
Developing Hybrid OpenMP-MPI Parallelism 
for Fluidity - Next Generation  

Geophysical Fluid Modelling Technology 

Xiaohu Guo,  Gerard Gorman, Andrew Sunderland, Mike Ashworth 
ARC, CSE Department, STFC  

AMCG, Department of Earth Science and Engineering,  
Imperial College London  

 



INTRODUCTION 

 

•  An overview of the Fluidity-ICOM Numerical Technology 

•  Developing hybrid OpenMP/MPI parallelism 

  Thread Safe Issues and Solutions 

  Optimization of Memory Bandwidth 

•  Summary and Conclusions 

•  Future work 



dCSE ICOM Collaborations 

•  Applied Modeling and Computation Group, Imperial 
College, London  (AMCG, http://amcg.ese.ic.ac.uk/)  

•  ARC, The Computational Science & Engineering 
Department (CSED), STFC  (http:// www.cse.clrc.ac.uk/)  

•  National Oceanographic Laboratory, Liverpool (POL, 
http://www.pol.ac.uk/) 

•  Edinburgh Parallel Computing Centre, Edinburgh(http://
www.epcc.ed.ac.uk/) 

  



Motivations for the next generation ocean model 

•  To resolve a wide range of spatial and temporal scales 

•  Model internal waves, boundary currents, eddies, 
overflows, convection events, …, accurately and 
efficiently within a global and coupled context  

•  Need for accurate and efficient representation of highly 
complex domains 

•  Ability to model interaction of flow with small scale 
topography, shelf seas, coastal regions, islands, 
estuaries, harbours,…  



An overview of the Fluidity-ICOM 
Numerical Technologies 



•  Unstructured FEM  
 
Start with Fluidity – an open source 
control volume finite element solver for 
3D compressible multi-phase fluids. Has 
been developed by AMCG for more than 
a decade and is the basis for a range of 
multi-physics multi-scale applications 
 
Initial mesh generation to follow 
complex bathymetry and coastlines -- 
terrno 
 
Unstructured meshes are an  
Ideal choice for representing  
complex problem domains and a 
coupled range of scales without the 
need for grid nesting 
 
 



•  Adaptive Mesh, solving from large scales to small scales. 
–  Add an adaptivity library which performs topological operations on 

the mesh, and mesh movement, to optimise the size and shape of 
elements in response to error measures 

–  Dynamic load balance method -- Zoltan 



•  Fortran, C++, Python, MPI Based 
•  Open source community model development 

approach  
–  Makes use of open source solutions for I/O, Visualisation, 

etc 
–  Advantage – using latest software features 

•  The Fluidity source code is hosted on launchpad 
 



ICOM Software Package Lists 

•  VTK  
•  CGNS  
•  BLAS  
•  LAPACK  
•  XML2  
•  MPI  
•  PETSc  
•  Zoltan/ParMetis 
•  APPACK  

•  NetCDF  
•  UDUnits  
•  Python Development 

Environments  
•  Trang  
•  Spatial-Index  
•  Fortran 90 Compilers  
•  C++  
•  Bazaar 



Diamond automatic pre-processing tool 
•  An xml schema file 

describes the rules that 
govern model options 

•  Diamond uses this to 
automatically generate a 
GUI based on the schema 

•  Options are entered and 
output as another xml file 
containing the options 
values 

•  This is read into an 
options library accessible 
from anywhere in code 

•  Includes many features, 
including the ability to 
define python functions 
executed at run time 
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•  If a failure is detected in a test problem, the developers are notified details via email. 
•  Statistical information about code quality is automatically collected from the newly validated 

code. This allows for the monitoring of performance. Results available via a web interface. 
•  This modern approach to software engineering has yielded dramatic improvements in code 

quality and programmer efficiency. 

•  All models require rigorous 
validation/verification. A continuous 
automated approach is required as 
the codebase changes. 

•  A central copy of the                
source is kept in a 

      bazaar repository.  When      
developers commit changes this must 
result in a pass of the code test suite. 

•  Buildbot checks out and builds on 
various platforms with several 
different compilers. Any errors are 
relayed back to developers. 

