility in allocation of ptags for user space applications.The
usage of the NTT is transparent to user-space software using
the GNI API.

A modesargument supplied to the interface which creates
the CDM can be used to specify additional characteristics
of the CDM. Examples are options for handling Copy–on–
Write (COW) problems that can occur when a process which
has registered memory with the Gemini does afork, how the

kGNI driver should handle NIC errors that can be traced back
to the application, etc.

2.2 NIC Handles

The CDM is essentially a software construct, and cannot be
used directly for launching network transactions. Thus, prior
to initiating any communication with other peers, a process
must first attach a CDM to a Gemini Network “Card” (NIC).
This is somewhat analogous to the IP socketbind operation.
A GNI NIC Handleis returned to the application as part of
this attach operation. A CDM can be attached to multiple
Gemini NICs, i.e. multiple NIC handles can be associated
with a given CDM. By taking this approach, GNI can be used
both for current XE systems where there is only a single Gem-
ini NIC per node, as well as allowing for the flexibility to sup-
port multiple NICs per node in possible future system config-
urations.

2.3 End Points

Once a process has obtained a NIC handle by binding a CDM
to a Gemini,End Pointscan be created. GNI uses the End
Point (EP) construct for managing data exchange between
peers within a CDM. This construct is not directly related to
any Gemini resources, but is useful for resource management
associated with network transactions. An EP can be bound to
a given GeminiNic AddressandRemote Inst Id—the unique
32-bit identifier provided by the peer when it joined the CDM.
EPs can be used for session management (see Section 2.4),
sending messages to a remote peer, and/or RDMA transac-
tions. The API provides a function for unbinding an EP from
a NIC address and remote inst id. For EPs that are used exclu-
sively for session management setup and/or RDMA transac-
tions, unbinding an EP and rebinding the EP to a new NIC ad-
dress/remote inst id is a lightweight operation. In these cases,
the unbind operation does not involve communication with a
remote peer or system calls.

2.4 Session Management

GNI provides session management functions to support net-
work applications which manage messaging channels (Sec-
tion 2.8) between peers dynamically. Peers can exchange in-
formation concerning channel setup using these session man-
agement functions. GNI also supports the notion ofwildcard
datagrams which can be used, for example, by client/server
models in which the server peers wait for incoming connec-
tion requests from client peers.

2.5 Memory Registration

In order for the Gemini to directly access a memory region on
a remote node, the memory region at the remote node must

2

have been previously registered with the Gemini at the re-
mote node. Also, in order for the Gemini’s BTE and FMA
hardware to access a local memory region, the memory region
must be registered with the local Gemini. GNI provides mem-
ory registration interfaces for applications to register mem-
ory with the Gemini. The interface allows for the application
to specify access permissions and memory ordering require-
ments with respect to the local processor interface. It also
enables the application to associate aCompletion Queue(CQ)
with the registered memory region. GNI returns an opaque
Memory Handle(MH) structure to the application upon suc-
cessful invocation of one of the memory registration func-
tions. The MH can then be used for RDMA transactions and
messaging.

2.6 Completion Queue Management

GeminiCompletion Queues(CQ) provide a light-weight no-
tification mechanism for software to determine when

• the data in a RDMA Write or non-fetching AMO trans-
action has been delivered to the target Gemini,

• the result data for RDMA Read or fetching AMO trans-
action has been delivered into local memory,

• a message from a remote peer has been delivered to a
previously registered local memory region.

GNI provides an interface for creating and destroying CQs.
Generally software uses a“TX” CQ for the first two types
of notifications, and a separate“RX” CQ for the third type.
For RDMA transactions using the FMA hardware, the appli-
cation binds a CQ to a NIC handle. When using the BTE
for RDMA transactions an application can specify the CQ in
thePost Descriptordefining the transaction (see Section 2.7).
An application can bind a CQ to a registered memory region
to receive notifications for messages arriving in that memory
region.

An application can check for presence ofCompletion Queue
Events(CQEs) on a CQ in either polling or blocking mode.
A CQE includes application specific data, information about
what type of transaction is associated with the CQE, and
whether or not the transaction associated with the CQE com-
pleted successfully or not. Sufficient information is provided
in the CQE error field to allow an application to discriminate
between errors arising due to transient errors in the network
or target node of the transaction, and those related to software
errors at the source or target.

2.7 Remote Direct Memory Access Transac-
tions

GNI provides an interface for initiating RDMA transactions
using either the Gemini BTE or FMA hardware. To initi-
ate an RDMA transaction, the application takes the following

steps. First, the application binds an EP to the remote NIC
address and remote inst id that is the target of the transac-
tion. A post descriptoris created with information about the
transfer including pointers to source and target buffers, the
required MHs, etc. This descriptor is then posted to the EP.
The particular function used to post the descriptor to the EP
determines whether or not the BTE or FMA hardware will be
used to handle the transaction.

