
High-Performance Exact Diagonalization
Techniques

Sergei Isakov
Institute for Theoretical Physics

ETH Zurich
CH-8093 Zurich, Switzerland

isakov@itp.phys.ethz.ch

William Sawyer
Swiss National Supercomputing Centre (CSCS)

CH-6900 Lugano, Switzerland
wsawyer@cscs.ch

Gilles Fourestey
Swiss National Supercomputing Centre (CSCS)

CH-6900 Lugano, Switzerland
fourestey@cscs.ch

Adrian Tineo
Swiss National Supercomputing Centre (CSCS)

CH-6900 Lugano, Switzerland
atineo@cscs.ch

Neil Stringfellow
Swiss National Supercomputing Centre (CSCS)

CH-6900 Lugano, Switzerland
nstring@cscs.ch

Mattias Troyer
Institute for Theoretical Physics

ETH Zurich
CH-8093 Zurich, Switzerland

troyer@phys.ethz.ch

Abstract—In this work we analyze performance and scalability
of Exact Diagonalization (ED) techniques for correlated quantum
many-body systems. Typical quantum models give rise to a
real symmetric or complex Hermitian Hamiltonian matrix H,
which is sparse with tens to hundreds of non-zeros per row,
depending on a model. We choose one of the simplest as a
prototype benchmark case: a one-dimensional Ising model with
periodic boundary conditions, where quantum dynamics has been
introduced through a transverse magnetic field.

The ED technique uses the Lanczos algorithm to determine a
few eigenstates of H. The sparsity pattern is irregular, and the
underlying matrix-vector operator, Hx, generally exhibits only
limited data locality, leading in a naive implementation to all-
to-all communication among p compute nodes. Classically this
has proved to be an impediment to running on large machine
configurations.

Grouping the basis states in a smart way, guided by the struc-
ture of the underlying lattice, one can reduce the communication
requirements so that each node communicates with only an order
O(log(p)) subset of nodes. The price paid for this data locality
is the need to copy most of the node-local vector entries to the
immediate neighbors. In other words, a large amount of data
is communicated to only a limited number of neighbors. In the
resulting C++ implementation, communication is performed with
MPI Isend/Irecv primitives. Within each node, OpenMP multi-
threading is employed. The resulting hybrid implementation
scales well to large CPU-configurations, and we report results
from the 1492-node Interlagos-based Cray XE6 at CSCS.

We have also investigated alternative paradigms for the com-
munication, such as one-way MPI-2 and SHMEM primitives.
Moreover, a UPC implementation was derived from the above-
mentioned prototype Ising model written in C. By utilizing Cray-
specific functionality along with UPC one-sided communication
primitives, the overall execution time of the MPI two-sided
communication can be exceeded, albeit only by a modest amount
(10-15%). In this paper, we present the results of various
communication paradigms on Cray XE6, SGI UV1000, Intel

Westmere and Sandybridge.
Depending on the model chosen, the Hx operation can be

computationally expensive. This opens the possibility of offload-
ing the local computation to graphical processing units (GPUs).
We briefly discuss the possibilities for achieving this with the
current state of the OpenACC standard implemented in the PGI
and Cray C++ compilers.

Index Terms—High performance computing, quantum me-
chanics, computer simulation

I. INTRODUCTION

Understanding the properties of correlated quantum many-
body systems is a very challenging task. The full analytical
treatment is usually not possible and one has to resort to
numerical methods. One of the widely used numerical methods
is exact diagonalization (ED) of the Hamiltonian matrix of
the quantum system [1]. Various bosonic, fermionic and spin
models, e.g. Heisenberg and Hubbard models, can be studied
on different lattices. Hamiltonian matrices are typically sparse
with tens to hundreds of non-zeros per row. We calculate the
matrix on the fly as the memory requirement is very high
for large problem sizes, even though the matrix is sparse.
In this paper we mostly focus on diagonalizing a transverse
field Ising model, probably the simplest quantum spin model.
This model still can have non-trivial physics, especially on
frustrated lattices [2].

The underlying kernel in ED is the Lanczos tridiagonaliza-
tion [5], given in Algorithm 1, to determine a small number
of eigenstates of H . After r iterations a tridiagonal matrix is
generated:

Algorithm 1 Lanczos iteration
1: v1 ← random vector with norm 1
2: v0 ← 0
3: β1 ← 0
4: for j = 1, . . . , r do
5: wj ← Hvj − βjvj−1

6: αj ← (wj , vj)
7: βj+1 ← ‖wj‖
8: vj+1 ← wj/βj+1

9: end for

TH =


α1 β2

β2 α2
. . .

. βr
βr αr


The eigenvalues of TH can either be an approximation for

the true eigenvalues of H , or they can be spurious because
of the round-off errors. Ways to distinguish the latter can
be found in the literature [4]. The algorithm contains two
potentially expensive kernels:

• a matrix-vector multiplication Hvj ,
• a dot-product operation (wj , vj), which is also used to

calculate norms, ‖wj‖.
We investigate first a highly simplified benchmark version

of ED, which is coded in C and employs a simple transverse
field Ising model [2]. We refer to this simplified spin model
as ”SPIN” in order to avoid confusion with the full C++
implementation supporting multiple models, referred to simply
as ”ED”.

Our prime interest in both SPIN and ED is to investi-
gate high performance programming paradigms for message
passing, thread parallelization and acceleration on multicore
processors such as GPUs, and to compare the efficacy of
these paradigms on a variety of computer platforms. Section II
proposes a methodology for the comparison of a spectrum of
current and emerging architectures. Various message-passing
paradigms will be analyzing in Section III, and evaluated on
Cray XE6 and SGI UV1000 platforms. In Section IV the per-
formance of a hybrid OpenMP-MPI implementation of SPIN is
evaluated, while in Section V the hybrid implementation of the
full ED application is considered. We draw some conclusions
about the efficacy of these paradigms in Section VI, in which
we also discuss potential for acceleration of SPIN and ED
using OpenACC [3] directives.

