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Leveraging the Cray Linux Environment Core
Specialization Feature to Realize MPI

Asynchronous Progress on Cray XE Systems
Howard Pritchard, Duncan Roweth, David Henseler, and Paul Cassella

Abstract—Cray has enhanced the Linux operating system with a Core Specialization (CoreSpec) feature that allows for
differentiated use of the compute cores available on Cray XE compute nodes. With CoreSpec, most cores on a node
are dedicated to running the parallel application while one or more cores are reserved for OS and service threads.
The MPICH2 MPI implementation has been enhanced to make use of this CoreSpec feature to better support MPI
independent progress. In this paper, we describe how the MPI implementation uses CoreSpec along with hardware
features of the XE Gemini Network Interface to obtain overlap of MPI communication with computation for micro-
benchmarks and applications.
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1 INTRODUCTION

The importance of overlapping computation
with communication and independent progress
in Message Passing (MPI) applications is well
known (see, for example [5], [9], [15]), even if in
practice, many MPI applications are not struc-
tured to take advantage of such capabilities.
Many different approaches have been taken
since MPI was first standardized to provide
for this capability, including hardware–based
approaches in which the network adapter itself
handles much of the MPI protocol [3], hy-
brid approaches in which the network adapter
and network adapter device driver together
offload the MPI protocol from the applica-
tion [4], host software–based approaches to
assist RDMA–capable, but MPI–unaware, net-
work adapters [10], [18], as well as more gener-
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alized host software–based approaches which
take advantage of modern multi–core proces-
sors [11], [19].

The Cray XE Gemini RDMA–capable net-
work adapter has features intended to assist in
the implementation of effective host software–
based approaches for providing independent
progression of MPI and for allowing for over-
lap of communication with computation. To
provide for more effective implementation of
such host software–based approaches, Cray
has also enhanced the Cray Linux Environ-
ment (CLE) Core Specialization feature to facil-
itate management of host processor resources
needed for this approach. This paper describes
the combination of Gemini hardware features,
the CLE Core Specialization feature, and en-
hancements made to MPICH2 to realize this
capability.

The rest of this paper is organized as follows.
First, an overview of the Core Specialization
feature is presented. Features of the Gemini
network adapter that are significant for this
work are described in Section 3. Section 4
describes the approach Cray has taken with
the MPICH2 implementation of MPI to realize
better support for independent progress and
communication/computation overlap. In sec-
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tion 5 results using a standard MPI overhead
benchmark are presented, as well as results
obtained for two MPI applications. The paper
concludes with a discussion of future work
planned for the Core Specialization feature in
CLE, as well as improvements to MPICH2 and
possible extensions to the GNI API to better
support MPI independent progress.

2 CORE SPECIALIZATION OVERVIEW

Cray has enhanced the Linux kernel delivered
as part of CLE to allow for dynamic parti-
tioning of processors (cpus) on nodes of Cray
XE/XK systems into two groups – one group
dedicated to application threads, and the other
dedicated to system services. This partitioning
is selectable by the user at application launch
time. Note this partitioning scheme does not
prevent compute intensive applications from
being able to use all available cpus on the node
if so desired. A prototype implementation of
this Core Specialization (CoreSpec) feature for
the Cray XT is described in [13].

An initial goal for this CoreSpec feature was
the reduction of the impact of system–related
noise on the performance of noise–sensitive
parallel applications. The basic idea is that by
reserving one or more of the cpus on each
node for system services daemons and kernel
threads, noise sensitive applications can per-
form significantly better using the remaining
cpus, which are now dedicated exclusively to
the application processes. Note that in addi-
tion to system daemons and kernel threads,
interrupts from the network adapter are also
directed toward one or more of the cpus within
the set of cpus reserved for the operating sys-
tem. Significant improvement in the runtime
for the POP ocean model application on a Cray
XT system was demonstrated when using the
prototype CoreSpec feature described in [13].