The BTE is generally preferred for moving all bulk message
data as it offloads the work of moving the data from the host
processor to the NIC. Also, on XE systems, the BTE is gen-
erally more efficient at moving data through the node’s inter-
nal coherent HyperTransport interconnect as well. The FMA
hardware is best used for shorter control data and AMOs. The
FMA hardware may also give better results when there are
many processes on the node trying to issue medium size (2–8
KB) RDMA transactions in a synchronized, bursty fashion.
See Section 5.2.

2.8 Messaging Facility

The Gemini provides a specialized RDMA Write with re-
mote notification operation which is used by GNI to provide a
messaging API for applications. For user-space applications,
there are two types of messaging facilities available.

The GNIShort Message(SMSG) facility provides the highest
performance in terms of latency and short messages rates, but
comes at the expense of memory usage, which grows linearly
with the number of peer-to-peer connections. Two peers in
a CDM can establish a SMSG channel using the following
procedure:

• Each peer creates an EP and binds it to the NIC address
and remote inst id of the peer with which an SMSG chan-
nel is to be established

• Each peer then creates amailboxfor its end of the SMSG
channel by allocating memory and registering it with the
Gemini using functions described in Section 2.5. The
resulting MH and other info is used to initialize a SMSG
channelattributesstructure.

• The peers exchange these attributes using the Session
Management methods described above in Section 2.4.

• The pairs then initialize the SMSG channel using their
local attributes structure and the remote attributes struc-
ture obtained from the peer. Messages can now be ex-
changed between peers of the SMSG interface.

GNI also provides aMessage Queue(MSGQ) facility that
user-space applications may use. MSGQs provide lower per-
formance, particularly in terms of short message rate, but are
much more scalable in terms of memory usage than SMSG
channels. Memory usage scales as the number ofnodesin
the job rather than peers. Setup of MSGQs is similar to that

3

described above for SMSG connections, but is done on a per-
node rather than per-peer basis, with many of the steps being
hidden within the uGNI layer. The maximum size message
that can be sent using the MSGQ facility is 128 bytes. In
theory SMSG can be used to deliver messages up to 16MB
in size, but owing to memory footprint constraints and per-
formance considerations, the practical upper limit is in the
kilobyte range. For both facilities, messages are delivered in
order.

Both the SMSG and MSGQ facilities exploit design features
of the Gemini write with remote notification hardware to im-
plement a reliable messaging protocol. Using this mecha-
nism, the target Gemini of an incoming message will only
deliver the notification flag if the message was successfully
received. At the sender, or initiator Gemini, aTX CQE is
generated for each message sent. The error field component
of the CQE will indicate whether or not

• the message was successfully received at the target Gem-
ini

• a network timeout or other transient error occurred either
in the delivery of the message to the target node, or the
delivery of the hardware responses back from the target
Gemini to the initiator Gemini

• a software error related problem occurred at the receiver,
such as a processsegfaultthat was to receive the message

The GNI SMSG and MSGQ software makes use of the error,
if any, reported in theTX CQE, in conjunction with a sliding
window protocol, to determine whether a message needs to be
retransmitted or has been successfully received at the target
node.

The GNI API provides a function for applications to use to
determine whether or not the error reported in theTX CQEis
a transient, and thus recoverable, error.

2.9 Asynchronous Error Reporting

GNI provides an asynchronous error notification interface.
This interface can be used in conjunction with the error noti-
fications provided in CQEs to enhance error reporting and to
facilitate debugging of application and system problems.

3 MPICH2 NEMESIS

MPICH2 is a widely used, open–source implementation of
MPI developed and maintained by Argonne National Labo-
ratory (ANL) [6]. The software is implemented in a layered
fashion depicted in Figure 2. At the top level of MPICH2
is an Abstract Device Interface - version 3 (ADI3) device.
It presents an MPI–2.2 compliant interface to applications,
while presenting the ADI3 interface to thedevicelayer below
it.

Figure 2. MPICH2 and Nemesis CH3 channel software stack
with sample Network Modules

Network hardware vendors can choose to port MPICH2 to a
custom interconnect by implementing an ADI3 device. This
approach may allow for better utilization of a custom net-
work. This was the approach taken for the port of MPICH2
to the Cray XT. However, developing and maintaining a com-
plete, custom ADI3 device can be very expensive, and fre-
quently leads to redundant development that contributes little
in the way of differentiation of a custom interconnect. Addi-
tionally, the pace of development of MPICH2 at Argonne has
accelerated recently, partially driven by the desire to imple-
ment proposed MPI–3 extensions to MPI.

An alternative to developing a full ADI3 device is to imple-
ment achannelfor the CH3 ADI3 device that comes with
MPICH2. In principle this interface requires significantlyless
development effort to code to, while still delivering reason-
able performance. However, as the availability of commodity
RDMA capable networks increased, and thus the interest in
porting MPICH2 to networks using protocols other than TCP
sockets, deficiencies with the channel API became apparent.
Vendors and other organizations more often than not just re-
worked the CH3 ADI3 device for a particular network, rather
than using the channel interface.