II. METHODOLOGY FOR COMPARATIVE BENCHMARKING

Comparing hardware platforms is fraught with difficulty.
Since different architectures provide widely varying numbers
of sockets, dies and cores per node, have different power
requirements, and have a wide range of non-uniform ac-
cess, comprehensive comparisons are virtually impossible.
Our methodology to compare architectures is a compromise:

we first compare single core, single socket and single node
performance, taking into account the best performance for any
thread count, as the architecture might or might not support
hyperthreading. We use the most performant compiler on
the given architecture, which is generally the vendor-supplied
compiler, e.g., opencc for AMD, craycc for Cray or icc
for Intel, and report on cases where another compiler (usually
GNU 4.6.2) performs better.

The platforms available (Tab. I) for single socket/node
comparisons were the following:

• Rivera: Single-node AMD Interlagos testbed, 2 sockets
• Sandy: Single-node Intel Sandybridge testbed, 2 sockets
• Castor: Intel Westmere cluster with 32 nodes, each with

2 sockets

System name Rivera Sandy Castor
Processor AMD 6274 Intel E5-2680 Intel X5650
Proc. nickname Interlagos Sandybridge Westmere
Clock (GHz) 2.2 2.7 2.66
Sockets/Node 2 2 2
Cores/Socket 16 8 6
NUMA/Socket 2 1 1
DP GFlops/Socket 140.8 172.8 63.8
Memory/Socket 16 GB 16 GB 12 GB
DDR3 mem. speed 1600 1333 1333
L1 cache (excl.) 16KB 32KB 32KB
L2 cache/# cores 2MB/2 256KB/1 256KB/1
L3 cache/# cores 8MB/8 20MB/8 12MB/6
Hyperthreading? no yes (2) unenabled
TPA/Socket (W) 115 130 95

TABLE I
CSCS TESTBED PLATFORMS

After the single node evaluation, we evaluate the per-
formance of the hybrid MPI/OpenMP implementation over
multiple nodes. The parallel platforms (Tab. II) available for
the comparison where the following:

• Rosa: Cray XE6 with 1496 nodes (2x16-core AMD
Interlagos socket) and a Gemini interconnect.

• Todi: Cray XT6 with 176 nodes (1x16-core AMD In-
terlagos socket); each node also has an NVIDIA M2090
graphical processing unit, which was not used in these
tests.

• Rothorn: SGI UV1000 with 1 (virtual) node consisting
of 32 8-core Intel Westmere sockets and a NUMAlink in-
terconnect. This machine has highly non-uniform access
within this single node, so that multi-threading is best
performed over one, or very few, sockets.

For the comparison the optimal number of MPI processes
per node (generally not just one) was selected, as well as the
optimal number of threads per MPI process (which was not
always equal to the number of cores assigned to a process).
In view of the wide range of sockets per node, the timing
comparison is made on a socket-for-socket basis. However, this
comparison still cannot be considered fair if other metrics are
considered, e.g., energy-to-solution, or the price of hardware.

III. MESSAGE-PASSING IMPLEMENTATION OF THE SPIN
BENCHMARK

In this simplest case, a lattice with n sites, each with two
possible spin states and no lattice symmetries is considered.
There are therefore 2n total possible states to the system
Vectors of length 2n are distributed over 2m processes, with
each local segment containing 2n−m entries. Scientifically
interesting values for n would be in the range of 35 − 50;
for testing typically values 20 − 30 are used. The novelty
in this technique is the partitioning of H such that the each
local process requires only data from a small neighborhood of
processes, which increases in size as O(m) rather than O(2m).
Within this neighborhood, however, all the vector entries must
be exchanged. The communication pattern of an idealized case
is depicted in Fig. 1, indicating a banded structure. The size
of neighborhood is just log2(number of processes) = m. The
algorithm has a computational intensity of roughly 1 floating
point operation per one double word (8 bytes) and is thus
network- and memory-bandwidth limited.

Fig. 2 depicts the code structure of the Lanczos iteration.
In this benchmark version a double buffer (vv1, vv2) is
employed (see Fig. 3) to overlap the current matrix-vector
product with the subsequent data exchange.

The above discussion applies only to a highly-idealized
SPIN problem, using the simplest possible quantum model.
The full C++ exact diagonalization (ED) application currently
under development supports a wide range of 1D, 2D, and 3D
lattices, and several quantum models [1] including fermionic
and spin models, as well as the quantum Hall effect. The size
of neighborhood depends on the locality of the interaction
terms in the Hamiltonian and the coordination number of
the lattice. For local interactions, the size of neighborhood
is usually bounded by the logarithm of the total number of
processes. The full application can also take symmetries into
account to reduce the Hilbert space size: the size of the
neighborhood stays more or less the same, but the overall
problem size is reduced roughly by a factor equal to the
number of symmetry operations.

The initial version of the SPIN benchmark utilized MPI-

System name Rosa Todi Rothorn
Product name Cray XE6 Cray XT6 SGI UV1000
Interconnection Gemini Gemini NUMAlink
Processor AMD 6272 AMD 6272 Intel E7-8837
Proc. nickname Interlagos Interlagos Westmere
Clock (GHz) 2.1 2.1 2.66
Sockets/Node 2 1 32
Cores/Socket 16 16 8
NUMA/Socket 2 2 1
DP GFlops/Socket 134.4 134.4 85.1
Memory/Socket 16 GB 16 GB 64 GB
DDR3 mem. speed 1600 1600 1333
L1 cache (excl.) 16KB 16KB 32KB
L2 cache/# cores 2MB/2 2MB/2 256KB/1
L3 cache/# cores 8MB/8 8MB/8 24MB/8
Hyperthreading? no no no
TPA/Socket (W) 115 115 130

TABLE II
CSCS PARALLEL PLATFORMS

Fig. 1. Communication matrix for an idealized test problem with m = 6
and n = 20. Each process sends 214 entries to its neighbors.