It was realized early on in the design of
the Cray XE, that CoreSpec could also be used
for other purposes. Unlike the earlier Cray XT
systems, the Cray XE was introduced when
the multi–core era of X86 64 processors was
already in full swing. Indeed, except for a few
special systems, all Cray XE compute nodes

have at least 16 cpus per node, with the lat-
est Interlagos–based systems having 32 cpus
per node. The number of cpus per node is
expected to continue to increase. However, the
ability of most HPC applications to use all the
cpus on the node effectively is unlikely to con-
tinue, partly owing to the decreasing amount
of memory and memory bandwidth per cpu,
as well as increased sharing of cpu resources
with other cpus on the same compute unit1.
These otherwise unused cpus are ideal for use
by any threads responsible for progress of the
MPI state engines of the application processes
on the node.

The prototype implementation Cray XT ver-
sion of CoreSpec was enhanced to support this
new usage model. A capability was added to
allow for a thread to inform CoreSpec to sched-
ule it on the system services core(s). Threads
that spend large amounts of time descheduled,
waiting on interrupts from network devices are
ideal candidates for scheduling on the system
services cpus. The job kernel module pack-
age [17] was also enhanced with an exten-
sion to allow for MPI to create extra progress
threads without interfering with, or knowing
about, the placement policy requested by the
application at job launch.

Some of the functionality of CoreSpec de-
scribed here could, in principal, be imple-
mented using existing kernel interfaces avail-
able to user–space applications. However, in
the context of complex, layered software, a
more specialized kernel placement mechanism
allows for simpler usage by various indepen-
dent software packages which an application
may be concurrently using.

3 GEMINI HARDWARE FEATURES FOR
SUPPORTING MPI ASYNCHRONOUS
PROGRESS

The Cray XE Gemini network adapter [2] has
several features to help support host software–
based MPI independent progress mechanisms.
The most important of these is a multi–channel

1. A compute unit refers to a group of cpus which share
processor resources. An examples is the AMD Interlogos com-
pute unit, in which two cpus share, among other resources, a
floating point unit.
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DMA engine. Transaction requests (TX descrip-
tors) submitted to the DMA engine can be
programmed to select for generation of a local
interrupt at the originator of the transaction,
generation of an interrupt at the target of the
transaction, or both, when the transaction is
complete. A TX descriptor may also be pro-
grammed to delay processing of subsequent
TX descriptors in the same channel until the
transaction is complete. Complete in this con-
text means that for a RDMA write transaction,
all data has been received at the target, and for
a RDMA read transaction, all response data has
been received back at the initiator’s memory. In
addition to the DMA engine, Gemini Comple-
tion Queues (CQ) can be configured for polling
or blocking (interrupt–driven) mode. The Gem-
ini also provides a low–overhead mechanism
for a process operating in user–space to gener-
ate an interrupt and Completion Queue Event
(CQE) at a remote node.

Some preliminary investigations of the over-
head for using blocking CQs in conjunc-
tion with the low–overhead remote inter-
rupt generation mechanism using the GNI [1]
GNI PostCqWrite and GNI CqWait functions
showed that when the processes were sched-
uled on the same cpu where the Gemini de-
vice driver (kgni) interrupt handler was run, a
ping–pong latency of 3–4 µsecs was obtained.
When the processes were run on cpus other
than the one where the kgni interrupt handler
was run, the latency increased to 7–8 µsec.
These times were obtained on AMD Interla-
gos 2.3 GHz processors. The measured wake–
up times, particularly when the process being
made runnable by the kgni interrupt handler
runs on the same cpu as the interrupt han-
dler, were small enough to warrant pursuing
an interrupt–driven approach to realizing MPI
asynchronous progress.