This was one of the motivations for the introduction of a new
Nemesischannel to the CH3 ADI3 device. The goals of the
Nemesis channel, as stated by the authors, are scalability,
high performance intra–node communication, high perfor-
mance internode communication, and multi–network inter–
node communication [2]. Although the ultimate goal is to
make Nemesis a self–standing ADI3 device, it was found suf-
ficient at the time to make modifications to the CH3 device
itself to better support the Nemesis package as a channel.

4

The major components of Nemesis are a highly optimized on-
node messaging system and a multi–method capable frame-
work for implementingNetwork Modules(Netmod) within
Nemesis. The framework is flexible and can be used for a va-
riety of interconnects as evidenced by existing modules such
as Myrinet MX and GM and a recent IB module available
in the MVAPICH2 version of MPICH2 [8]. The basic func-
tion of a Netmod is to move control messages — which can
be application messages — and data across a network. The
upper components of Nemesis implement the MPI portion,
e.g. message matching, handling of unexpected messages,
etc. There are hooks in Nemesis to support Netmods that have
MPI–awareness such as hardware message matching in their
networks.

Nemesis uses a callback–function approach to interface with
Netmods. Callback functions can be roughly divided into
three sets. One set of callbacks is associated with the Net-
mod as a whole. Some of the most important of these are

• Initialization - does any initialization specific to the
Netmod. It is invoked by Nemesis as part of the MPIInit
procedure.

• Finalization - does any finalization specific to the
Netmod. It is invoked by Nemesis as part of the
MPI Finalize procedure.

• Checkpointing - does any checkpoint specific activities
required by the Netmod. It is invoked when a job is being
checkpointed. Note MPICH2 uses the BLCR package
for checkpointing.

• Restart - does any restart specific activities required by
the Netmod. It is invoked when a previously check-
pointed job is being restarted.

• Virtual Connection Initialization - does any Netmod
specific step required to initialize thevirtual connection
(VC) structure used by the CH3 device to manage mes-
saging between ranks in the job. This step does not nec-
essarily mean the VC isactive. Additional steps may be
needed to send messages over the VC.

• VC terminate - does any connection termination spe-
cific to the Netmod for a given VC. This is currently in-
voked by Nemesis at MPIFinalize, or when disconnect-
ing from a group started using MPI-2 process creation
functions.

• VC destroy - does any Netmod specific steps required
to clean up resources associated with a VC. This is cur-
rently invoked by Nemesis at MPIFinalize, or when dis-
connecting from a group started using MPI-2 process
creation functions.

The second set of callbacks are associated with the VC struc-
ture. The most important are

• maximum eager message size - this is not a callback
function, but a Netmod sets this value to control when
Nemesis switches from an eager to rendezvous proto-
col for the VC. Note that this field is ignored for certain
kinds of transfers.

• iStartContigMsg - the Netmod callback Nemesis in-
vokes to enqueue a message for sending on a VC

• iSendContig - an optimized version of iStartContigMsg
that potentially allows the Netmod to avoid initializing
an MPI request structure

• pause send vc - callback function for Nemesis to invoke
when pausing or quiescing a VC at checkpoint time

• restart vc - callback function for Nemesis to invoke
when restarting a VC during the restart procedure for
a checkpointed job

• various callbacks associated with theLong Message
Transfer Protocol

A third set of callbacks is associated with aCommunication
Operationsstructure defined by the Netmod. This can be used
for Netmods which elect to implement higher level MPI func-
tions like MPI Isend, etc. directly. These callbacks are not
currently used by the uGNI Netmod and so are not discussed
further here.

A Netmod invokes theMPID nemhandlepkt function to de-
liver data coming off the network up into Nemesis on the re-
ceive side. This function takes as arguments the VC associ-
ated with the message data, a pointer to the data coming off
the wire, and the length of the data. Nemesis expects this data
to be delivered in the same order it was sent from the sending
rank. Nemesis can handle receiving messages as fragments.
Upon return fromMPID nemhandlepkt the Netmod can as-
sume its safe to reuse any buffers or resources associated with
the data packet.

Nemesis features aLong Message Transfer(LMT) protocol
that facilitates implementation of zero-copy transfers for Net-
mods interfacing to networks that support these types of op-
erations. If a Netmod defines the LMT callbacks on its VC’s,
then Nemesis will use that method for sending messages
larger than the rendezvous threshold. When the LMT path
is used, only short control messages actually move through
the Nemesis stack itself. The bulk message data can be trans-
ferred in a zero–copy fashion from the application’s send
buffer into the application’s receiver buffer. Note there are
some exceptions to when the LMT is used, even when the
message size is greater than the eager message size defined
in the VC struct. Ready send messages do not use the LMT
path. Messages generated from MPI-2 RMA functions do not
currently use this path.

5

4 The uGNI Netmod

The Gemini NIC has a number of characteristics which en-
able good MPI performance. The most significant is the
FMA hardware, which provides a low–overhead, os–bypass
pathway for injecting short messages into the network. This
enables the MPICH2 on Cray XE to realize much lower la-
tencies and vastly higher message rates than with the prede-
cessor XT systems. The BTE allows for offloading of bulk
data movement from the host processor, providing one of the
components essential for realizing independent progress of
MPI messages. Other factors which significantly influenced
the design of the uGNI Netmod were the requirement to be
able to handle transient network faults, interoperabilitywith
other program models, reuse of as much of the existing in-
frastructure in MPICH2 as possible, and extensibility to sup-
port at least some of the proposed MPI-3 Fault Tolerance fea-
tures [3].