Fig. 2. MPI implementation of Lanczos iteration for SPIN model

Fig. 3. Double buffering scheme in the SPIN prototype

Fig. 4. Cray XE6 weak scaling with n = m + 20 for unthreaded MPI-1
(two-sided) and MPI-2 (one-sided) communication paradigms.

1 functionality and a double-buffering scheme as depicted in
Figs. 2 and 3. We refer to this subsequently as the ”Work”
version. This scheme was replaced by one-way communication
from MPI-2 (Sec. III-A), SHMEM (Sec. III-B) and UPC (Sec.
III-C) as supported in the Cray C compiler. The implemen-
tations and their resulting performance are discussed in the
following subsections.

A. MPI one-way

One straightforward way to reimplement the algorithm with
one-sided communication entails replacing Isend/Irecv pairs,
e.g.,

MPI_Isend(ed->v1,ed->nlstates,MPI_DOUBLE,ed->to_nbs[0],
ed->nm - 1, MPI_COMM_WORLD, &req_send1);

MPI_Irecv(ed->vv1,ed->nlstates,MPI_DOUBLE,ed->from_nbs[0],
ed->nm - 1, MPI_COMM_WORLD, &req_recv1);

with corresponding MPI_Put and fence operations:
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0],

0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence(0, win1);

Separate windows win1, win2 are created to represent the
vv1 and vv2 buffers. The global reductions remain the same.

Performance results (Fig. 4) reveals a slight degradation in
performance with this naive one-sided communication design
with respect to the MPI two-sided version.

B. SHMEM

In a fashion similar to MPI-2 one-sided, SHMEM can be
used to implement the double buffering scheme. However,
since the SHMEM paradigm is actually a simple implementa-
tion of partitioned global address space (PGAS), it is necessary
to create aligned temporary buffers which replace the original
vv1 and vv2:

vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
vtmp2 = (double *) shmalloc(ed->nlstates*sizeof(double));

The put operation needs to be prefaced by a global barrier
to make sure that the buffer can be accessed, for example:

shmem_barrier_all();
if (k < ed->n - 1) {

neighb = k - ed->nm + 1;
shmem_double_put_nb(vtmp2, ed->v1, ed->nlstates,

ed->from_nbs[neighb], NULL);
}

The global reductions are implemented with SHMEM prim-
itives, e.g.,
local_b[0]=b;
shmem_double_sum_to_all(shared_b,local_b,1,0,0,

ed->nprocs,pWrk,pSync);
ed->beta[iter] = sqrt(fabs(shared_b[0]));

As for the MPI-2 implementation, the results (Figs. 5
and 6) indicate a performance degradation. As the global
synchronization comes at a high price, we attempt to optimize
the algorithm by performing only a local wait for the buffer
to be filled. One potential implementation is to allocate space
for a sentinel at the end of the message, e.g.,
vtmp = (double *)

shmalloc(ed->m*(ed->nlstates+1)*sizeof(double));
for (l = 0; l < numbuf; ++l)

vtmp[l*(ed->nlstates+1)+ed->nlstates] = ((double)-1);

and set the sentinel in the source buffer, e.g.,
ed->v1[ed->nlstates] = ((double) ed->rank); /* sentinel */
for (l = 0; l < ed->m; ++l) {
offset = l*(ed->nlstates+1); /* Offset into buffer */
shmem_double_put_nb(&vtmp[offset],ed->v1,

ed->nlstates+1,ed->to_nbs[l],NULL);
}

the idea being that if the sentinel changes state, the buffer can
then be consumed:
tag = vtmp[offset+ed->nlstates];
while (tag != (double) ed->from_nbs[k-ed->nm]) { /* spin */
tag = vtmp[offset+ed->nlstates];

}
for (i = offset, j=0; i < offset+ed->nlstates; ++i, ++j) {

ed->v2[j] += ed->gamma * vtmp[i];
}
vtmp[l*(ed->nlstates+1)+ed->nlstates]=((double)-1); /*reset*/

The performance results of SHMEM fast (Figs. 5 and
6) for small numbers of processes tend to indicate slightly
better performance than for MPI two-sided. However, for
larger numbers of process the execution fails. The algorithm
is built on the assumption that the message blocks arrive
in order, and unfortunately this is not always the case with
the default DMAPP environment. If the environment variable
SHMEM_ROUTING_MODE is set to 0 (default: 2), the routine
mode is DMAPP_ROUTING_IN_ORDER and the execution
problem disappears. However, the performance (not shown)
becomes poorer than the MPI two-sided version.

