The Cielo Capability Supercomputer

Manuel Vigil (LANL), Douglas Doerfler (SNL), Sudip Dosanjh (SNL) and John Morrison (LANL)

SAND 2011-3421C Unlimited Release Printed February, 2011

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000.

The Cielo Platform

- Cray, Inc. selected to deliver Cielo Platform by ACES
 - Cielo Platform (1.03 Peak PetaFlops in FY10)
 - 5% Cielo Nodes with Additional Memory (for Viz partition)
 - Application Regression Testbed (Cielito)
 - System Development Testbed (x2)
 - Additional Delivery Option (.33 additional PFs in FY11)
 - Total of 1.37 PF system (with room for expansion)
- Cielo provide petascale production capability computing for the ASC tri-lab community (LLNL, SNL, LANL)
 - Capable of running a single application across the entire machine
 - Usage Model will follow the ASC's Capability Computing Campaign (CCC) process

Design Philosophy & Goals

- Petascale production capability to be deployed in Q1FY11
 - Take over the role Purple currently plays
 - Usage Model will follow the Capability Computing Campaign (CCC) process
 - Capability: Capable of running a single application across the entire machine
- Easy migration of existing integrated weapons codes
 - MPI Everywhere is the nominal programming model
 - 2GB memory per core (minimum) to support current application requirements
- Productivity goal is to achieve a 6x to 10x improvement over Purple on representative CCC applications
 - Memory subsystem performance will be the major contributor to node performance
 - Interconnect performance will be major contributor to scaling performance
 - Reliability will be major contributor to CCC total time to solution
- Upgrade path to allow increased capability in out years
- Key challenges: Reliability, Power, HW and SW Scalability, Algorithmic Scaling to 80K to 100K MPI ranks

Cielo at a Glance

- Platforms
 - Cielo Petascale Capability Computing Platform
 - Cielito Small application development testbed
- Cray XE6 Architecture
 - 3D Torus Topology using Cray Gemini high-speed interconnect
 - AMD Magny-Cours based nodes
- Cray Linux Environment (CLE) System Software
 - ALPS Runtime with Moab batch scheduling
 - CrayPat & Apprentice2 performance analysis tools
 - TotalView debugger
 - PGI, Cray, Intel and GNU compiler suites
 - Etc.
- Integrated Visualization & Analysis Partition
 - 64 GB memory per node partition
- Integrated into LANL's Parallel Scalable Backbone Network (PaScalBB)
 - 10 PB of user available storage
 - > 200 GB/s of network bandwidth
 - 160 GB/sec of parallel file system bandwidth

Los Alamos NATIONAL LABORATORY

NATIONAL LABORATORY

Cielo Hardware Architecture

- AMD Magny-Cours Node
 - Dual-socket AMD 6136 Processors
 - 2 x 8 = 16 total cores
 - 2.4 GHz core frequency
 - 32 GB of 1333 DDR3 memory
 - 64 GB for Visualization Nodes
 - 153.6 peak DP GFLOPs
 - 85.3 peak GB/s memory BW
- Gemini High-Speed Interconnect
 - 3D Torus topology
 - Phase 1: 18x8x24
 X bisection: > 4.38 TB/s
 Y bisection: > 4.92 TB/s
 - Z bisection: > 3.92 TB/s
 - Phase 2: 16x12x24
 - X bisection: > 6.57 TB/s
 - Y bisection: > 4.38 TB/s
 - Z bisection: > 4.38 TB/s
 - Node Injection
 - **DS** > 6 GB/s/dir sustained BW

Integration into LANL's PaScalBB

S New Mexico Alliance for Computing at Extreme Scale

Cielo By Numbers

	Phase 1	Phase 2	Cielito
# of Cabinets	72	96	1
# of Service Nodes	208	272	14
# of Compute Nodes	6,704*	8,944*	68
# of Visualization Nodes	(376)	(376)	(4)
# of Compute Cores	107,264	143,104	1,088
Peak Memory BW	572 TB/s	763 TB/s	5.8 TB/s
Memory Capacity per Core	2 GB (4 GB)	2 GB (4 GB)	2 GB (4 GB)
Compute Memory Capacity	226.6 TB	298.2 TB	2.3 TB
Peak Compute FLOPS	1.03 PF	1.37 PF	10.4 TF
Sustained PFS BW	> 160 GB/s		TBD
System Power	~3 MW w/HPL	~4 MW w/HPL	
Full System Job MTBI	> 25 hours		
System MTBI	> 200 hours		