4.1 Initialization

The uGNI Netmod’s initialization method is invoked by
Nemesis as part of the overall MPI initialization proce-
dure that takes place when an application callsMPI Init or
MPI Init thread. A CDM is created using theptagvalue sup-
plied by ALPS. In addition to theptag, ALPS also supplies
the list of Gemini interfaces that the ranks of the job on the
local node can use. Although it is not anticipated that the
Cray XE will support multiple Geminis NICs per node, the
uGNI netmod and ALPS support infrastructure was coded to
be able to use multiple Gemini NICs. The Netmod then at-
taches the CDM to all available Gemini NICs. The resulting
NIC handles are then used for the following steps.

The Netmod next initializes a registration cache (see Sec-
tion 4.7), TX and RX CQs are created using the NIC han-
dles, DMA buffers are registered with the NIC handles, and a
freelist of transaction management structures is created.The
transaction management structures serve multiple purposes:
to avoid overflow of the TX CQ by limiting the total num-
ber of transactions the Netmod has outstanding at any point
in time, associating CQEs pulled off the TX CQ back to the
original transaction, and for holding state and data required to
handle transient network failures.

Depending on which GNI interface is selected at run time for
sending short messages – SMSG or MSGQ – two different
steps are taken during initialization of the Netmod.

If the SMSG method is selected, an initial set of SMSGmail-
boxesis created and registered with the NIC handles. A set
of EPs are created in order to postwildcard datagrams with
each of the NIC handles. If dynamic connections are enabled
– the default – no further steps are taken during initialization
of the Netmod. If dynamic connections are disabled, the Net-
mod registers a callback with Nemesis to run the Connection
Setup phase to connect all ranks prior to return fromMPI Init

to the application.

When using the GNI MSGQ facility, it is simpler to build all
of the per–node connections prior to returning fromMPI Init.
In this case, the Netmod initialization function registersa call-
back with Nemesis to run connection setup prior to returning
from MPI Init to the application.

The Netmod returns a MPICH2 CH3business card(BC)
to Nemesis as part of the Netmod initialization procedure.
Upon return from the Netmod’s initialization callback func-
tion, Nemesis commits the BC to the Process Manager Inter-
face’s (PMI) key–value space (KVS).

As the last stage of the overall Nemesis channel initialization,
Nemesis runs any callbacks that the Netmod’s initialization
routine had registered.

4.2 Connection Setup

When running in dynamic connection mode, SMSG chan-
nels are only established when a given rank in the job needs
to send a message to another rank. If a channel has not
been established yet, the sender allocates an SMSG mailbox,
and prepares a channel establishment message describing the
mailbox location within the pool of registered memory from
which the mailbox was allocated. This channel establishment
message is then sent via the GNI session management (Sec-
tion 2.4) protocol to the target remote NIC address and re-
mote inst id. The remote NIC address is obtained from the
PMI KVS. In most cases, one of the intended receiver’swild-
card datagrams is matched with this channel establishment
message. Thewildcard datagram contains channel informa-
tion about any mailbox the receiver has prepared for handling
incoming connection requests. As part of the session man-
agement code within the kGNI driver, thewildcarddatagram,
after having been matched, is sent back to the sender. As the
sender and receiver return into MPI, they dequeue the com-
pleted datagram sessions and use the information to complete
the SMSG channel. The sender then delivers the original ap-
plication message using the SMSG channel.

When using SMSG channels, but with this dynamic connec-
tion approach disabled, this same procedure is used, but is no
longer driven by application MPI send requests. Rather, all
SMSG channels are setup prior to returning fromMPI Init.
All mailboxes are allocated upfront. This can use a signifi-
cant amount of memory for large jobs. Startup time at scale
may increase significantly when dynamic connections are dis-
abled.

If the MSGQ facility is used, alocal leader rank on each
node creates a GNI MSGQ. It then exchanges MSGQ channel
setup requests with the local leader ranks on the other nodes
in the job, using the GNI session management interfaces to
exchange any required MSGQ channel setup data. A node–
local barrier is performed, and then the other ranks on each
node attach to the MSGQ the local leader had previously cre-
ated and connected.

6

Table 1. SMSG Maximum Message and Mailbox Size
Job Size Max. Msg. Size Mailbox Size (bytes)

including CH3 hdr per channel
≤ 1024 1024 4672
> 1024 512 2624
≤ 16384

> 16384 256 1088

4.3 Eager Message Path

Owing to the relatively short messages that can be delivered
by GNI SMSG and especially MSGQ methods, the eager path
in the GNI Netmod actually uses two paths. If the application
message data and internal MPICH2 CH3 header is under the
maximum size message possible for the SMSG mailbox or
MSGQ, then the message is delivered using this path alone.
The SMSG and MSGQ API’s allow for the Netmod to include
an internaltagwith the message. Note this tag has nothing to
do with MPI tags used in applications. The tag facilitates
handling of packets as the receiver dequeues them from the
other end of the SMSG/MSGQ channel. For purposes of this
discussion, a tag value ofE0 will be used for the case where
the entire message can be delivered using SMSG or MSGQ
methods. The use of the tag will be discussed in more detail
below.