C. UPC

Unified Parallel C or UPC [7] offers a partitioned global
address space (PGAS) which, conceptually at least, can make
the data transfer between processes more elegant and possibly
more efficient. The basis for the implementation is the sequen-
tial code version, with only minor revisions. For example, the
vectors become shared data structures:

Fig. 5. Cray XE6 strong scaling of n = 22 for unthreaded version with
various communication paradigms: MPI two-sided reference version, two
SHMEM implementations, and four UPC implementations (”elegant” and
”inelegant1/2/3”).

struct ed_s {
shared double *v0, *v1, *v2; /* vectors */
shared double *swap; /* for swapping vectors */

};

Next, the main loops are rewritten as upc_forall loops,
e.g.,

upc_forall (s = 0; s < ed->nlstates; ++s; &(ed->v1[s])) {
/* v2 = A * v1, over all threads */
ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
/* offdiagonal part */
for (k = 0; k < ed->n; ++k) {

s1 = flip_state(s, k);
ed->v2[s] += ed->gamma * ed->v1[s1];

}
}

Communication occurs in the off-diagonal part of the
calculation, when s1 does not reside on the local process.
Furthermore, a global reduction is required for the vector dot
product. This is performed with UPC primitives:
shared double shared_a[THREADS];

:
for (iter = 0; iter < ed->max_iter; ++iter) {

:
a = 0.0; /* Calculate local conjugate term */
upc_forall (i = 0; i < ed->nlstates; ++i; &(ed->v1[i])) {

a += ed->v1[i] * ed->v2[i];
}
shared_a[MYTHREAD] = a;
upc_all_reduceD(dotprod, shared_a, UPC_ADD, THREADS,

1, NULL, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
:

}

Unfortunately, the performance (Fig. 5) of this elegant
formulation is very poor. Studies have shown [8], [9] that
PGAS compilers are not able to aggregate communication
in an optimal way to minimize message latencies. Moreover,
many PGAS implementations implement communication with

Fig. 6. Weak scaling of n = m + 20 for unthreaded version with
various communication paradigms: MPI two-sided reference version, two
SHMEM implementations, and four UPC implementations (”elegant” and
”inelegant1/2/3”).

a message-passing library, e.g., ARMCI, which then is unlikely
to be more efficient than using the message-passing library
directly. The Cray UPC compiler, however, uses DMAPP
directly, namely the fundamental communication layer of the
Gemini network.

In order to properly test the potential of UPC, we pro-
grammed three inelegant UPC implementations, all of which
mimic MPI message-passing version.

1) Inelegant1: This version utilizes normal array syntax to
move source array to a single shared buffer (i.e., double
buffering has been removed):

shared[NBLOCK] double vtmp[THREADS*NBLOCK];
:
for (i = 0; i < NBLOCK; ++i)

vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
:
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i)

ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];

2) Inelegant2: Almost identical to the previous coding, in
this version an explicit upc_memput or upc_memget
operations in place of the array syntax:

shared[NBLOCK] double vtmp[THREADS*NBLOCK];
:

upc_memput(&vtmp[MYTHREAD*NBLOCK],
ed->v1, NBLOCK*sizeof(double));

:
upc_barrier(1);
upc_memget(ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK],

NBLOCK*sizeof(double));

3) Inelegant3: In this implementation the double buffering
is reimplemented. This is more complicated than in
the original version, since shared pointers cannot be
swapped in the same way as in the original double-
buffered version.

shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];

Fig. 7. A simplified framework for single-buffering

:
if (mode == 0) {

upc_memput(&vtmp2[ed->to_nbs[neighb]*NBLOCK],
ed->v1, NBLOCK*sizeof(double));

} else {
upc_memput(&vtmp1[ed->to_nbs[neighb]*NBLOCK],

ed->v1, NBLOCK*sizeof(double));
}

In all cases upc_all_reduceD is used for the reductions.
The results can be seen in Figs. 5 and 6. Interestingly the
double-buffering concept does not necessarily provide the best
performance. The performance of Inelegant2 is competitive
with MPI two-sided, so this approach was pursued and refined.
We subsequently investigate whether the best possible UPC
performance can exceed the optimal MPI two-sided perfor-
mance. To this end, a simplified single-buffer version was
derived for subsequent development (see Fig. 7).

This version led to a generalized implementation utilizing
multiple buffers, arranged in a round-robin fashion, as depicted
in Fig. 8.

Fig. 8. The single- and multi-buffered implementations of SPIN

We have tested the following benchmark versions of SPIN:
• Work: The original MPI two-sided version with double

buffering
• Ref MPI: The naive single buffered version as depicted

in Fig. 7
• Opt MPI: Multiple round-robin buffers utilizing

MPI_Isend/Irecv operations
• Opt UPC Fence: Blocking upc_memput with single

fence
• Opt UPC Fence each: Blocking upc_memput with

fence for every message
• Opt UPC Fence nbi: Cray-specific implicit non-

blocking memput with a single fence
• Opt UPC Fence each nbi: Cray-specific implicit non-

blocking memput with a fence for every message
Depending on the size of m (which is equal to the number of

messages generated on each PE for a given iteration), there can
be considerable benefit to multi-buffering. On the Cray XE6
and the SGI UV1000, multi-buffering becomes worthwhile
after roughly m = 7, that is, 128 MPI processes.

Performance results for the Cray XE6 and SGI UV1000
are given in Fig. 9 and 10 for n = 22 and n = 28,
respectively. It is clear that the best overall performer is
Opt UPC Fence nbi, however, it is very sensitive to the
values of m and n. Particularly on the UV1000, the reference
MPI version (single buffering) performs surprisingly well.

Fig. 9. Comparative run times (s.) for 100 iterations for n = 22 (top) and
n = 28 (bottom). The Cray-specific NBI memput performs well in many
cases.

The seemingly erratic performance of the variants can be
better understood by timing the individual code sections in
Fig. 7. These timings are vastly different in the variants. Figs.
11 and 12 illustrate the component timings on Cray XE6,
and Fig. 13 for SGI UV1000. The timings for MPI NB and
SYNC can be taken as the overall message overhead. This is,
effectively, hidden in the multi-buffered version Opt MPI due
to the overlapping of communication and computation.

D. Process placement within NUMA node

As mentioned in the introduction, each process in SPIN
communicates with m neighbors, a key feature in this al-
gorithm. The communication pattern (Fig. 1) is sparse and
irregular. A 24× 24 section of the pattern is given in Fig. 14.