4 IMPLEMENTATION OF PROGRESS
MECHANISM IN MPICH2
4.1 Phase One

The MPICH2 for Cray XE systems utilizes the
Nemesis CH3 channel [6]. A Nemesis Network
module (Netmod) using the GNI interface was

implemented for the Cray XE [14]. This ini-
tial GNI Netmod implementation did not pro-
vide an explicit mechanism for MPI asyn-
chronous progress. The MPICH2 1.3.1 code
base from Argonne was used for implement-
ing changes in MPICH2 to support MPI asyn-
chronous progress on Cray XE systems. This
version of MPICH2 has effective support for
MPI-2 MPI THREAD MULTIPLE. Although a
global lock is used for protecting internal data
structures, there are yield points within the
MPI library where threads blocked waiting for
completion of sends and receives yield the lock
to allow other threads into the MPI progress
engine.

A primitive asynchronous progress mecha-
nism already exists in MPICH2, and is avail-
able when MPICH2 is configured for runtime
selectable MPI-2 thread safety support. The
method uses an active progress thread which
posts a blocking MPI receive request on an
MPICH2 internal communicator at job startup.
The thread then goes into the MPI progress
engine, periodically yielding a mutex lock to
allow application threads to enter the MPI state
engine. At job termination, the main thread in
each MPI rank then sends the message to itself
which matches the posted receive on which
the progress thread is blocked. This causes the
progress thread to return from the blocking
receive, allowing MPI finalization to gracefully
clean up any resources associated with the
progress thread. This active progress thread
approach only works satisfactorily if each MPI
rank has an extra cpu for its progress thread.
In addition to this problem, the extra thread
adds significantly to MPI message latency, es-
pecially for short messages, since there is sig-
nificant contention for the mutex lock. Note the
progress thread is described as active because,
except at points where it is trying to acquire a
mutex lock, it is scheduled and running from
the perspective of the kernel. Cray decided to
take a different approach, utilizing the Gemini
features mentioned above to avoid the use of
active progress threads, and instead rely on
progress threads that are only scheduled (wo-
ken up) when interrupts are received from the
Gemini network interface indicating there is
MPI message processing to be done.
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There were several goals for the method
used to enable MPI asynchronous progress in
the MPICH2 library. One was to avoid to the
greatest extent possible negatively impacting
the message latency and message rate for short
messages. Some degradation is unavoidable as
long as a progress thread approach is used,
owing to the need for mutex lock/unlocks in
the path through MPI. Another goal was not to
focus on optimizing only specific message de-
livery protocols, but to use the progress thread
in a way that progresses the MPI state engine’s
non–cpu intensive tasks. For the first phase
of this effort, another goal was to keep to a
minimum the additional complexity needed to
support the feature.

The first goal was met in two ways. A given
rank’s progress thread is only woken up when
progress is needed on messages large enough
to use the rendezvous (LMT) protocol [12]. For
smaller messages, the progress thread is not
involved. The second goal was realized by us-
ing the local/remote interrupt capability of the
Gemini DMA engine in a manner that allows
for both RDMA read, as well as cooperative
RDMA write LMT protocols 4.1.2 to be handled
by the progress threads. The third goal was
realized by retaining significant parts of the ex-
isting MPICH2 progress thread infrastructure –
and thus avoiding some of the complexities of
more generalized on–load solutions [11], lever-
aging the relatively mature MPI–2 thread safety
support in MPICH2, and using the Gemini
DMA engine in a way that avoids the need for
additional locks within the GNI Netmod itself.
Also to keep things simple, no support was
added to facilitate asynchronous progression
of intra–node messages. The following sections
detail changes to the GNI Netmod to support
MPI asynchronous progress.

