
Developing Hybrid OpenMP-MPI Parallelism
for Fluidity - Next Generation

Geophysical Fluid Modelling Technology

Xiaohu Guo, Gerard Gorman, Andrew Sunderland, Mike Ashworth
ARC, CSE Department, STFC

AMCG, Department of Earth Science and Engineering,
Imperial College London

INTRODUCTION

•  An overview of the Fluidity-ICOM Numerical Technology

•  Developing hybrid OpenMP/MPI parallelism

  Thread Safe Issues and Solutions

  Optimization of Memory Bandwidth

•  Summary and Conclusions

•  Future work

dCSE ICOM Collaborations

•  Applied Modeling and Computation Group, Imperial
College, London (AMCG, http://amcg.ese.ic.ac.uk/)

•  ARC, The Computational Science & Engineering
Department (CSED), STFC (http:// www.cse.clrc.ac.uk/)

•  National Oceanographic Laboratory, Liverpool (POL,
http://www.pol.ac.uk/)

•  Edinburgh Parallel Computing Centre, Edinburgh(http://
www.epcc.ed.ac.uk/)

Motivations for the next generation ocean model

•  To resolve a wide range of spatial and temporal scales

•  Model internal waves, boundary currents, eddies,
overflows, convection events, …, accurately and
efficiently within a global and coupled context

•  Need for accurate and efficient representation of highly
complex domains

•  Ability to model interaction of flow with small scale
topography, shelf seas, coastal regions, islands,
estuaries, harbours,…

An overview of the Fluidity-ICOM
Numerical Technologies

•  Unstructured FEM

Start with Fluidity – an open source
control volume finite element solver for
3D compressible multi-phase fluids. Has
been developed by AMCG for more than
a decade and is the basis for a range of
multi-physics multi-scale applications

Initial mesh generation to follow
complex bathymetry and coastlines --
terrno

Unstructured meshes are an
Ideal choice for representing
complex problem domains and a
coupled range of scales without the
need for grid nesting

•  Adaptive Mesh, solving from large scales to small scales.
–  Add an adaptivity library which performs topological operations on

the mesh, and mesh movement, to optimise the size and shape of
elements in response to error measures

–  Dynamic load balance method -- Zoltan

•  Fortran, C++, Python, MPI Based
•  Open source community model development

approach
–  Makes use of open source solutions for I/O, Visualisation,

etc
–  Advantage – using latest software features

•  The Fluidity source code is hosted on launchpad

ICOM Software Package Lists

•  VTK
•  CGNS
•  BLAS
•  LAPACK
•  XML2
•  MPI
•  PETSc
•  Zoltan/ParMetis
•  APPACK

•  NetCDF
•  UDUnits
•  Python Development

Environments
•  Trang
•  Spatial-Index
•  Fortran 90 Compilers
•  C++
•  Bazaar

Diamond automatic pre-processing tool
•  An xml schema file

describes the rules that
govern model options

•  Diamond uses this to
automatically generate a
GUI based on the schema

•  Options are entered and
output as another xml file
containing the options
values

•  This is read into an
options library accessible
from anywhere in code

•  Includes many features,
including the ability to
define python functions
executed at run time

Robin Clegg: AstroNet Symposium 18 June 2008 © Imperial College London Page 11

•  If a failure is detected in a test problem, the developers are notified details via email.
•  Statistical information about code quality is automatically collected from the newly validated

code. This allows for the monitoring of performance. Results available via a web interface.
•  This modern approach to software engineering has yielded dramatic improvements in code

quality and programmer efficiency.

•  All models require rigorous
validation/verification. A continuous
automated approach is required as
the codebase changes.

•  A central copy of the
source is kept in a

 bazaar repository. When
developers commit changes this must
result in a pass of the code test suite.

•  Buildbot checks out and builds on
various platforms with several
different compilers. Any errors are
relayed back to developers.

Buildbot: automated
code verification system

Basic Timings

•  The solution process consists of the
assembly of the linear systems
r e p r e s e n t i n g t h e d i s c r e t i s e d
momentum equation and the pressure
equation.