If these processes are mapped to the cores of a NUMA
node, it is clear that some configurations will better distribute
the communication traffic than others. In Fig. 15 the mapping
is given which would be used by default if the pattern were
mapped to a 24-core Magny-Cours node. This mapping arises
from a simple sequential assignment of MPI processes to the

Fig. 10. Comparative run times (s.) for 100 iterations on the SGI UV1000
for n = 22 (top) and n = 28 (bottom). The simple single-buffered MPI
two-sided reference version is highly competitive.

Fig. 11. Timings (s.) of individual code components for m = 7 (128 MPI
processes) on the Cray XE6 for n = 22 (top) and n = 28 (bottom).

natural numbering of the cores. The ratio of on-die to off-die
messages is 10:10.

If the nodes are distributed to the dies in a round-robin
fashion, however, a more localized communication pattern
(Fig. 16) can be achieved.

Fig. 17 compares the performance of the reference version
with round-robin mapping to the default mapping for the
original version (Work) and the reference.

IV. HYBRID MPI-OPENMP PARALLELIZATION OF SPIN

All of the SPIN code variants discussed up to this point have
been single-threaded distributed memory versions. This code
is however, a potential candidate for hybrid parallelization due
to the presence of inner loops operating over the vectors v0,

Fig. 12. Timings (s.) of individual code components for m = 12 (4096 MPI
processes) on the Cray XE6 for n = 22 (top) and n = 28 (bottom).

Fig. 13. Timings (s.) of individual code components for m = 6, 7 (64 and
128 MPI processes) on the SGI UV1000 for n = 22 (top) and n = 28
(bottom).

v1, v2. In the most naive implementation, these loops can
be multithreaded, first by applying a first touch, e.g.,
#pragma omp parallel for private(i)
for (i = 0; i < ed->nlstates; ++i)
ed->v1[i] = 1.0;

and then multithreading the corresponding vector operation,
e.g., the process-local calculation of the matrix-vector multi-
plication (diagonal and off-diagonal matrix entries):
#pragma omp parallel for private(i,s1,k)
for (i = 0; i < ed->nlstates; ++i)
{
s = loc_index2state(i, ed->nm, ed->rank);
/* diagonal */
ed->v2[i] = diag(s, ed->n, ed->j) * ed->v1[i];
/* offdiagonal part */
for (k = 0; k < ed->nm; ++k)
{
s1 = flip_state(s, k);
ed->v2[i] += ed->gamma *

Fig. 14. A 24 × 24 cross-section of the communication pattern m = 8
communication pattern

Fig. 15. Default task mapping, based on sequential assignment to the natural
numbering of cores

ed->v1[state2loc_index(s1, ed->nlstates)];
}

}

This naive hybrid parallelization leads in all cases to slower
code than the MPI-only in a core-for-core comparison. The
central problem is the paucity of work for the needed commu-
nication, as shown in Figs. 11 and 12. Increasing the number
of MPI processes reduces the message size inversely, while
only increasing the number of neighbors (= m) instead of
2m. The MPI implementation itself is therefore quite scalable
(Figs. 5 and 6).

A more effective approach seems to be to use the task
paradigm added in the OMP3 standard [6]. We utilize a work-
sharing concept which allows overlapping communication
with computation, similar to the technique used in [10]. Given

Fig. 16. Task mapping based on a round-robin assignment with a period of
4 (to alternate between the dies)

Fig. 17. The round-robin distribution of processes yields a performance
improvement in many cases.

t available cores, a master task distributes t − 1 threads to
awaiting cores, each one assigned to a different segment of
the target vector. The master then proceeds to the commu-
nication section, in which the vectors are exchanged between
neighbors. After the communication has completed, the master
waits for all the slave tasks to complete. This approach is,
conceptually at least, more efficient than the simple loop
multi-threading described previously, in which computation
and communication are sequentialized. The code is, however,
conceived for UMA architectures, and its performance on
NUMA nodes may not be ideal.

#pragma omp parallel
{
#pragma omp master
{
int j;
for (j = 0; j < omp_get_num_threads() - 1; ++j)
{

#pragma omp task firstprivate(j) private (i, k, s, s1)
{

int n = ed->nlstates;
int num_thrds = omp_get_num_threads() - 1;
int thrd_id = j;
int start = n*thrd_id/num_thrds;
int end = n*(thrd_id + 1)/num_thrds;
for (i = start; i < end; ++i)
{
s = loc_index2state(i, ed->nm, ed->rank);
/* diagonal part */
ed->v2[i] = diag(s, ed->n, ed->j) * ed->v1[i];
/* offdiagonal part */
for (k = 0; k < ed->nm; ++k)
{

s1 = flip_state(s, k);
ed->v2[i] += ed->gamma *
ed->v1[state2loc_index(s1, ed->nlstates)];

}
}

}
}
//
// Communications part, e.g., MPI_Isend/Irecv
//
:

}
}

Preliminary scalability analysis (Tab. III) on Rosa indicated
the viability of this approach for the SPIN benchmark for the
n = 28 test case.

MPI processes MPI-only (s.) 2 Threads (s.) 4 Threads (s.)
4096 17.4
2048 28.1 16.6
1024 48.9 25.1 14.4

TABLE III
SPIN HYBRID MPI/OPENMP TIMININGS (S.) FOR 100 ITERATIONS WITH

n = 28.

A. SPIN single-node performance comparison

For the single core/socket/node intercomparison (Tab. IV)
a non-trivial problem size, n = 24 with 100 iterations,
was chosen, which is still small enough to provide tractable
execution times.