4.1.1 MPI Initialization
If the user has set environment variables in-
dicating that the asynchronous progress mech-
anism should be used, MPICH2 early on in
startup configures itself for MPI-2 thread sup-
port level MPI THREAD MULTIPLE, initializ-
ing mutexes and structures related to managing
of thread private storage regions. As part of
the GNI Netmod initialization, each MPI rank

creates a blocking receive (RX) CQ, in addition
to the CQs described in [14]. Each rank also cre-
ates a progress thread during the GNI Netmod
initialization procedure. The CoreSpec related
procedures described in Section 2 are taken to
insure that the progress threads are schedulable
only on one of the OS cpus if the -r CoreSpec
option was specified on the aprun command
line when the job was launched. The progress
thread then enters a GNI CqWait call where it
is descheduled and blocks inside the kernel,
waiting for interrupts from the Gemini network
adapter. While blocked in the kernel, these
helper threads consume no cpu cycles and
don’t interfere with the application threads.

4.1.2 Rendezvous (LMT) Protocol
In addition to changes in the GNI Netmod
initialization procedure, the other major en-
hancements to MPICH2 were in the manage-
ment of the rendezvous or LMT protocol. As
described in [14], both RDMA read and coop-
erative RDMA write protocols are employed.
For the RDMA read protocol, the sender rank
should optimally be notified when the receiver
has completed the RDMA read of the message
data out of the sender’s send buffer, in other
words, when the receiver sends a Nemesis
LMT receive done message. On the receiver side,
the receiver needs to be notified when the
sender sends a ready to send (RTS) message, as
well as when the RDMA read request it posts
to read the data out of the sender’s send buffer
has completed. Similarly for the RDMA write
protocol, the sender rank needs to be notified
when the receiver sends a clear to send (CTS)
message and when the RDMA write has com-
pleted for delivering the message data from it’s
send buffer to the receiver’s receive buffer. The
receiver rank needs to be notified when a RTS
message arrives from the sender, and when
a send done is received from the sender. For
long messages, multiple CTS, RTS, send done,
and RDMA writes are required to deliver the
message.

In order to allow for asynchronous progress
for both transfer types, a generalized approach
for waking up the progress threads at both
the receiver and sender side is required. For
both cases, the progress thread on either side
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needs to be woken up when a relevant control
message arrives. Rather than complicate the
existing method for delivering the control mes-
sages, the control message itself is sent using
the same approach as is taken when there is
no progress thread. In addition to the control
message, a remote interrupt message is also de-
livered to the target behind the control message
using the GNI PostCqWrite function. This has
the effect of waking up the progress thread of
the targeted rank once the LMT control mes-
sage has been delivered. The progress thread
then returns from GNI CqWait and invokes
the MPICH2 internal MPID nem network poll
function to progress the state engine and pro-
cess the control message.

The other progress point to handle is how
to receive notification that the Gemini DMA
engine has completed processing a TX de-
scriptor associated with a message using the
LMT path. For phase one, to keep things sim-
ple, only a single RX CQ is used by each
progress thread. This means, however, that the
option to generate a local interrupt when the
DMA engine has processed the TX descrip-
tor is not available. Instead, for every TX de-
scriptor posted to the DMA engine which is
used to transfer data for an LMT message, a
second TX descriptor is posted which does a
4–byte dummy write back to the initiator of
the transaction. This second TX descriptor is
programmed to generate a remote interrupt.
Note that since the second descriptor is actually
only doing a dummy write back to itself, the
remote interrupt is being sent to the initiator of
the DMA transaction. The first TX descriptor,
the one that actually moves the data, is also
marked with the GNI RDMAMODE FENCE
rdma mode bit. Thus, the arrival of the re-
mote interrupt back at the initiator means that
the first TX descriptor is complete as defined
in Section 3. This modification to the use of
the DMA engine has the advantage that the
progress thread only needs to block on a single
RX CQ, and more importantly, that the pro-
cessing of the first TX transaction’s CQE is not
delayed by the time it takes for the progress
thread to wake up and process the CQE. The
wake–up is purely optional. If the thread de-
tects that an application thread is already in the

MPI progress engine, it can just immediately go
back into the GNI CqWait call. The principal
downside of this usage model is that there
is a stall for every TX descriptor with the
GNI RDMAMODE FENCE bit set. Since the
fence blocks for all network responses to return
before proceeding to the next TX descriptor,
this stall can be significant, particularly for
distant target nodes and in cases where the
network is heavily congested.