Buildbot: automated 
code verification system 



Basic Timings 

•  The solution process consists of the 
assembly of the linear systems 
r e p r e s e n t i n g t h e d i s c r e t i s e d 
momentum equation and the pressure 
equation. 

•   Matrix assembly for pressure and 
velocity can take more than 30% of 
the total simulation time with 1024 
cores. 

•  Pressure solver is the main cost 

•  Matrix assembly phase is expensive 

o Significant loop nesting, where the 
innermost loop increases in size with 
increasing quadrature;  
o Ind i rec t address ing (due to 
unstructured meshes)  
o  Cache re-use: renumbering mesh 
nodes, blocking in matrix assembly 



Speedup and Efficiency 

The speedup and efficiency of momentum solver and each of 
its components 



Developing hybrid OpenMP/MPI parallelism 
for Fluidity/ICOM 



Project Rationality 
•  Further develop Fluidity-ICOM in order to run efficiently on 

supercomputers comprised of ccNUMA nodes. 

•  Hybrid OpenMP/MPI decreases the total memory footprint per 
compute node (the total size of mesh halos increases with 
number of partitions) and provides memory bandwidth 
optimization opportunities. 

•  The use of hybrid OpenMP/MPI will decrease the total volume of 
data to write to disk, and the total number of metadata 
operations based on the files-per-process I/O strategy. 

•  Reduced number of domain partitions benefits many algorithms, 
e.g. AMG, mesh adaptivity. 

•  Directive based approach, Same code base, easily port to other 
platforms, eg: Cray XK6, Intel MIC 



Fluidity ICOM Sparse Matrix Assembly  

•  Using element by element approach 
•  Sparse matrix storage formats:  

–  CSR + diagonal 
–  PETSc csr format  

•  Block assembly 
•  30-40% of total computation due to higher order and 

DG integrations. 



Algorithm 1: General Matrix assembly loop 

Global_matrix   0 
For e =1, number_of_elements do 

 Local_Matrix = Assemble_Element(e) 
 Global_Matrix +=  Local_Matrix 

enddo 



An Overview of the OpenMP Implementation  
•  Working out sparse patterns (element adjacency matrix) for 

different numerical discretisation method, eg, DG, CG and CV   

•  Parallelize matrix assembly with colouring method, colouring 
elements according to their sparse patterns, a loop over colours 
is added around the main assembly loop. 

•  The main assembly loop over elements is parallelised using the 
OpenMP parallel do directive with a static schedule.  

•  This divides the loop into chunks of size ceiling 
(number_of_elements/number_of_threads) and assigns a 
thread to a separate chunk. 



Algorithm 2: Threaded Matrix Assembly Loop 

graph  create_graph(mesh, discretisation) 
colour calculate_colouring(graph) 
k_colours = max(colour) 
Global_Matrix   0 
$!OMP PARALLEL 
for k=1, k_colours do 
   independent_elements={ e | colour[e] = k } 
   for all e in  independent_elements do 

    Local_Matrix = Assemble_Element(e) 
    Global_Matrix +=  Local_Matrix 

    end for 
end for 



Note: 
•  Generally, the above colouring method tries to colour as many 

vertices as possible with the first colour, then as many as 
possible of the uncoloured vertices with the second colour, and 
so on 

•  Therefore the number of elements is not balanced between 
each colour group.  

•  For OpenMP, it’s not a problem as long as each thread has 
enough work load. 

•  The performance is not sensitive to the total number of colour 
groups 



Thread Safe Issues and Solutions 



Tools for Race Conditions Detecting  

•  DRD v.s. Helgrind 
–  They both have a lot of false positives, also take very long 

time to generate results for fluidity typical runs(at least ten 
hours for gyre node performance test case).  

–  Need pay a lot of attention to “store” operation, start with 
“Conflicting Store by…” 

–  Very helpful for detecting racing conditions. 

•  Intel Thread Checker. 