System name Rivera Castor Sandy
Processor AMD 6274 Intel E5-2680 Intel X5650
Nickname Interlagos Westmere Sandybridge
Cores/Socket 16 6 8
Sockets/Node 2 2 2
Hyperthreading no unenabled yes (2)
Compiler Open64 Intel Intel
Core time (s.) 754 (1T) 280 (1T) 227 (1T)
Socket time (s.) 74 (15T) 51 (6T) 29 (16T)
Node time (s.) 38 (31T) 26 (12T) 15 (32T)

TABLE IV
TESTBED TIMINGS (S.) OF 100 ITERATIONS OF SPIN WITH n = 24.

These results are illustrated pictorially in Fig. 18.

Fig. 18. Comparison of single core, single socket, and single node
performance between platforms.

V. HYBRID MPI-OPENMP PARALLELIZATION OF ED

The full ED implementation is conceptually an extension of
the SPIN benchmark: it supports multiple lattices and multiple
models, where SPIN used one each. However, the code is quite
different: ED is programmed in C++ and utilizes templating,
data encapsulation and object orientation.

The matrix-vector multiplication is generic, and includes the
model type as an object. This allows the selection of virtually
any model. Currently a few fermionic and spin models are
implemented. Communication is essentially hidden in a comm
object:

// send data
std::vector<send_s> const& se = t.se;
for (unsigned i = 0; i < se.size(); ++i) {
value_type const* pvec = vspace.slice(vec, se[i].l_job);
index_type size = bspace.size(se[i].l_job);
comm.isend(se[i].r_worker, se[i].l_job, pvec, size).wait();

}

// recv data
if (t.r_worker != id && t.do_recv) {
value_type* pvec = &buf[0];
index_type size = bspace.size(t.r_worker, t.r_job);
comm.irecv(t.r_worker, t.r_job, pvec, size).wait();

}

which allows future implementation of communication
paradigms other than the current MPI two-sided.

The code structure of the matrix-vector multiplication roo-
tine can be depicted as follows

// local part
foreach lterm in local_terms
foreach state in states
me, nstate = lterm.apply(state)
v2[state2index(state)] += me * v1[state2index(nstate)]

// nonlocal part
foreach nlterm in nonlocal_terms
buf = fetch_vector_part_from_node(node(nlterm))
foreach state in states
me, nstate = nlterm.apply(state)

v2[state2index(state)] += me * buf[state2index(nstate)]

In the local part, we loop over local terms in the Hamiltonian,
i.e., terms that result in states that are local. In nonlocal

part, we loop over non local terms in the Hamiltonian, i.e.
terms that result in states that are non-local. In the latter case,
we need to fetch vector parts from remote nodes. The loop
over states runs over all the local states and the function
state2index calculates the corresponding (local) index of
the vector element. The remote vector part is fetched from the
node given by the function node. The full algorithm will be
described elsewhere [11].

Using the SPIN benchmark as a guideline, multi-threading
was implemented in the first cut by parallelizing the internal
loops with OpenMP directives, e.g. for the local off-diagonal
contributions:
// local offdiagonal part
for (unsigned j = 0; j < asubspace.size(); ++j) {
as_elem const& ae = aspace[asubspace[j]];
state_type a_state = ae.state;
value_type const* pvec = vspace.slice(vec, j);
index_type lastk = bspace.last(j);
typename bspace_type::biterator it = bspace.begin(j);

#ifdef _OPENMP
pragma omp parallel for
#endif
for (index_type k = 0; k < lastk; ++k) {
if (it[k].size == 0) continue;
state_type state = it[k].state | a_state;
value_type nv =
matrix.def.b_apply(state, pvec, *this, ae, it[k].size);

vspace.slice(rvec, j)[k] += nv;
}

}

While this technique was not beneficial in the SPIN bench-
mark, there is a crucial difference in ED, in that most of
the quantum models available there are more computationally
intense than in the former. In fact, it became quickly apparent
that loop multi-threading for, e.g., a complicated model with
multi-spin interactions, which we refer to as a Fendley model
[12] in the next subsections, yielded much more performant
results than the MPI-only version on several platforms.

A. Compiler Optimization Issues
With the change from C to C++ in ED, came an unexpected

performance issue. The Cray CCE 8.0.2 compiler, which we
would have expected to produce the best code for the Cray
XE6/XK6, turned out to generate significantly less performant
code than the GNU 4.6.2 compiler. In this section, we try
to investigate the Cray C++ compiler issues. Tab. V shows
comparative runs of ED on a 4 × 3 lattice using the GCC
and Cray compilers and different pinning options. One MPI
process was used. We restricted ourselves to one NUMA
domain to avoid any hypertransport interference when running
on one socket.

Threads Pinning (-cc) Cray GNU
4 0,1,2,3 1011 667
4 0,2,4,6 1635 592
8 cpu 960 433

TABLE V
4X3 ED TIMINGS (S.) ON A SINGLE NUMA REGION

The Cray compiler’s behavior can be explained by the
fact that packing threads on the two first module will enable

the system to increase their freqency around 3.0+ Ghz. This
makes the 4 threads performance on par with the 8 threads
configuration, as fewer threads compete with each other for
the available memory bandwidth. Using the CPU pinning
0,2,4,6 makes the use of the Interlagos turbo boost impossible
(the turbo boost granularity is module-based). However, this
behavior is not seen using GNU compiler. In fact, the general
behavior is the opposite of the Cray compiler’s: using one
thread per module is faster than packing for the 4-thread case,
and the 8-thread case is much faster. Furthermore, overall
performance is much greater than that of the code produced
by the Cray compiler. In order to explain this difference be-
tween the two compilers, we checked several PAPI events for
both executables: PAPI TOT CYC, which represents the total
number of cycles used to compute the kernel, PAPI FPU IDL,
which is the total number of cycles when the FPU is idle,
and PAPI L2 TCM, which represents the total number of L2
cache misses. Results are displayed in the tables VI, VII and
VIII.