This phase one feature is available in the
MPICH2 packaged as part of the Message Pass-
ing Toolkit (MPT) 5.4 release.

4.2 Changes to MPICH2 - Phase Two
The main goal with the phase two portion
of the asynchronous progress feature is im-
proving the mechanism for progression of
DMA transactions by removing the use of
the GNI RDMAMODE FENCE bit from the
TX transactions which move message data,
as well as dispensing with the dummy TX
transaction used to generate an interrupt at
the initiator. By removing the need to use the
GNI RDMAMODE FENCE bit and the extra
TX descriptor, three significant performance
advantages are realized, at least in theory:

1) Since the fence mode is no longer re-
quired, multiple BTE channels can be
used by the application,

2) The stalls introduced into the DMA en-
gine TX descriptor pipeline are elimi-
nated,

3) The number of TX descriptors that need
to be processed is cut in half.

In order to generate local interrupts upon
completion of a TX descriptor associated with
a message using the LMT path, an addi-
tional blocking TX CQ must be created dur-
ing the GNI Netmod initialization procedure.
The progress threads now have to block on
two CQs, which can be accomplished using
the GNI CqVectorWaitEvent function. In addi-
tion to these changes, a more complex CQE
management system is required, since now
the progress threads will need to store CQEs
recovered from the new blocking TX CQ in
a way that both the progress threads, as well
as any application threads that are in the
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MPI progress engine, can process these CQEs.
Currently in the phase two implementation,
a linked list of CQEs, protected by a mu-
tex, is used for storing these CQEs. When a
progress thread is woken up due to a CQE
on the blocking TX CQ, the dequeued CQE
is added to this linked list. If the application
thread is within the MPI progress engine al-
ready, the asynchronous progress thread sim-
ply goes back to blocking in the kernel by
again calling GNI CqVectorWaitEvent. Applica-
tion threads already in the MPI progress engine
then pick up the CQE off of this linked list
and process them in a manner analogous to
that used to process CQE’s returned from the
existing non–blocking TX CQ.

Phase two is still very much a work in
progress. As will be seen in the results section,
the need for the progress thread to explicitly
dequeue CQE’s from the blocking TX CQ has
a significant impact on MPI performance if the
application threads do not have sufficient work
to completely overlap the communication time.

5 RESULTS

5.1 Micro–benchmark Results

The CPU overheads of sending and receiving
MPI messages were measured with the Sandia
SMB test [16] using the post–work–wait method
described in [7] where the overhead is defined
to be:

...the overhead, defined as the length
of time that a processor is engaged in
the transmission or reception of each
message; during this time, the proces-
sor cannot perform other operations.

Application availability is defined to be the
fraction of total transfer time that the applica-
tion is free to perform non-MPI related work.
In terms of the Sandia micro–benchmark and
the following figures:

overhead = iter t − work t (1)

and

availability = 1− iter t − work t

base t
(2)

Fig. 1. Calculating sender availability on 16K
messages. Communication overhead is low;
CPU availability is measured at 83%.

The test measures the time to complete a
non-blocking MPI Isend (or MPI Irecv) of a
given size, some number of iterations of a work
loop and then an MPI Wait. The test is repeated
for increasing numbers of iterations of the work
loop until the total time taken (iter t) exceeds
the time for the communication step alone
(base t) by some threshold. Examples of this
calculation are illustrated for 16 Kbyte transfers
in Figures 1 and 2 in which sender availability
is measured to be 83% and receiver availability
20%.

The SMB test repeats this measurement re-
porting sender and receiver CPU availability
for increasing message size (see Figure 3). The
results shown in the figure are baseline val-
ues without MPI asynchronous progression en-
abled.