By default, the maximum size message that can be sent using
SMSG varies with the job size, with smaller mailboxes being
used as the job size increases (see Table 1). This was done
in order to decrease the amount of memory used for SMSG
mailboxesfor larger jobs. The maximum size message – 128
bytes – deliverable using the MSGQ is constant irrespective
of job size. With the default settings, the MSGQ facility uses
about 74 KB/node for each inter–node connection. Thus for
a job spanning 10,000 nodes, about 740 MB is required on
each node for the MSGQ.

If the message is larger than can be delivered using GNI
SMSG or MSGQ, an RDMA read path is used. The sender
process allocates one of the DMA buffers created during
the Netmod initialization phase (Section 4.1), and copies the
MPICH2 CH3 header and as much of the message data as
possible into the buffer. A small control message is then sent
through the SMSG/MSGQ channel to the receiver. The mes-
sage includes the information necessary for the receiver to
be able to do a RDMAread of the message data from the
sender’s memory. A different tag value (E1) is used to dis-
tinguish this message from that used for the path described
above for E0 short messages. If there is more message data
to be delivered, additional DMA buffers are allocated and the
remainder of the message data is copied into these buffers. A
small control message is sent for each data buffer used, again
with another tag valueE1D. It is okay for the DMA buffer
pool to become depleted. The rest of the message is delivered
in correct MPI order as buffers again become available.

On the receive side, when using the SMSG approach, de-

queuing of incoming messages is driven by the RX CQ (Sec-
tion 2.6) associated with the SMSG mailboxes (Section 4.2).
The receiver polls the RX CQ to determine which SMSG
mailboxeshave messages to dequeue. The application spe-
cific data in the CQE indicates which mailbox to check for
messages. In the unlikely event that the RX CQ isover-
run, the receiver scans all active mailboxes for incoming mes-
sages. Processing of incoming messages is driven by the tag
value of the message. To maintain correct MPI ordering re-
quired by Nemesis, a per–VC pending receive queue was im-
plemented.

When a message with tag E0 is received on the channel, and
there are no pending receives, the message is handed off di-
rectly to Nemesis using theMPID nemhandlepkt. There
are nomemcpycalls within the GNI Netmod for this case,
although there may be a memcpy to handle unexpected mes-
sages within Nemesis itself. If there are any pending receives,
then a pending receive structure is allocated off of a free list,
and the message is copied out of the SMSG/MSGQ channel
and into the pending receive structure. The pending receiveis
added to the tail of the queue.

When a E1 or E1D tag is received, a pending receive structure
and a DMA buffer are allocated. Based on the information in
the small control message, either the FMA or BTE is used
to initiate a RDMA read of the message data from the send
buffer. The pending receive is marked as waiting for com-
pletion of the RDMA read and is appended to the tail of the
pending receive list. A special DMA buffer is reserved for
the pending receive structure at the head of the list to avoid
deadlock. In the most recent version of the Netmod, the main
pool of DMA buffers is managed using abuddyallocator.

As CQEs associated with these RDMA read requests are
pulled off the TX CQ, the pending receives are marked as
complete. When the CQE for the head of the pending receive
list is processed, the message associated with the receive is
passed up to Nemesis using theMPID nemhandlepkt. For a
E1 message, the first part of the data is the CH3 header.

A simple ACK protocol is employed in order for the sender to
recover DMA buffers after the receiver has completed RDMA
reads.

4.4 Rendezvous Message Path

The Nemesis LMT path is used for delivering messages ex-
ceeding the eager message size threshold. As described on
the Nemesis API wiki [7], the LMT path supports read, write,
and cooperative data transfer mechanisms. The uGNI Net-
mod employs a read method for smaller LMT transfers and a
cooperative, RDMA write–based method for longer transfers.
The short control messages Nemesis uses for steering an ap-
plication’s MPI messages through the LMT procedure all use
the E0 path described above in Section 4.3.

This path utilizes a memory registration cache (Section 4.7).
The bandwidth achieved using the LMT path is sensitive to

7

the efficiency with which the registration cache is being uti-
lized. The efficiency of the RDMA read path is also sensi-
tive to the alignment of the send and receive buffers. Best
performance is obtained for this path when the send and re-
ceive buffers start at the same relative offset into a cacheline.
RDMA writes are much less sensitive to alignment of the send
and receive buffers.

4.5 Finalization

Care was taken to fully implement the VC terminate and Net-
mod finalize callback functions. This was motivated by the
near–term need to support checkpoint/restart, and the longer–
term desire to support MPI–3 fault tolerance, which essen-
tially entails that an MPI implementation be able to clean up
resources associated with failed processes, as well as be able
to build new connections with reconstituted processes.