PAPI Event Cray GNU
PAPI TOT CYC 2’900’762’613’118 1’512’844’977’806
PAPI FPU IDL 1’130’511’978’612 242’206’647’131
PAPI L2 TCM 1’422’885’720 74’482’188

TABLE VI
PAPI EVENTS RESULTS, 4 THREADS, -CC=0,1,2,3

PAPI Event Cray GNU
PAPI TOT CYC 3’955’167’462’807 1’327’738’681’779
PAPI FPU IDL 2’259’595’470’876 219’174’779’204
PAPI L2 TCM 2’714’833’450 73’238’731

TABLE VII
PAPI EVENTS RESULTS, 4 THREADS, -CC=0,2,4,6

PAPI Event Cray GNU
PAPI TOT CYC 2’269’187’342’972 775’493’075’990
PAPI FPU IDL 1’311’686’430’846 141’553’650’048
PAPI L2 TCM 821’641’494 80’416’142

TABLE VIII
PAPI EVENTS RESULTS, 8 THREADS, -CC=CPU

Obviously, the Cray compiler version is not properly opti-
mizing: the FPU is idle 30% to 60% of the time, whereas the
FPU is idle around 16% of the time using the GNU compiler.
Furthermore, the L2 cache misses are much higher with the
Cray compiler. An analysis of the generated assembly code
revealed that GNU was making use of the full SSE width,
unrolling loops and pipelining, while Cray was not, even
when used with the most aggressive compilation flags. The
difference in the resulting performance was so significant that
it was reported to Cray as a compiler bug.1 In contrast, there

1Cray was able to reproduce these results, and is taking steps to further
optimize their compiler.

was little difference in the performance of the code generated
by GNU 4.6.2 and Intel 12.0.0 on Rothorn, although the Intel
codes almost always yielded slightly better performance.

B. Hybrid MPI/OMP comparison

For the inter-platform comparison, a scientifically represen-
tative problem was chosen: the Fendley model [12] on a 4x4
square lattice with symmetries. This model has complicated
multi-spin interactions, and the spins live on the links of the
square lattice. There are 32 spins on a 4×4 square lattice. We
do use symmetries and the problem size is 272367616. The
peculiarity of the model is that the Hamiltonian matrix is less
sparse due to multi-spin interactions — there are roughly 216

matrix elements per row. This makes the computation of the
matrix elements quite intense. While the problem size is not
a breakthrough, a large number of matrix elements makes this
problem rather hard. This model should also indicate the al-
gorithm behavior for larger scientifically significant problems,
while still having an execution time, which is small enough
for significant benchmarking efforts.

Fig. 19. Time per iteration (s.) of the Fendley 4x4 test case with symmetries
on multi-socket configurations of Cray XK6 Todi. As expected, the best
performance is generally achieved by mapping one MPI process to a NUMA
domain, i.e., 2 per socket.

As discussed in the methodology (Section II), we believe
a socket-for-socket comparison of platforms to be the fairest.
The effort in the single-node benchmarking yielded the optimal
thread configurations for socket performance. The check this
work, distributed memory runs were performed on 2 – 64
sockets on the Todi and 2 – 30 on Rothorn, with varying
numbers of MPI processes per socket. While this problem size
can run on as little as one socket, the execution times for such
runs were restrictive.

Fig. 19 illustrates the overall performance for 2 and 4
MPI processes per AMD Interlagos socket. As suspected, the
optimal configuration is almost always to assign one process
per NUMA domain, i.e., 2 processes per socket. On the SGI
UV1000 Rothorn, the logical options were to assign one
process per socket or one per blade (2 sockets). Fig. 20 clearly
shows that the better choice is the to assign one process
per blade. This is mildly surprising, since this introduces

Fig. 20. Time per iteration (s.) of the Fendley 4x4 test case with symmetries
on multi-socket configurations of SGI UV1000 Rothorn. Interestingly the best
performance is achieved by mapping one MPI process to two sockets (or one
blade) of the SGI. Assigning a process to more than one blade (introducing
two levels of message latencies) yielded considerably poorer performance (not
shown).

non-uniform memory access. Assigning a process to multiple
blades, however, consistently yielded poorer performance.

Fig. 21. Time per iteration (s.) of the Fendley 4x4 test case with symmetries
compared on Cray XK6 Todi and SGI UV1000 Rothorn. The timing for
”32” sockets on Rothorn is actually only 30 sockets, to avoid contention
with operating system processes.

The best configurations for the respective sockets are then
compared in Fig. 21 for 2 – 30 sockets. The Cray XK6
yields the best absolute performance in this socket-to-socket
comparison. However, the scaling is arguably better on the
SGI UV1000, which is surprising since the its NUMAlink in-
terconnect is from a previous generation. A further discussion
of these results from several perspectives is offered in Section
VI.

C. ED Scalability

Also of interest is the scalability of the algorithm to very
large machine configurations. Naive parallelizations of exact
diagonalization have a performance bottleneck because it is
difficult to define a limited neighborhood of interaction in the

calculation of outcomes of applying the Hamiltonian operator.
The ED code elegantly removes this limitation, suggesting
that it will scale well. In order to get performances for a
scientifically meaningful test case, the Fendley model was
chosen [12] without symmetries. The problem size is 232.
The memory requirements are such that this problem requires
approximately 256 cores or more to run. The timing results
are shown in Tab. IX.

MPI Processes Total Cores Time / iteration (s.)
100 3200 218.0
512 16384 65.4

1024 32768 35.0
1476 47232 25.4

TABLE IX
TIME PER ITERATION (S.) FOR THE FENDLEY 2D MODEL WITHOUT

SYMMETRIES ON A 4× 4 LATTICE.

These results are visualized in Fig. 22, indicating the code
indeed scales to the full extent of the CSCS platform.

