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 Evaluate programming paradigms
 MPI + OpenMP hybrid programming
 MPI-2 one-sided communication
 SHMEM
 UPC (as implemented in Cray compiler)
 OpenACC, if possible

 Compare performance across platforms
 out-of-the-box performance
 evaluate optimization effort
 socket-for-socket, node-for-node comparisons
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neighbors (new to this work)
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struct ed_s { ...
        shared double *v0, *v1, *v2;      /* vectors */
        shared double *swap;              /* for swapping vectors */
}; 
              :  
for (iter = 0; iter < ed->max_iter; ++iter) {
                 :
                upc_barrier(0);
                /* matrix vector multiplication */               
                upc_forall (s = 0; s < ed->nlstates; ++s; &(ed->v1[s]) ) {
                        /* diagonal part */                     
                        ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
                        /* offdiagonal part */                           
                        for (k = 0; k < ed->n; ++k) {                       
                                s1 = flip_state(s, k);
                                ed->v2[s] += ed->gamma * ed->v1[s1];
                        }
                }
                 :
                /* Calculate alpha */
                /* Calculate beta */
        }
}
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Inelegant 1
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
  :
for (i = 0; i < NBLOCK; ++i) vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i) ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];
  :
upc_barrier(2);
  

Inelegant 2
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
  :
upc_memput( &vtmp[MYTHREAD*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
upc_memget( ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK], NBLOCK*sizeof(double) );
  :
upc_barrier(2);
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shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];
:
upc_memput( &vtmp1[ed->to_nbs[0]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
:
 if ( mode == 0 ) {
   upc_memput( &vtmp2[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
 } else {
   upc_memput( &vtmp1[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
 }
  :
 if ( mode == 0 ) {
   for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp1[i+MYTHREAD*NBLOCK]; }
   mode = 1;
 } else {
   for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp2[i+MYTHREAD*NBLOCK]; }
   mode = 0;
 }
 upc_barrier(2);
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    vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
     :
   shmem_barrier_all();
   shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

     MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
  MPI_Win_fence( 0, win1);

   ed->v1[ed->nlstates] = ((double) ed->rank); /* sentinel */
  for (l = 0; l < ed->m; ++l) {
    offset = l*(ed->nlstates+1); /* Offset into buffer */
    shmem_double_put_nb(&vtmp[offset],ed->v1, ed->nlstates+1,ed->to_nbs[l],NULL);
  }
             : 
  tag = vtmp[offset+ed->nlstates];
  while (tag != (double) ed->from_nbs[k-ed->nm]) { /* spin */
    tag = vtmp[offset+ed->nlstates];
  }
  for (i = offset, j=0; i < offset+ed->nlstates; ++i, ++j) {
     ed->v2[j] += ed->gamma * vtmp[i];
  }
  vtmp[l*(ed->nlstates+1)+ed->nlstates]=((double)-1); /*reset*/

MPI-2:  One-sided PUT

SHMEM: non-blocking PUT

SHMEM “fast”: non-blocking PUT, local wait only
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SPIN experiences

 SPIN is not computationally intensive
 Contain integer operations, e.g., bit shifting
 Fundamentally a benchmark of the interconnection network
 MPI two-sided performing better than (nearly) all other 

communication paradigms, including SHMEM, MPI-2
 Work by A. Tineo showed that UPC+optimizations can attain better 

performance in some cases
 Simplistic OpenMP/MPI hybrid performed not better than MPI
 Task-based OpenMP/MPI implementation by Fourestey/

Stringfellow did show slightly better performance (n=28 test case) 

MPI Processes MPI-only (s.) 2 Threads (s.) 4 Threads (s.)
4096 17.4
2048 28.1 16.6
1024 48.9 25.1 14.4
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Cray and PGI C++ compiler optimizations issues

On Cray XE6/XK6 expect CCE 
to generate adequate code
 CCE 8.0.2 vs. GNU 4.6.2 

performance comparison
 Various thread-core pinnings

Vast performance difference!
 GNU uses full SSE width; 

unrolls loops, pipelines
 CCE does not
 Cray bug reports filed, Cray 

has reproduced problem, 
working on optimizer
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Optimal # threads / socket

Conclusions:
 Cray XK6: 1 MPI process / 

socket, 16 threads
 SGI UV1000: 2 sockets / 

MPI Process, 16 threads 

Performance comparison:
• Cray XK6: GNU 4.6.2
• SGI UV1000: Intel 11.1
• Various thread, pinning & 

socket configurations tried
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Performance Comparison Cray XE6 / SGI UV1000

 Cray XE6:  AMD Interlagos, Gemini, GNU 4.6.2
 SGI UV1000: Intel Westmere, NUMAlink, Intel 11.1
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 Intel Sandybridge:  best core/socket/node performance, but 

hyperthreading brings little improvement
 AMD Interlagos: tricky to optimize thread placement, Open64 best 

single-node performance
 Intel Westmere: competitive with Interlagos
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Thank you for your attention!
wsawyer@cscs.ch

26

Thursday, May 3, 2012

mailto:wsawyer@cscs.ch
mailto:wsawyer@cscs.ch