The characteristics of each of the three MPI
protocols are clear. The small message case
requires CPU time for each message on both
the sender and receiver. For intermediate size
messages where the LMT read protocol is
used, sender availability increases as the re-
ceiver fetches data independently. The receiver
however consumes increasing amounts of CPU
time as the message size increases. The large
message LMT cooperative put protocol pro-
vides no overlap of computation and commu-
nication, sender and receiver must both be in
MPI calls to make progress.
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Fig. 2. Calculating receiver availability on 16K
messages. Communication overhead is high;
CPU availability is measured at 20%.

These results are in line with expectations in
that the user process must be in an MPI call in
order to perform MPI matching or to advance
the underlying GNI protocol. This restriction
is not an issue when the application is making
MPI calls at a high rate, but poor overlap on
intermediate and large transfers has a negative
impact on performance of some applications.

In Figure 4 we repeat the measurements
using the phase one library. At small message
sizes performance is much as before. Receive
availability dips as we switch to rendezvous
protocol at message sizes of 8K bytes and
above. With progression enabled both send and
receive side availability then increase steadily
with message size.

In Figure 5 we compare the phase one and
phase two implementations, focusing on inter-
mediate size messages. The phase one imple-
mentation shows poor receive side availability
for message sizes between 8K and 10K.

We can lower the threshold at which we
switch to the rendezvous protocol. The effects
of making this change are illustrated in Figure 6
below. We show send and receive size avail-
ability for intermediate message sizes with pro-
gression enabled and disabled. Receiver avail-
ability increases markedly once progression is
enabled, and from there continues to increase
gradually with message size.

Fig. 3. Application availability as a function of
message size measured using the SMB over-
head test with one process per node. Availability
is shown for the sender (red) and the receiver
(blue). Progression disabled.

Fig. 4. Updated availability plot. Send and re-
ceive side availability are shown as a function of
message size. Progression enabled, phase one.

In Figure 7 we show the impact on latency
of enabling asynchronous progression. There
is a jump in latency as we switch from eager
to rendezvous protocol. By default the library
makes this change at 8K bytes so as to min-
imize the effect. The jump in latency is more
pronounced when asynchronous progression is
enabled. Latency also increases with the num-
ber of processes per node. This is a result of the
Gemini device only supporting a single user in-
band interrupt. All progress threads must be
woken when an interrupt is delivered.
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Fig. 5. Comparison of CPU availability at in-
termediate message sizes for phase one and
phase two implementations.

The standard rendezvous algorithm per-
forms message matching and then initiates a
block transfer to move the bulk data. Our re-
sults show this working well for large message
sizes, but pushing up latencies at small sizes.
An alternative approach is use an FMA get at
intermediate sizes rather than a block transfer.
This reduces the latency, especially with large
numbers of processes per node, but it also re-
duces CPU availability. In Figure 8 we show the
impact on bandwidth of enabling progression
at 1K and 8K message sizes. The eager protocol
delivers good bandwidth at intermediate band-
width, but CPU availability is relatively poor
and main memory bandwidth is wasted copy-
ing from system buffers to user space. The ren-
dezvous protocol with thread based progres-
sion delivers high bandwidth and high CPU
availability at large message sizes, but reduced
bandwidth at intermediate sizes. These effects
will diminish as we reduce the overhead costs
of thread based progression. The combination
of the overhead plots and latency/bandwidth
charts can be seen as a measure of success for
progress mechanisms. CoreSpec was observed
to significantly reduce the variability in the
SMB benchmark measurements.

5.2 S3D Application Results
S3D is a massively parallel direct numerical
solver (DNS) for the full compressible Navier-

Fig. 6. CPU availability for intermediate mes-
sage sizes. In these measurements the small
message eager protocol is used for transfers of
up to 512 bytes and rendezvous for all larger
sizes.

Fig. 7. Latency measurements with 4 processes
per node. In these measurements the small
message eager protocol is used for transfers of
up to 512 bytes and rendezvous for all larger
sizes.