Fig. 22. The time per iteration for the multi-spin model [12] on a 4x4 square
lattice as a function of the number of AMD Interlagos cores on the Cray XE6
at CSCS.

VI. CONCLUSIONS

In this paper we have evaluated a variety of different parallel
programming paradigms applied to the exact diagonalization
technique, which ultimately reduces to the Lanczos tridi-
agonalization using matrix-vector operators employing both
integer and floating-point operations. These paradigms were:
MPI two-sided, MPI one-sided, SHMEM and UPC for inter-
process communication, and OpenMP for multi-threading.
Variants of these were tested comparatively on a number of
different architectures, including the Cray XE6, SGI UV1000
and testbeds with Intel Westmere and Sandybridge.

For message-passing, it seems clear that MPI two-sided
communication is probably the best overall approach to
achieve parallel performance with the XE6’s Gemini inter-
connection network. MPI one-sided communication could not
achieve comparable performance, and SHMEM may achieve

similar performance, if global barrier synchronization can be
avoided. UPC offers some hope for higher performance on the
XE6, however the performance increase is relatively small, and
depends on the test case. It is unclear whether the improvement
warrants a paradigm shift to UPC.

Several approaches for multi-threading the code were in-
vestigated. Simple loop multitasking with OpenMP did not
offer performance improvement for the simplest test case (the
SPIN model), but a paradigm utilizing MPI + OpenMP 3.1
tasks yielded better performance than the MPI-only version.
In the more general case of ED with a more computationally
intensive quantum model [12], MPI plus simple OpenMP loop
multitasking usually scaled much better that MPI-only.

The performance of SPIN and ED has been compared
between several different architectures, including Cray XE6,
SGI UV1000, along with testbeds with Intel Sandybridge
and Interlagos nodes. While such comparisons are hard to
make objectively, the best single socket performance is clearly
achieved by the Intel Sandybridge. Not only that, Intel Sandy-
bridge provided the best out-of-the-box performance, with
only a few viable configurations to consider for optimal
performance. The worst processor in this sense was the AMD
Interlagos, which required considerable effort to find the
correct process/thread-to-core mappings to achieve the best
performance. The SPIN/ED codes would be good candidates
for auto-tuning to help determine the optimal configurations.

When distributed memory parallelism is considered, the
story becomes less definitive. The hybrid MPI-OpenMP ED
code yields comparable performance and scaling on the Cray
XE6/XK6 and the SGI UV1000. We did not consider the
price of hardware to the performance or the energy-to-solution.
Those metrics might yield different conclusions.

A significant handicap in this work was our lack of access to
a Intel Sandybridge cluster with a state-of-the-art commodity
interconnection network, such as FDR. We hope to obtain
access to such as system in the near future, and plan to extend
the comparison. We also hope to have results from the IBM
BG/Q in a subsequent publication.

Since the efficacy for OMP 3.1 task parallelism in the
SPIN benchmark to overlap computation and communication
was clearly illustrated, we look forward to introducing this
paradigm into the full ED code as well.

While introducing OpenMP directives into ED was illus-
trated to be easy, the introduction of OpenACC directives
for GPUs was not. Our attempts at a mirror image GPU
implementation met with immediate difficulties. These were
related to the data encapsulation employed in the ED C++
code, which refers to separation of data allocation/transfers
and calculation, and to the lack of possibility to transfer data
that are accessed via a pointer (even via the implicit this
pointer) to GPUs. OpenACC, on the other hand, requires
that the data to be transferred to GPUs are clearly visible
to the calculation part of the code (to the code that will be
executed on GPUs). We have communicated these issues to the
OpenACC community, and hope to work together with vendors
to achieve a GPU-capable implementation. One possibility

would be to work with the SPIN benchmark, which is written
in C and whose data structures are simple arrays. However,
our preference is to work with the full ED code exclusively
in the future.

ACKNOWLEDGMENT

The authors would like to thank the High Performance and
High Productivity Computing (www.hp2c.ch) Initiative for
funding this project.

REFERENCES

[1] A. Weisse and H. Fehske in Computational Many-Particle Physics
Lecture Notes in Physics, Vol. 739, Springer Verlag, 2008.

[2] R. Moessner and S. L. Sondhi, Ising models of quantum frustration Phys.
Rev. B 63, 224401 (2001).

[3] The OpenACC Application Programming Interface, Version 1.0.0
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf,
2011.

[4] J. Cullum and R. A. Willoughby, Computing eigenvalues of very large
symmetric matrices–an implementation of a Lanczos algorithm with no
reorthogonalization J. Computat. Phys. 44, 329 (1981).

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, third edition, 1996.

[6] OpenMP Application Program Interface Version 3.1
http://www.openmp.org/mp-documents/OpenMP3.1.pdf, 2011.

[7] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and
K. Warren. Introduction to UPC and language specification. Technical
Report CCS-TR-99-157, Center for Computing Sciences, Bowie, MD,
May 1999.

[8] C. Maynard. Comparing UPC and One-
sided MPI: A distributed hash table for GAP
http://pgas11.rice.edu/papers/Maynard-Distributed-Hash-Table-PGAS11.pdf,
2011.

[9] W. Chen, C. Iancu and K. Yelick. Communication Optimizations for
Fine-grained UPC Applications Lawrence Berkeley National Lab Tech
Report LBNL-58382, 2005.

[10] A. Koniges, R. Preissl, J. Kim, D. Eder, A. Fisher, N. Masters,
V. Mlaker, S. Ethier, W. Wang, M. Head-Gordon, and N. Wichmann
Application Acceleration on Current and Future Cray Platforms CUG
2010 Proceedings, Edinburgh http://cug.org

[11] S. V. Isakov, M. Troyer, in preparation.
[12] P. Fendley, S. V. Isakov, M. Troyer, in preparation.