4.6 Network Fault Tolerance

As discussed in Section 2.8, the GNI SMSG and MSGQ fa-
cilities guarantee reliable delivery of messages between two
EPs. However, GNI does not deal with failed FMA or BTE
initiated RDMA transactions. As long as an application re-
quests a TX CQE for each RDMA transaction, the initiator
can determine whether or not the transaction succeeded by
checking the CQE for errors. A GNI helper function allows
the Netmod to distinguish between recoverable CQE errors
(e.g. network timeouts) and non–recoverable ones.

The Netmod implements fault tolerance with respect to tran-
sient network errors as follows. RDMA transactions are never
used directly as a notification mechanism. Anadaptive rout-
ing policy is selected for all RDMA transactions. This helps
reduce the number of transactions that may need to be re-
played as the result of downed routers. Notification messages
go exclusively over the reliable channels made available by
SMSG and MSGQ. This allows the initiator of, for example,
an FMA RDMA read, to replay the transaction until it suc-
ceeds. Notifications, such as the buffer acks for the E1 path,
are sent over an SMSG or MSGQ channel once the RDMA
transaction succeeds. AMOs are avoided as it is difficult to
implement algorithms which allow for recovery when such
transactions fail with errors.

The Netmod is only one component of the Cray XE network
fault tolerance/fault recovery strategy. Basically the Net-
mod’s role is to ensure that MPICH2 can recover from some
dropped messages. Other components include the Hardware
Supervisory System (HSS), the Cray XE rerouting software,
and the compute node operating system (CLE). A complete
description of the mechanism is beyond the scope of this pa-
per.

4.7 uDREG Library and Memory Registra-
tion

A registration cache (uDREG) was implemented to hide or
at least reduce the overhead of memory registration for large
message transfers. Since it was known early on in devel-
opment of the Cray XE software communication stack that
other software would also need a registration cache, it was de-
cided to implement the cache as a standalone library.uDREG
is based on the registration cache implemented in MVA-
PICH2 [8].

In order to reduce pressure on memory registration resources,
the uGNI Netmod does a runtime check for whether or not
an application is usingDMAPP [9], i.e. applications on Cray
XE systems using SHMEM, UPC, or CoArray Fortran. If
DMAPP is being used by the application, the Netmod doesn’t
use the UDREG library directly, but invokes DMAPP mem-
ory registration functions to register memory regions for LMT
transfers. This allows for both DMAPP and the uGNI Netmod
to share the same memory registration resources. The uGNI
Netmod queries the Gemini NICs to determine the optimal
large pagesize to use for SMSG mailboxes and DMA buffers.
This also reduces pressure on the NICs registration resources
used for registration of 4KB pages.

There are well known pitfalls to using a user–space memory
registration cache in the context of the GNU/Linux environ-
ment [10]. To avoid the problems cited in [10], a small device
driver was developed which utilizes the Linux MMU Notifier
facility to inform uDREG when virtual memory (VM) activity
by a process has resulted in invalidation of entries in the reg-
istration cache. The user–space interface of the device driver
described in [10] was retained, although the core of the de-
vice driver was completely rewritten and simplified to make
use of MMU Notifiers. Note that VM issues attributable to
fork operations and the Linux Copy–on–Write (COW) fea-
ture are handled by kGNI. The application specifies the action
taken during the fork operation based onmodebits supplied
as part of the CDM creation. kGNI makes use of extensions
to the MMU Notifier package to handle fork.

5 Basic Performance Characteristics

The intent of this section is to provide basic performance data
relevant to the uGNI Netmod and to explain how the data re-
lates to both to the internal operation of the Netmod as well
as the Gemini NIC and the Cray XE node architecture. A
basic knowledge of the node architecture is assumed in these
discussions. For reference, a depiction of the Cray XE node
using AMDMagny Cours12–core sockets is shown in Figure
3. All performance results were obtained on a Cray XE with
Magny Cours 12–core socket nodes running at 2.0 GHz. The
operating system was CLE 3.1.61 and the MPICH2 packaged
in MPT 5.3.0.5. Large pages were not used except for one of
the bandwidth the tests. Unless explicitly mentioned, default

8

Figure 3. Basic diagram of a Cray XE compute node with
AMD Magny-Cours 12 core sockets. A separate memory con-
troller is attached to each die.

MPICH2 environment variables were used. Results for the
MSGQ approach are not included in this paper, as the version
of MPICH2 supporting this feature will not be released till
later in 2011.

5.1 Message Rate and Latency

The OSU 3.3 MPI latency test was used to measure the la-
tency for MPICH2. Results for various network hop counts
are shown in Figure 4. The latency between adjacent Geminis
for these test conditions was measured to be a little over 1.3
µsecs. The cost of a network hop for a MPI message is about
150–200 nsecs. The one–way cost of the intra-node hop (not
shown on the figure) from one of the cores not adjacent to the
Gemini NIC was measured to be about 90 nsecs.