Local assembly v.s. non local assembly 

•  PETSc Matrix stashing: The stash is used to temporarily store 
inserted vec values that belong to another processor. During the 
assembly phase the stashed values are moved to the correct 
processor -- not thread safe 

•  When MAT_IGNORE_OFF_PROC_ENTRIES is set, any 
MatSetValues calls to rows that are off-process will be 
discarded.  This  makes matrix assembly much faster as no 
communications are needed -- recompute rather than 
communicate 



Local assembly v.s. nonlocal assembly 






Thread Safe Issues of Memory Reference Counting 

•  Any defined type objects in fluidity being allocated or 
deallocated, the reference count will be plus one or 
minus one. 

•  If the objects counter equals zero, the objects should 
then be deallocated. 

•  In the element loop, the element-wise physical 
quantities should not do allocation or deallocation. 
(But they do, which causes racing conditions for the 
reference counter.) 

•  Solutions for the  above,  
–  add critical directives around reference counter.  
–  Move allocation or deallocation outside of element loop 





Optimization of Memory Bandwidth 
•  First touch 

–  What this means is that when an application requests memory, the virtual 
address is initially not mapped to any physical memory.   

–  When the application first accesses the memory (read or write), the OS 
allocates a physical memory region and maps the virtual address to the  
physical range.   

–  The OS typically allocates physical memory from the same NUMA node as 
the CPU that executed the thread which first accessed the virtual memory 
block. 

•  Using NUMA-aware heap memory manager – 
TCMalloc 

–  Reduce the overhead of OS API calls by managing its own memory pool  
–  Reduce the lock contention in multi-processor systems  
–  Maximize local memory allocations on NUMA systems  



Samp% | Samp | Imb. | Imb. |Group  
              |           | Samp | Samp% | Function  
              |           |           |               | PE=HIDE  
100.0% | 75471 | --       |      --       |Total  
|---------------------------------------------------------------------------  
| 95.8% | 72324 | -- | -- |ETC  
||--------------------------------------------------------------------------  
|| 14.6% | 11002 | 0.00 | 0.0% |_int_malloc  
|| 13.8% | 10417 | 0.00 | 0.0% |__lll_unlock_wake_private  
|| 9.7% | 7284 | 0.00 | 0.0% |free  
|| 9.5% | 7172 | 0.00 | 0.0% |__lll_lock_wait_private  
|| 6.4% | 4862 | 0.00 | 0.0% |malloc  
|| 6.2% | 4674 | 0.00 | 0.0% |__momentum_dg_MOD_construct_momentum_element_dg  
|| 4.0% | 3046 | 0.00 | 0.0% |_int_free  
|| 3.2% | 2439 | 0.00 | 0.0% |__momentum_dg_MOD_construct_momentum_interface_dg  
|| 3.0% | 2272 | 0.00 | 0.0% |_gfortran_matmul_r8  
|| 3.0% | 2251 | 0.00 | 0.0% |__sparse_tools_MOD_block_csr_blocks_addto  
|| 2.8% | 2090 | 0.00 | 0.0% |malloc_consolidate  
|| 2.1% | 1574 | 0.00 | 0.0% |__fetools_MOD_shape_shape  

CrayPAT Sample Profiling Statistic of 
Momentum DG with 24 threads.  











•  We have focused on Fluidiy Matrix Assembly. 
–  Above performance results indicate that node optimization 

can be done mostly using OpenMP with an efficient 
colouring method 

–  Regarding Matrix stashing, local assembly performance is 
better than non local assembly, This makes assembly an 
inherently local process. 

–  Thus focus is on optimizing local (to the compute node) 
performance, try to avoid use mutual synchronization 
directives: eg. Critical   

–  Improving memory bandwidth usage through NUMA 
optimisations(eg: first touch, thread pinning) and using 
NUMA aware heap memory manager can get best 
performance using pure openmp within the NUMA node 

Summary and Conclusions 



Future Work 

•  More work on Solvers,  
–  investigation of threaded HYPRE that can be called through 

PETSc. 

–  Benchmarking with the PETSc development branch that 
supports OpenMP. 

•  Performance Investigation of the fully OpenMP 
parallelised Fluidity on Intel MIC and Cray XK6 

•  integrate Fluidity with a newly-developed adaptive 
mesh library(Pragmatic) which also supports hybrid 
OpenMP-MPI 
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