
Towards a hybrid multi-core implementation of
MAQUIS Exact Diagonalization (ED)

Sergei Isakov, Will Sawyer, Adrian Tineo, Gilles Fourestey, Neil
Stringfellow, Matthias Troyer

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 2

Overarching goals of our group’s work

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps to:

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps to:
 Evaluate emerging architectures

 AMD Interlagos
 Intel Sandybridge
 IBM BG/Q, GPUs, if possible

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps to:
 Evaluate emerging architectures

 AMD Interlagos
 Intel Sandybridge
 IBM BG/Q, GPUs, if possible

 Evaluate programming paradigms
 MPI + OpenMP hybrid programming
 MPI-2 one-sided communication
 SHMEM
 UPC (as implemented in Cray compiler)
 OpenACC, if possible

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps to:
 Evaluate emerging architectures

 AMD Interlagos
 Intel Sandybridge
 IBM BG/Q, GPUs, if possible

 Evaluate programming paradigms
 MPI + OpenMP hybrid programming
 MPI-2 one-sided communication
 SHMEM
 UPC (as implemented in Cray compiler)
 OpenACC, if possible

 Compare performance across platforms
 out-of-the-box performance
 evaluate optimization effort
 socket-for-socket, node-for-node comparisons

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

CSCS Testbed Platforms

3

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Parallel Test Platforms

4

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states
 Lanczos eigensolver

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but
 Limited number of process

neighbors (new to this work)

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011 5

Fundamental ED problem

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but
 Limited number of process

neighbors (new to this work)
 Symmetries considered in some

models: smaller complexity at
cost of more communication

2

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Benchmark code: simplest “SPIN” model

6

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Benchmark code: simplest “SPIN” model

6

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Benchmark code: simplest “SPIN” model

6

Loops:
• L3: Initialize array
• L4: Local mat-vec
• L6/7: Off process mat-vec
• L8: Alpha calculation
• L9: Beta calculation

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Benchmark code: simplest “SPIN” model

6

Loops:
• L3: Initialize array
• L4: Local mat-vec
• L6/7: Off process mat-vec
• L8: Alpha calculation
• L9: Beta calculation

Thursday, May 3, 2012

SPIN single core/socket/node comparisons
 Loop-based OMP directives: performance worse than MPI-only
 Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

Thursday, May 3, 2012

SPIN single core/socket/node comparisons
 Loop-based OMP directives: performance worse than MPI-only
 Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Multi-buffering concept

8

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Multi-buffering concept

8

Double buffering

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Multi-buffering concept

8

Double buffering

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Multi-buffering concept

8

Double buffering Multi-buffering

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Multi-buffering concept

8

Double buffering Multi-buffering

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

UPC “Elegant” Implementation

9

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

UPC “Elegant” Implementation

9

struct ed_s { ...
 shared double *v0, *v1, *v2; /* vectors */
 shared double *swap; /* for swapping vectors */
};
 :
for (iter = 0; iter < ed->max_iter; ++iter) {
 :
 upc_barrier(0);
 /* matrix vector multiplication */
 upc_forall (s = 0; s < ed->nlstates; ++s; &(ed->v1[s])) {
 /* diagonal part */
 ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
 /* offdiagonal part */
 for (k = 0; k < ed->n; ++k) {
 s1 = flip_state(s, k);
 ed->v2[s] += ed->gamma * ed->v1[s1];
 }
 }
 :
 /* Calculate alpha */
 /* Calculate beta */
 }
}

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Inelegant UPC versions

10

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Inelegant UPC versions

10

Inelegant 1
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
 :
for (i = 0; i < NBLOCK; ++i) vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i) ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];
 :
upc_barrier(2);

Inelegant 2
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
 :
upc_memput(&vtmp[MYTHREAD*NBLOCK], ed->v1, NBLOCK*sizeof(double));
upc_barrier(1);
upc_memget(ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK], NBLOCK*sizeof(double));
 :
upc_barrier(2);

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

UPC Inelegant3: use double buffers and upc_put

11

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

UPC Inelegant3: use double buffers and upc_put

11

shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];
:
upc_memput(&vtmp1[ed->to_nbs[0]*NBLOCK], ed->v1, NBLOCK*sizeof(double));
upc_barrier(1);
:
 if (mode == 0) {
 upc_memput(&vtmp2[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double));
 } else {
 upc_memput(&vtmp1[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double));
 }
 :
 if (mode == 0) {
 for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp1[i+MYTHREAD*NBLOCK]; }
 mode = 1;
 } else {
 for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp2[i+MYTHREAD*NBLOCK]; }
 mode = 0;
 }
 upc_barrier(2);

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Other message passing paradigms

12

 vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
 :
 shmem_barrier_all();
 shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

 MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
 MPI_Win_fence(0, win1);

 ed->v1[ed->nlstates] = ((double) ed->rank); /* sentinel */
 for (l = 0; l < ed->m; ++l) {
 offset = l*(ed->nlstates+1); /* Offset into buffer */
 shmem_double_put_nb(&vtmp[offset],ed->v1, ed->nlstates+1,ed->to_nbs[l],NULL);
 }
 :
 tag = vtmp[offset+ed->nlstates];
 while (tag != (double) ed->from_nbs[k-ed->nm]) { /* spin */
 tag = vtmp[offset+ed->nlstates];
 }
 for (i = offset, j=0; i < offset+ed->nlstates; ++i, ++j) {
 ed->v2[j] += ed->gamma * vtmp[i];
 }
 vtmp[l*(ed->nlstates+1)+ed->nlstates]=((double)-1); /*reset*/

MPI-2: One-sided PUT

SHMEM: non-blocking PUT

SHMEM “fast”: non-blocking PUT, local wait only

Thursday, May 3, 2012

HP2C/Cray//CSCS Workshop

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

Thursday, May 3, 2012

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for

each message

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for

each message
 Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking

memput with a single fence

Thursday, May 3, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for

each message
 Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking

memput with a single fence
 Opt_UPC_Fence_each_nbi: Cray-specific implicit non-blocking

memput with fence for each message

Thursday, May 3, 2012

Optimized SPIN normed performance: Cray XE6

Thursday, May 3, 2012

Optimized SPIN normed performance: Cray XE6

Thursday, May 3, 2012

Optimized SPIN normed performance: SGI UV1000

Thursday, May 3, 2012

Optimized SPIN normed performance: SGI UV1000

• Shared-memory, extensible to 256 sockets
• Fat node NUMAlink interconnect

Thursday, May 3, 2012

Optimized SPIN normed performance: SGI UV1000

• Shared-memory, extensible to 256 sockets
• Fat node NUMAlink interconnect

Thursday, May 3, 2012

Optimized SPIN normed performance: SGI UV1000

• Shared-memory, extensible to 256 sockets
• Fat node NUMAlink interconnect

Thursday, May 3, 2012

Optimized SPIN normed performance: SGI UV1000

• Shared-memory, extensible to 256 sockets
• Fat node NUMAlink interconnect

Thursday, May 3, 2012

Optimizing task placement (XE6, Magny Cours)

Thursday, May 3, 2012

Optimizing task placement (XE6, Magny Cours)

Thursday, May 3, 2012

Optimizing task placement (XE6, Magny Cours)

Thursday, May 3, 2012

Optimizing task placement (XE6, Magny Cours)

Thursday, May 3, 2012

Optimizing task placement (XE6, Magny Cours)

Thursday, May 3, 2012

SPIN experiences

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network
 MPI two-sided performing better than (nearly) all other

communication paradigms, including SHMEM, MPI-2

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network
 MPI two-sided performing better than (nearly) all other

communication paradigms, including SHMEM, MPI-2
 Work by A. Tineo showed that UPC+optimizations can attain better

performance in some cases

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network
 MPI two-sided performing better than (nearly) all other

communication paradigms, including SHMEM, MPI-2
 Work by A. Tineo showed that UPC+optimizations can attain better

performance in some cases
 Simplistic OpenMP/MPI hybrid performed not better than MPI

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network
 MPI two-sided performing better than (nearly) all other

communication paradigms, including SHMEM, MPI-2
 Work by A. Tineo showed that UPC+optimizations can attain better

performance in some cases
 Simplistic OpenMP/MPI hybrid performed not better than MPI
 Task-based OpenMP/MPI implementation by Fourestey/

Stringfellow did show slightly better performance (n=28 test case)

Thursday, May 3, 2012

SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network
 MPI two-sided performing better than (nearly) all other

communication paradigms, including SHMEM, MPI-2
 Work by A. Tineo showed that UPC+optimizations can attain better

performance in some cases
 Simplistic OpenMP/MPI hybrid performed not better than MPI
 Task-based OpenMP/MPI implementation by Fourestey/

Stringfellow did show slightly better performance (n=28 test case)

MPI Processes MPI-only (s.) 2 Threads (s.) 4 Threads (s.)
4096 17.4
2048 28.1 16.6
1024 48.9 25.1 14.4

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices
o Multiple quantum models

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices
o Multiple quantum models
o Heisenberg

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices
o Multiple quantum models
o Heisenberg
o Fendley (computationally intensive, unlike SPIN benchmark)

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices
o Multiple quantum models
o Heisenberg
o Fendley (computationally intensive, unlike SPIN benchmark)
o FQHE (computationally intensive)

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices
o Multiple quantum models
o Heisenberg
o Fendley (computationally intensive, unlike SPIN benchmark)
o FQHE (computationally intensive)

o OMP/MPI Implementation
(simple loop-based directives)

Thursday, May 3, 2012

Exact Diagonalization: HP2C Implementation

Full ED application implemented within the High Performance
and High Productivity Computing Initiative (www.hp2c.ch)

o Symmetries (reduces complexity at cost of more communication)
o Supports multiple one- and two-dimensional lattices
o Multiple quantum models
o Heisenberg
o Fendley (computationally intensive, unlike SPIN benchmark)
o FQHE (computationally intensive)

o OMP/MPI Implementation
(simple loop-based directives)

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Vast performance difference!