Although the MPI latency for a single sender/receiver pair
is useful to know, a more important metric for applica-
tions which are typically run using multiple MPI ranks per
node is the latency when multiple sender/receivers are try-
ing to exchange messages across a network interface. Fig-
ure 5 shows the results from the OSU 3.3 multi-latency
(mult lat) test. The test was run between two adjacent
Gemini NICs. To improve the throughput for medium
size messages, the MPICHGNI RDMA THRESHOLD en-
vironment variable was set to 16384 for this test. The
MPICH GNI MBOX PLACEMENT environment variable
was set to specifynic placement for the SMSG mailboxes and
CQs. This results in the GNI Netmod placing the SMSG mail-
boxes and CQs on the memory of die0 (see Figure 3). Ow-
ing to the way the coherent HyperTransport protocol handles
upstream traffic from an I/O device into the node, this gives
much better performance than if the mailboxes and CQs are

 0

 1

 2

 3

 0 100 200 300 400 500

ti
m

e
 (

u
s
e
c
s
)

message length(bytes)

MPICH2 Inter-node OSU Latency test

between adjacent gemini cores
1 network hop separation
2 network hop separation

Figure 4. MPICH2 Latency for different network hop counts
as measured using the OSU Latency test.

placed local to the MPI ranks. One observes that very good
latency is observed for small messages even when there are
24 ranks/node up to 1024 bytes. It is at this point that the
MPICH2 switches to the E1 protocol and the DMA buffers
begin to be used. At the largest message lengths shown in the
figure, the latency is beginning to be dominated by the serial-
izing effect of the BTE. This effect should be diminished in
the next major release of CLE, in which multiple channels of
the BTE will be available to applications.

The aggregate message rate for short and medium
size MPI messages is shown in Figure 6. These
measurements were made also made with the
MPICH GNI MBOX PLACEMENT environment
variable set to specify nic placement. The
MPICH GNI RDMA THRESHOLD environment vari-
able was not set for these measurements. The maximum
message rate realized with this placement option, and using
2.0 GHz processors, is about 8 million MPI messages/sec.
Rates over 9 million messages per second are measured
with faster processors. The drop off in message rate at 1024
bytes is due to the switch from the E0 to the E1 protocol
(Section 4.3).

5.2 Bandwidth

Bandwidth measurements were made using the IMB 3.2.2
PingPong test and various OSU 3.3 bandwidth tests. Un-
less otherwise mentioned, all tests were run between adjacent
Gemini NICs.

Results of the IMB PingPong test are shown in Figure 7 for
various ways of handling large messages. As shown in the fig-
ure, the best bandwidth is obtained when using the LMT path
described in Section 4.4 and also usinglazy memory dereg-
istration for the registration cache. Lazy memory deregistra-

9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 100 1000 10000

ti
m

e
 (

u
s
e
c
s
)

message length(bytes)

MPICH2 OSU Multi Latency

1 rank per node
2 ranks per node
4 ranks per node
8 ranks per node

16 ranks per node
24 ranks per node

Figure 5. MPICH2 Latency for multiple sender/receiver pairs
per node.

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000

M
e
s
s
a
g
e
s
 p

e
r

s
e
c
o
n
d

message length(bytes)

MPICH2 OSU Multibandwidth Multirate Benchmark

1 rank per node
2 ranks per node
4 ranks per node
6 ranks per node
8 ranks per node

16 ranks per node
24 ranks per node

Figure 6. MPICH2 message rate measured using the OSU
mbw mr test with different numbers of MPI ranks per node.

tion is the default policy used by MPICH2. The bandwidth
drops significantly if the lazy memory registration policy is
not used. Not using the LMT path at all has a similar effect
on the bandwidth for large messages. The drop in bandwidth
between 512 and 1024 bytes is again due to the switch from
the E0 to E1 protocol in the eager path. The differences in
bandwidth for the longer transfers methods only appear at 8
KB and above because that is the default threshold for switch-
ing from the eager to the rendezvous protocol.

Since many MPI applications are typically run with multiple
processes per node, bandwidth results when using multiple
MPI send/receive pairs are shown in Figure 8. For this test,
the MPICHGNI RDMA THRESHOLD environment vari-
able was again set to 16384. The bandwidths are derived from
the latencies obtained using the OSU 3.3 multilat test. These
are the results in bandwidth rather than latency, for messages
longer than those shown in Figure 5. At transfer sizes beyond
16384 bytes, the available bandwidth per rank is dominated
by the effects of sharing the BTE between the ranks for trans-
ferring the message data. The reason for the dip at 512 KB
and 1 MB transfer lengths for the single rank per node case is
under investigation.

Figure 9 is included to show effects of the MPICH2 Nemesis
design on the bandwidth realized using different MPI meth-
ods for transferring data, and also to show results of the OSU
bidirectional bandwidth test. As discussed in Section 4.4,the
Nemesis device currently does not use the LMT path for MPI-
2 RMA transfers. Thus, the realized bandwidth for MPIPut
and MPI Get operations is similar to that obtained for long
MPI Send messages when the LMT path is disabled (Fig-
ure 7). Again the dip between 512 and 1000 byte transfers
arises from the E0 to E1 transition. For the osubw test using
base 4KB pages for the send and receive buffers, a bandwidth
of around 3.8 GB/sec was measured, at 16384 byte message
sizes, and 4.4 GB/sec for 1MB message sizes. The decreasing
bandwidth above 1MB for the MPIPut and MPIGet prob-
ably is due to caching effects associated with the buffered
transfer protocol used. The figure also includes results when
using large pages for the osubw test. Large pages give much
better performance for longer messages, approaching the per-
formance obtained using DMAPP. Modifying the osubw test
to test larger message sizes, an asymptotic bandwidth of 6
GB/sec is realized for very large messages (64 MB) when us-
ing large pages.