•  Matrix assembly for pressure and
velocity can take more than 30% of
the total simulation time with 1024
cores.

•  Pressure solver is the main cost

•  Matrix assembly phase is expensive

o Significant loop nesting, where the
innermost loop increases in size with
increasing quadrature;
o Ind i rec t address ing (due to
unstructured meshes)
o  Cache re-use: renumbering mesh
nodes, blocking in matrix assembly

Speedup and Efficiency

The speedup and efficiency of momentum solver and each of
its components

Developing hybrid OpenMP/MPI parallelism
for Fluidity/ICOM

Project Rationality
•  Further develop Fluidity-ICOM in order to run efficiently on

supercomputers comprised of ccNUMA nodes.

•  Hybrid OpenMP/MPI decreases the total memory footprint per
compute node (the total size of mesh halos increases with
number of partitions) and provides memory bandwidth
optimization opportunities.

•  The use of hybrid OpenMP/MPI will decrease the total volume of
data to write to disk, and the total number of metadata
operations based on the files-per-process I/O strategy.

•  Reduced number of domain partitions benefits many algorithms,
e.g. AMG, mesh adaptivity.

•  Directive based approach, Same code base, easily port to other
platforms, eg: Cray XK6, Intel MIC

Fluidity ICOM Sparse Matrix Assembly

•  Using element by element approach
•  Sparse matrix storage formats:

–  CSR + diagonal
–  PETSc csr format

•  Block assembly
•  30-40% of total computation due to higher order and

DG integrations.

Algorithm 1: General Matrix assembly loop

Global_matrix  0
For e =1, number_of_elements do

 Local_Matrix = Assemble_Element(e)
 Global_Matrix += Local_Matrix

enddo

An Overview of the OpenMP Implementation
•  Working out sparse patterns (element adjacency matrix) for

different numerical discretisation method, eg, DG, CG and CV

•  Parallelize matrix assembly with colouring method, colouring
elements according to their sparse patterns, a loop over colours
is added around the main assembly loop.

•  The main assembly loop over elements is parallelised using the
OpenMP parallel do directive with a static schedule.

•  This divides the loop into chunks of size ceiling
(number_of_elements/number_of_threads) and assigns a
thread to a separate chunk.

Algorithm 2: Threaded Matrix Assembly Loop

graph  create_graph(mesh, discretisation)
colour calculate_colouring(graph)
k_colours = max(colour)
Global_Matrix  0
$!OMP PARALLEL
for k=1, k_colours do
 independent_elements={ e | colour[e] = k }
 for all e in independent_elements do

 Local_Matrix = Assemble_Element(e)
 Global_Matrix += Local_Matrix

 end for
end for

Note:
•  Generally, the above colouring method tries to colour as many

vertices as possible with the first colour, then as many as
possible of the uncoloured vertices with the second colour, and
so on

•  Therefore the number of elements is not balanced between
each colour group.

•  For OpenMP, it’s not a problem as long as each thread has
enough work load.

•  The performance is not sensitive to the total number of colour
groups

Thread Safe Issues and Solutions

Tools for Race Conditions Detecting

•  DRD v.s. Helgrind
–  They both have a lot of false positives, also take very long

time to generate results for fluidity typical runs(at least ten
hours for gyre node performance test case).

–  Need pay a lot of attention to “store” operation, start with
“Conflicting Store by…”

–  Very helpful for detecting racing conditions.

•  Intel Thread Checker.

Local assembly v.s. non local assembly

•  PETSc Matrix stashing: The stash is used to temporarily store
inserted vec values that belong to another processor. During the
assembly phase the stashed values are moved to the correct
processor -- not thread safe

•  When MAT_IGNORE_OFF_PROC_ENTRIES is set, any
MatSetValues calls to rows that are off-process will be
discarded. This makes matrix assembly much faster as no
communications are needed -- recompute rather than
communicate

Local assembly v.s. nonlocal assembly

Thread Safe Issues of Memory Reference Counting

•  Any defined type objects in fluidity being allocated or
deallocated, the reference count will be plus one or
minus one.

