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Overview

● MPI Progress  - what is it?
● XE6 (Gemini) Features relevant to MPI progress
● MPICH2 Enhancements for MPI progress on Gemini
● Core Specialization and MPI progress
● Benchmark and application results
● Future work
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● Future work



● Determines how an MPI communication operation 
completes once it has been initiated

● Strict  interpretation 
● Once a communication has been initiated no further MPI calls are 

required in order to complete it

MPI Progress Rule
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● Weak interpretation
● An application must make further MPI library calls in order to make 

progress

● Primarily an issue for point-to-point calls, but al so relevant 
to non-blocking collectives – to be introduced in MP I 
version 3. 



Receive side progression example

● A well written application should 
post its receives early so as to 
overlap data transfer with 
computation

● But messages typically arrive 
during the computation

● Matching occurs and bulk data 

MPI_Irecv()
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● Matching occurs and bulk data 
transfer starts in the next MPI 
call, MPI_Wait() if only weak MPI 
progression interpretation 
supported

● How do we achieve independent 
progression?
● Asynchronous progress thread(s) 
● Offload to the NIC 

Computation

MPI_Wait()

Message arrives



What Gemini Hardware Provides
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Gemini Hardware Features and MPI Progress

● DMA Engine with four virtual channels
● Local interrupt can be generated along with a Completion Queue 

Event (CQE) upon completion of a TX descriptor (RDMA transaction)
● Remote interrupt and remote CQE can be generated at a target node 

when a RDMA transaction has completed
● RDMA fence capability

● Completion Queues configurable for polling or block ing 
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● Completion Queues configurable for polling or block ing 
(interrupt driven)

● Gemini has low overhead method for a process operat ing 
in user-space to generate an interrupt at a remote node 
(along with a  CQE)

● No explicit support for MPI



MPICH2 Enhancements to Support
Asynchronous Progress
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Asynchronous Progress



MPICH2 on XE - Basics

● Based on Argonne National Lab (ANL) MPICH2 Nemesis 
CH3 channel

● A GNI Nemesis Network Module  (Netmod) interfaces t he 
upper part of MPICH2 to the XE network software sta ck

● Full support for MPI -2 thread safety level 
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● Full support for MPI -2 thread safety level 
MPI_THREAD_MULTIPLE

● Progress thread infrastructure (although simplistic ) 
already exists in the library



MPICH2 on XE Basics (2)

● The eager protocol both for intra-node and inter-no de 
messaging is CPU intensive and not suitable for 
asynchronous progress

● The rendezvous path for intra-node messages is also  CPU 
intensive and not suitable for asynchronous progres s
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● The rendezvous – Long Message Transfer (LMT) – path f or 
inter-node messages is not CPU intensive (usually):
● Rendezvous messages up to 4 MB in size normally use a RDMA read 

LMT protocol
● Messages larger than 4 MB, or in the case of shorter messages when 

hardware resource depletion is occurring, use a cooperative RDMA 
write LMT protocol

● The Gemini DMA engine (BTE) is normally used for these transfers



Enhancing MPICH2 on XE for Better MPI 
Progress - Goals

● Keep complexity/new software to a minimum 

● Minimize impact on short message latency/message ra te

● Don’t focus on a single message transfer protocol p ath for 
providing MPI progress (e.g. don’t focus just on RD MA 
read protocol)
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read protocol)

● First phase focuses on better progression of longer  
message sizes (32 – 64 KB or longer)



……

… …

MPICH2 - Progress Thread Model 

● Each MPI rank on a node starts 
an extra progress thread during 
MPI_Init.

● An extra completion queue (CQ) 
is created with blocking attribute 
during MPI_Init

● The progress threads call 
GNI_CqWait and remain 
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… …

application threadprogress thread

● The progress threads call 
GNI_CqWait and remain 
blocked in the kernel until an 
interrupt is delivered by the 
Gemini NIC indicating progress 
on an MPI message receive or 
send

● Interrupts are only generated 
when progressing inter-node 
LMT (rendezvous) messages



LMT RDMA Write Path – No Progress

Sender ReceiverSMSG Mailboxes

PE 1

PE 82

PE 5
PE 22

PE 96

4. Register Chunk of App 2. Register Chunk4. Register Chunk of App 
Send Buffer

2. Register Chunk
of App Recv Buffer
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LMT RDMA Write Path – With Progress

Sender ReceiverSMSG Mailboxes

PE 1

PE 82

PE 5
PE 22

PE 96

4. Register Chunk of App 2. Register Chunk4. Register Chunk of App 
Send Buffer

2. Register Chunk
of App Recv Buffer
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BTE RX CQ



Core Specialization and MPI 
Progress
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Progress



Core Specialization

● Modifications to the Linux kernel to allow for dyna mic 
partitioning of the cores on a node between applica tion 
threads and OS kernel threads and system daemons

● Provides an interface to allow application librarie s to 
specify whether threads/processes it creates are to  be 
scheduled on the application partition or the OS pa rtition
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scheduled on the application partition or the OS pa rtition

● User of a parallel application specifies at launch time how 
many cores, if any, per node to reserve for the OS partition



Core Specialization and MPI progress

● Typical HPC application threads tend to run hot , i.e. they 
don’t typically make calls that result in yielding of the core 
on which they are scheduled

● Because of this, MPI progress threads need to have at 
least one core of a compute unit available per node for 
efficient handling of interrupts received from Gemi ni
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efficient handling of interrupts received from Gemi ni

● Core Specialization provides a convenient way to pa rtition 
cores on a node between hot application threads, and cool
system service daemon threads as well as MPI progre ss 
threads. 