6 Future Work

One of the main areas of focus for enhancement of the uGNI
Netmod is providing better support for independent progress
of the state–engine, and hence allowing for opportunities for
better overlap of computation with communication. Cur-
rently, kGNI provides some level of support for offloading
to the Gemini BTE by allowing applications to queue BTE
transfer requests in the kernel. As the BTE processes trans-

10

 10

 100

 1000

 100 1000 10000 100000 1e+06

M
B

/s
e
c

message length(bytes)

MPICH2 Inter-node Bandwidth using IMB PingPong

LMT-lazymem
LMT-lazymem disabled

LMT path disabled

Figure 7. MPICH2 Inter–node IMB PingPong Bandwidth us-
ing various options for handling long messages.

 100

 1000

 10000

 1000 10000 100000 1e+06

M
B

/s
e
c

message length(bytes)

MPICH2 OSU Multilatency (BW)

1 rank per node
2 ranks per node
4 ranks per node
8 ranks per node

16 ranks per node
24 ranks per node

Figure 8. MPICH2 bandwidth per rank for multiple ranks per
node as derived from the latency measurements obtained using
the OSU multilat test.

 100

 1000

 10000

 100 1000 10000 100000 1e+06

M
B

/s
e
c

message length(bytes)

MPICH2 Bandwidth for various OSU BW tests

Using MPI_Isend/MPI_Irecv
MPI_Isend/MPI_Irecv large pages

MPI_Put
MPI_Get

MPI_Isend/MPI_Irecv bidirectional

Figure 9. Comparison of realized bandwidth for
MPI Send/MPIRecv and MPIPut and MPIGet. Also
shown is bidirectional bandwidth obtained using the OSU
bibw test.

fer requests, kGNI is able to enqueue more requests into the
BTE’s hardware request queues without the application hav-
ing to make MPI calls. The uGNI Netmod will need to be
enhanced to leverage this support. Approaches being investi-
gated include enhancing of the existing asynchronous–thread
infrastructure within MPICH2, as well as more complex ap-
proaches (e.g. [5]) which make use of the core–specialization
features available in CLE.

Longer–term, work on the Netmod will include adding sup-
port for MPI-3 features such Fault Tolerance and extended
MPI-3 RMA functionality.

7 Acknowledgments

The authors would like to thank Steve Oyanagi (Cray) for col-
lecting much of the data presented in this paper. The authors
would also like to acknowledge Kim McMahon (Cray) for
enhancing the Cray PMI library to support the KVS function-
ality required by Nemesis.

This material is based upon work supported by the Defense
Advanced Research Projects Agency under its Agreement
No. HR0011-07-9-0001. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency.

References

[1] Robert Alverson, Duncan Roweth, and Larry Kaplan.
The Gemini System Interconnect.High-Performance

11

Interconnects, Symposium on, 0:83–87, 2010.

[2] Darius Buntinas, Guillaume Mercier, and William
Gropp. Design and Evaluation of Nemesis, a Scalable,
Low-Latency, Message-Passing Communication Sub-
system. InCCGRID’06, pages 521–530, 2006.

[3] Fault Tolerance Working Group. Run-though Stabiliza-
tion Interfaces and Semantics.svn.mpi-forum.
org/trac/mpi-forum-web/wiki/ft/run_
through_stabilization.

[4] Michael Karo, Richard Lagerstrom, Marlys Kohnke,
and Carl Albing. Application Level Placement Sched-
uler (ALPS). InProceedings of Cray User Group 2006,
2006.

[5] Ping Lai, Pavan Balaji, Rajeev Thakur, and Dha-
baleswar K. Panda. ProOnE: a General-purpose Proto-
col Onload Engine for Multi- and Many-core Architec-
tures.Computer Science - R&D, pages 133–142, 2009.

[6] MPICH2. www.mcs.anl.gov/research/
projects/mpich2/.

[7] MPICH2–Nemesis. Nemesis Network Module API.
wiki.mcs.anl.gov/mpich2/index.php/
Nemesis_Network_Module_API.

[8] Network–Based Computing Laboratory. MVAPICH:
MPI over Infiniband, 10GigE/iWARP and RoCE.
mvapich.cse.ohio-state.edu/overview/
mvapich2.

[9] Monika ten Bruggencate and Duncan Roweth.
DMAPP–an API for One–sided Program Models on
Baker Systems. InProceedings of Cray User Group
2010, 2010.

[10] Pete Wyckoff and Jiesheng Wu. Memory Registration
Caching Correctness. InProceedings of CCGrid05.
IEEE Computer Society, 2005.

12