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Vast performance difference!
 GNU uses full SSE width;

unrolls loops, pipelines

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Vast performance difference!
 GNU uses full SSE width;

unrolls loops, pipelines
 CCE does not

Thursday, May 3, 2012

Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2

performance comparison
 Various thread-core pinnings

Vast performance difference!
 GNU uses full SSE width;

unrolls loops, pipelines
 CCE does not
 Cray bug reports filed, Cray

has reproduced problem,
working on optimizer

Thursday, May 3, 2012

Optimal # threads / socket

Thursday, May 3, 2012

Optimal # threads / socket

Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning &

socket configurations tried

Thursday, May 3, 2012

Optimal # threads / socket

Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning &

socket configurations tried

Thursday, May 3, 2012

Optimal # threads / socket

Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning &

socket configurations tried

Thursday, May 3, 2012

Optimal # threads / socket

Conclusions:Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning &

socket configurations tried

Thursday, May 3, 2012

Optimal # threads / socket

Conclusions:
 Cray XK6: 1 MPI process /

socket, 16 threads

Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning &

socket configurations tried

Thursday, May 3, 2012

Optimal # threads / socket

Conclusions:
 Cray XK6: 1 MPI process /

socket, 16 threads
 SGI UV1000: 2 sockets /

MPI Process, 16 threads

Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning &

socket configurations tried

Thursday, May 3, 2012

Performance Comparison Cray XE6 / SGI UV1000

 Cray XE6: AMD Interlagos, Gemini, GNU 4.6.2
 SGI UV1000: Intel Westmere, NUMAlink, Intel 11.1

Thursday, May 3, 2012

ED performance, scientifically relevant test case
(4x4 lattice, Fendley model, no symmetries)

Thursday, May 3, 2012

ED performance, scientifically relevant test case
(4x4 lattice, Fendley model, no symmetries)

Thursday, May 3, 2012

ED performance, scientifically relevant test case
(4x4 lattice, Fendley model, no symmetries)

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

 SPIN benchmark on single-node:
 Intel Sandybridge: best core/socket/node performance, but

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best

single-node performance
 Intel Westmere: competitive with Interlagos

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

 SPIN benchmark on single-node:
 Intel Sandybridge: best core/socket/node performance, but

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best

single-node performance
 Intel Westmere: competitive with Interlagos

 Cray Gemini: MPI two-sided is competitive with all other
message passing paradigms, slight improvements with UPC

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

 SPIN benchmark on single-node:
 Intel Sandybridge: best core/socket/node performance, but

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best

single-node performance
 Intel Westmere: competitive with Interlagos

 Cray Gemini: MPI two-sided is competitive with all other
message passing paradigms, slight improvements with UPC

 ED: Cray and PGI C++ compilers generate inferior code
compared to GNU (bug reports filed)

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

 SPIN benchmark on single-node:
 Intel Sandybridge: best core/socket/node performance, but

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best

single-node performance
 Intel Westmere: competitive with Interlagos

 Cray Gemini: MPI two-sided is competitive with all other
message passing paradigms, slight improvements with UPC

 ED: Cray and PGI C++ compilers generate inferior code
compared to GNU (bug reports filed)

 ED nearest-neighbor feature ensures scaling to large
configurations

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

 SPIN benchmark on single-node:
 Intel Sandybridge: best core/socket/node performance, but

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best

single-node performance
 Intel Westmere: competitive with Interlagos

 Cray Gemini: MPI two-sided is competitive with all other
message passing paradigms, slight improvements with UPC

 ED: Cray and PGI C++ compilers generate inferior code
compared to GNU (bug reports filed)

 ED nearest-neighbor feature ensures scaling to large
configurations

 Hybrid OMP/MPI viable even for simplest model

Thursday, May 3, 2012

Cray User Group Meeting, May 3, 2011

Take-home messages

25

 SPIN benchmark on single-node:
 Intel Sandybridge: best core/socket/node performance, but

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best

single-node performance
 Intel Westmere: competitive with Interlagos

 Cray Gemini: MPI two-sided is competitive with all other
message passing paradigms, slight improvements with UPC

 ED: Cray and PGI C++ compilers generate inferior code
compared to GNU (bug reports filed)

 ED nearest-neighbor feature ensures scaling to large
configurations

 Hybrid OMP/MPI viable even for simplest model

Thursday, May 3, 2012

Thank you for your attention!
wsawyer@cscs.ch

26

Thursday, May 3, 2012

mailto:wsawyer@cscs.ch
mailto:wsawyer@cscs.ch