Job Container/Corespec Example

int disable_job_aff_algo(void) {

int rc;

int fd = open("/proc/job", O_WRONLY);

if (fd == -1){

return -1;

}

rc = write(fd, "disable_affinity_apply", 
strlen("disable_affinity_apply"));

if (rc < 0){

close(fd);

return -1;

}

close(fd);

Tell job container package that 
the next thread/process created 
by this process should not be 
placed like an application 
thread/process.
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close(fd);

return 0;

}

int task_is_not_app(void) {
size_t count;
FILE *f;
char zero[]="0";
char   filename[PATH_MAX];

snprintf(filename, sizeof(filename),"/proc/self/tas k/%ld/task_is_app",
syscall(SYS_gettid));

f = fopen(filename, "w");
if (!f) {

return -1;
}

count = fwrite(zero,sizeof(zero),1,f);
if (count != 1) {

fclose(f);
return -1;

}
fclose(f);
return 0;

}

Tell CoreSpec package that this 
task (thread) should be 
scheduled on OS partition if 
one is available, otherwise use 
default Linux scheduler policy.



MPI Asynchronous Progress - enabling

● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple
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Results
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Sandia MPI Benchmark (mpi_overhead)

Measures MPI message overhead:

iter_twork_t

overhead = iter_t – work_t
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MPI_Irecv()

MPI_Wait()
base_t

Measures application availability:

avail =  1 – (iter_t – work_t)/base_t

http://www.cs.sandia.gov/smb/index.html



SMB – Receive side 64 KB message size 
(no progress)
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SMB – Receive side 64 KB message size
(progress enabled)
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Availability – no progress
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Availability – progression enabled
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S3D Application

● Hybrid MPI/OpenMP
● Joint work by ORNL and

Cray to prepare app for
either using accelerators
or OpenMP only on node

● Large messages for the
data set considered

|-------------------------------------------------- ----

| Time%   | Time       | -- |   Calls |Total

|-------------------------------------------------- ----

100.0%    | 333.554284 | -- | 2022296 |Total

|-------------------------------------------------- ----

|  56.7%  | 189.059471 | -- |  605408 |USER

||================================================= ====

|  38.3%  | 127.905679 | -- |  869027 |MPI

||------------------------------------------------- ----
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● Large messages for the
data set considered ||  23.7% |  78.906595 | -- |   61200 |mpi_waitall_

||  11.8% |  39.426609 | -- |    6960 |mpi_wait_

||   2.4% |   7.933348 | -- |  399480 |mpi_isend_

||================================================= ====

|   4.1%  |  13.729663 | -- |  546009 |OMP

|…

MPI Msg 

Bytes

MPI Msg 

Count

< 16 Bytes 16 – 256B 

Bytes

256 – 4K 

Bytes

4K – 64K 

Bytes

64 K – 1M 

Bytes

2223830363

6

401311 1795 27 100806 2 298681



S3D Timings with and without Progression
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MILC Application

● Flat MPI application
● Message sizes more varied, both eager and 

rendezvous protocols are being used
● Significant amount of intra-node 

messaging
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MILC Application – MPI_Wait time

● App was modified to measure time spent in core 
gather/scatter communication scheme

● Non-blocking send/recvs used with some intervening 
work

● Max MPI_Wait time reduced significantly
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MILC Application – actual runtime

● The actual runtime changed much more modestly
● Load imbalance and MPI_Allreduce sync points may lim it 

the actual speedup for this particular job type for  MILC
● ~8 % improvement at 8192 ranks
● ~2 % improvement at 4096 ranks
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Conclusions

● Thread-based method to progress does show some 
promise based on micro-benchmarks

● The current approach can be effective for applicati ons 
with larger messages (at least 32 KB), but a mixtur e of 
messages using eager and rendezvous path limits the  
usefulness of the progress threads

5/3/2012 Cray User Group Proceedings 2012
30

usefulness of the progress threads

● Not shown in the data here, but in the paper, that for flat 
MPI codes, CoreSpec is highly recommended when tryin g 
to use this thread-based progress mechanism



Future Work

● Enhance GNI interface to allow for more efficient u se of 
the DMA (BTE) engine, allowing for better handling of 
shorter MPI messages (< 32KB)

● Use extensions to the CoreSpec/job package to sched ule 
the progress threads on unused hyperthreads for next  
generation of Gemini interconnect
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generation of Gemini interconnect

● Enhancements to GNI to more efficiently wake up 
progress threads

● Integrate the improved progress thread framework ba ck 
into mainline Nemesis MPICH2 code
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