Stokes, total energy, species and mass conti-
nuity equations coupled with detailed chem-
istry [8]. It is based on a high-order accurate,
non-dissipative numerical scheme solved on a
three-dimensional structured Cartesian mesh.
S3D’s performance has been optimized for in-
creased grid size, more simulation time steps,
and more species equations. These are critical
to the scientific goals of turbulent combustion
simulations in that they help achieve higher
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Fig. 8. Bandwidth measurements with 4 pro-
cesses per node. In these measurements the
small message eager protocol is used for trans-
fers of up to 512 bytes (green) or 4K bytes
(blue). Rendezvous protocol with progression
enabled is used for all larger sizes.

TABLE 1
Profile of S3D without progression.

Time% Time(secs) – Calls Total
100.0% 333.55 – 2022296 Total
56.7% 189.06 – 605408 USER
38.3% 127.90 – 869027 MPI
23.7% 78.91 – 61200 mpi waitall
11.8% 39.43 – 6960 mpi wait
2.4% 7.938 – 6960 mpi wait

4.1% 13.73 – 546009 OMP

Reynolds numbers, better statistics through
larger ensembles, more complete temporal de-
velopment of a turbulent flame, and the sim-
ulation of fuels with greater chemical com-
plexity. In addition, ORNL and Cray have
spent the past year converting S3D into a
hybrid MPI/OpenMP application capable of
using MPI for inter–node data exchange, while
using OpenMP within the node.

Profiles of this hybrid version of S3D run-
ning on Cray XE6 show MPI traffic dominated
by non-blocking communications , with large
amounts of time spent in wait functions.(see
Table 1). Table 2 shows the corresponding mes-
sage size profile. The use of large non-blocking
messages makes S3D a good candidate for
asynchronous progression.

TABLE 2
MPI message profile for S3D

MPI Msg Msg.
Size Count
< 16 1795
16− 256 27
256− 4K 100806
4K − 64K 2
64K − 1M 298681

TABLE 3
S3D Time Step Summary

# Application Progression Progression
Threads disabled enabled
14 4.77 3.93
15 4.68 4.05
16 4.59 4.06

In Table 3 we show the S3D runtime in
seconds per time step with 14, 15, and 16
threads per node. Our first set of measurements
was performed with progression disabled. In
the second set progression (phase one) was
enabled, with 2, 1, or 0 cores dedicated to pro-
gression using the CoreSpec method. In the final
measurement, with 16 application threads and
progression enabled the interrupts generated
by the progress mechanism will cause applica-
tion threads to be descheduled. All tests were
run on 64 nodes of a Cray XK system using
AMD Interlagos processors. Best performance
was optioned using 14 application threads us-
ing two cpus for the progress thread. A 14%
reduction in overall runtime was achieved by
enabling progression. The benefits of core spe-
cialization were relatively small for this hybrid
MPI/OpenMP application, 3% of the 14% gain.

5.3 MILC7 Application Results
The MIMD Lattice Computation (MILC) code
(version 7) is a set of codes developed by the
MIMD Lattice Computation Collaboration for
doing simulations of four dimensional SU(3)
lattice gauge theory on MIMD parallel ma-
chines. Profiling of this application showed
that for certain types of calculations, the MPI
message pattern was dominated by small (2-
4 KB) to medium size (9-16 KB) messages
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TABLE 4
MPI message profile for S3D

MPI Msg Msg.
Size Count
< 8 16
513− 1K 283736
1K − 2K 98304
2K − 4K 1167192
4K − 8K 35926
8K − 16K 948208
16K − 32K 107202

at 8192 ranks (see Table 4). The application’s
use of MPI point to point messaging appears
to lend itself to potential overlap of commu-
nication with computation. For purposes of
investigating the effectiveness of the thread–
based asynchronous progression mechanism,
Cray benchmarking modified the application to
gather timing data for the main MPI message
gather/scatter kernel within the application. A
Asqtad R algorithm test case was run with a
lattice dimension of 64x64x64x144. Unlike the
S3D application, MILC is a pure MPI code and
is typically run with one MPI rank per cpu.