* Total compute nodes including Viz nodes and nodes allocated for other services

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

EST.1943

ฉมบเฉเบเเธอ

Cielo Highlights

- Integration and Acceptance Dec 2010 (ASC Level 2)
 - Demonstrated 9.6x improvement in capability relative to Purple
- Capability Computing Campaign 1 (CCC1) – Feb 2011
 - Over 70 users: 3 early application campaigns plus porting and scaling of integrated weapons codes

- Upgrade on schedule: April 30th through May 20th
 - Grows Cielo from 1.03 to 1.37 PF (107,264 to 143,104 compute cores)
- CCC2 will begin in July
- Cielo Project being nominated for DOE Defense Program Award of Excellence
- Positive feedback from users
 - "... one of the biggest real data visualizations that ParaView has done anywhere in the world"
 - "... solve times are comparable to a similar problem having a factor of 100 fewer elements that I ran on the LLNL Purple machine"
 - "Going to Muzia and then to Cielo, there have been *NO* significant porting issues to work through in getting our ITS-CAD capability running"

Cielo Application Performance Relative to Purple

Cielo Platform Schedule Highlights 2009-2011

- The ASC Capability Computing Campaign (CCC) process will be used to allocate resources on Cielo.
- Cielo is operated in an environment very similar to the last capability system (Purple).
- The Cielo Usage Model is our "contract" with users for how to best use the machine.
 - The Usage Model will form baseline requirements for the 2011 Production Capability Readiness L2 Milestone.

Cielo Early Applications

- pF3D Steve Langer, LLNL Successfully ran a Laser-Plasma simulation of a NIF experiment on 32K Cielo Processors
- CTH Simulations Steve Attaway, Shivonne Haniff, Joel Stevenson, Jason Wilke, SNL Successfully ran a series of calculations using 32K PEs and has simulated ~900 microseconds of a 2,000 microsecond calculation
- Stockpile Calculations Results on Cielo Robert Weaver, LANL Successfully completed five different full-system events running for stockpile calculations of interest. We have demonstrated using Cielo for high-fidelity runs using an advanced physics package that was accelerated for Roadrunner, but will run on Cielo using a higher processor count instead of accelerators.

Slide 12

3D RAGE simulations on the Cielo supercomputer to simulate a 1Mton surface explosion on Asteroid 25143 Itokawa

- Significant public interest in this topic
 - Several Hollywood movies; interest from government; popular articles
 - We use the shape of the Asteroid Itokawa, which is not a near-Earth hazard, simply to have a nonspherical geometry
- Many methods of Potentially Hazardous Objects (PHOs) mitigation have been proposed:
 - Nuclear options: Explosive disruption; stand-off momentum/velocity transfer
 - Non-nuclear methods: gravity attractors; solar energy absorption (paint) etc.
- For this simulation we use the RAGE hydrocode in 3D with a 1 Mton energy source on the surface of the object
- Here we use realistic (nonspherical) shapes and explore a "rubble piles" composition, i.e., where the asteroid has experienced many disruptive interactions, recombined, and is composed of many smaller "rocks."
- This simulation currently has run only to 25 ms; interesting mitigation occurs after ~5 s for this explosion energy. This is still running on Cielo.
- Never tried before: Cielo is the first computer big enough to try this problem in 3D at Los Alamos.

Slide 13

Cool, a Movie!

{|v|≥3*10³} [cm/s] 100 [m] 62500 250000 562500 1e+06 0 0 0 $\{\rho \ge 0.1\}$ [gm/cm³] Time = 0.0 [ms] 2 3 0 4 1

Sandia National Laboratories

Slide 14

Cielo - Next Steps

Sandia National

- System upgrade from 1.03 PF/s to 1.37 PF/s (72 to 96 Cabinets)
 - Scheduled completion is May 20th, 2011
 - Acceptance will be in conjunction with continuing CCC1
- Continue CCC1
 - Additional applications being added
- Call for CCC2 (May 2011)
 - Similar to Purple CCC model
 - Job size categories for Cielo (based on governance model)
 - Dedicated application time for larger jobs
- Start CCC2 in July 2011
- Planning for ASC L2 Production Capability Milestone Review (Oct., 2011)
- Original project schedules have been met

QUESTIONS?

Slide 16