•  If the objects counter equals zero, the objects should
then be deallocated.

•  In the element loop, the element-wise physical
quantities should not do allocation or deallocation.
(But they do, which causes racing conditions for the
reference counter.)

•  Solutions for the above,
–  add critical directives around reference counter.
–  Move allocation or deallocation outside of element loop

Optimization of Memory Bandwidth
•  First touch

–  What this means is that when an application requests memory, the virtual
address is initially not mapped to any physical memory.

–  When the application first accesses the memory (read or write), the OS
allocates a physical memory region and maps the virtual address to the
physical range.

–  The OS typically allocates physical memory from the same NUMA node as
the CPU that executed the thread which first accessed the virtual memory
block.

•  Using NUMA-aware heap memory manager –
TCMalloc

–  Reduce the overhead of OS API calls by managing its own memory pool
–  Reduce the lock contention in multi-processor systems
–  Maximize local memory allocations on NUMA systems

Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | PE=HIDE
100.0% | 75471 | -- | -- |Total
|---
| 95.8% | 72324 | -- | -- |ETC
||--
|| 14.6% | 11002 | 0.00 | 0.0% |_int_malloc
|| 13.8% | 10417 | 0.00 | 0.0% |__lll_unlock_wake_private
|| 9.7% | 7284 | 0.00 | 0.0% |free
|| 9.5% | 7172 | 0.00 | 0.0% |__lll_lock_wait_private
|| 6.4% | 4862 | 0.00 | 0.0% |malloc
|| 6.2% | 4674 | 0.00 | 0.0% |__momentum_dg_MOD_construct_momentum_element_dg
|| 4.0% | 3046 | 0.00 | 0.0% |_int_free
|| 3.2% | 2439 | 0.00 | 0.0% |__momentum_dg_MOD_construct_momentum_interface_dg
|| 3.0% | 2272 | 0.00 | 0.0% |_gfortran_matmul_r8
|| 3.0% | 2251 | 0.00 | 0.0% |__sparse_tools_MOD_block_csr_blocks_addto
|| 2.8% | 2090 | 0.00 | 0.0% |malloc_consolidate
|| 2.1% | 1574 | 0.00 | 0.0% |__fetools_MOD_shape_shape

CrayPAT Sample Profiling Statistic of
Momentum DG with 24 threads.

•  We have focused on Fluidiy Matrix Assembly.
–  Above performance results indicate that node optimization

can be done mostly using OpenMP with an efficient
colouring method

–  Regarding Matrix stashing, local assembly performance is
better than non local assembly, This makes assembly an
inherently local process.

–  Thus focus is on optimizing local (to the compute node)
performance, try to avoid use mutual synchronization
directives: eg. Critical

–  Improving memory bandwidth usage through NUMA
optimisations(eg: first touch, thread pinning) and using
NUMA aware heap memory manager can get best
performance using pure openmp within the NUMA node

Summary and Conclusions

Future Work

•  More work on Solvers,
–  investigation of threaded HYPRE that can be called through

PETSc.

–  Benchmarking with the PETSc development branch that
supports OpenMP.

•  Performance Investigation of the fully OpenMP
parallelised Fluidity on Intel MIC and Cray XK6

•  integrate Fluidity with a newly-developed adaptive
mesh library(Pragmatic) which also supports hybrid
OpenMP-MPI

Acknowledgements

•  The authors would like to acknowledge the support of a
HECToR distributed Computational Science and
Engineering award.

•  The authors would also like to thank the HECToR and
NAG support team for their help throughout this work.

•  The authors would also like to thank Dr. Lawrence Mitchell
and Dr. Michele Weiland for their valuable contributions,
Dr. Stephan Kramer for sharing his pearls of wisdom with
us during code development and Dr. Stephen Pickles, Dr.
Andrew Porter and Dr.Michael Seaton for their valuable
suggestions and discussions.

THANKS for Listening !