The application was run four different ways
on a Cray XE6 using AMD Interlagos proces-
sors. Runs were made without MPI progres-
sion, with MPI progression using the phase
one method and one cpu per node reserved by
CoreSpec, with MPI progression using the phase
two method and one cpu per node reserved
by CoreSpec, and one set of runs with MPI
progress using the phase one method but no
cpus reserved for the progress threads. Table 5
gives the runtime in seconds for these different
runtime settings. With CoreSpec reserving 1 cpu
per node, the 8192 rank job requires 264 nodes
as opposed to 256 nodes when running without
CoreSpec. The modest runtime improvements
when using the phase one progression mech-
anism correlate closely with the reduction in
the average and maximum MPI wait time part
of the gather/scatter operation. For example,
at 8192 ranks, the average MPI Wait time in
the application’s gather wait function fell from
309 seconds to 270 seconds, and the maximum
time fell from 719 seconds to 504 seconds using
the phase one progress method. The modest

TABLE 5
MILC Run Time Summary(secs)

# Run Type 4096 8192
ranks ranks

No progression 2165 1168
Progression (phase 1) 2121 1072
Progression (phase 2) 3782 2138
Progression (phase 1)
no reserved cores 3560 2210
Progression (phase 1)
reserve core but no 2930 2070
corespec

reduction in the average wait time when using
the phase one progress mechanism, and the
much higher wait times when the phase two
mechanism indicates that at least some of the
ranks do not have sufficient work to fully
mask the communication time. The message
sizes are in the range where latency domi-
nates, particularly when running a flat MPI
application with many ranks per node. The
bad performance of the phase two method for
this application is most likely explained by
the fact that the progress thread must wake
up and dequeue CQEs before the main thread
can make progress on completing a message.
Since the application does not have sufficient
computation to fully mask the communica-
tion time, the rank processes themselves have,
in many cases, probably already entered the
MPI Wait function well before the message
has been delivered. Thus the full overhead of
the need to wakeup the progress threads in
order to dequeue CQES from the TX CQ, plus
contention for mutex locks, is encountered.

The times in the final row of Table 5, when
compared with the times in the 2 row, shows
that CoreSpec leads to significantly better results
for the phase one progress mechanism than
can be obtained simply be running a reduced
number of MPI ranks per node and leaving an
extra cpu available.

6 CONCLUSIONS AND FUTURE WORK

The thread–based progression mechanism ap-
pears to have promise for use with appli-
cations on Cray XE and future architectures.
The results presented in this paper show that
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the phase one approach can be used with
the class of MPI applications which tend to
use larger messages in the 10–100 KB range.
Hybrid MPI/OpenMP applications which tend
to have larger messages and fewer intra–node
messages are the most likely beneficiaries of
this progress mechanism.

The preliminary results for the phase two
approach have demonstrated that improved
processor availability is realized for smaller
messages when using the specialized MPI over-
lap test, although other micro–benchmarks and
applications show a need to process more ef-
ficiently CQEs dequeued from CQs configured
as blocking. Extensions to the GNI API to allow
for more efficient CQE processing for such
cases are currently being investigated.

Cray is also enhancing the CoreSpec mech-
anism to target compute units with hyper–
thread support. In many cases, HPC applica-
tions cannot efficiently use all of the hyper–
threads that a compute unit can support, yet
these unused CPUs should work very well for
MPI progress threads.

In addition to software improvements to the
thread–based progress mechanism, follow–on
products to the Cray XE6 will have additional
features including many more in–band inter-
rupts and lower–overhead access to the DMA
engine, that will improve the performance of
host thread–based MPI asynchronous progres-
sion techniques.
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