
Toward MPI Asynchronous
Progress on Cray XE Systems

Howard Pritchard – howardp@cray.com

5/3/2012 Cray User Group Proceedings 2012
1

Howard Pritchard – howardp@cray.com
Duncan Roweth
David Henseler
Paul Cassella

Cray, Inc.

Overview

● MPI Progress - what is it?
● XE6 (Gemini) Features relevant to MPI progress
● MPICH2 Enhancements for MPI progress on Gemini
● Core Specialization and MPI progress
● Benchmark and application results
● Future work

5/3/2012 Cray User Group Proceedings 2012
2

● Future work

● Determines how an MPI communication operation
completes once it has been initiated

● Strict interpretation
● Once a communication has been initiated no further MPI calls are

required in order to complete it

MPI Progress Rule

5/3/2012 Cray User Group Proceedings 2012
3

● Weak interpretation
● An application must make further MPI library calls in order to make

progress

● Primarily an issue for point-to-point calls, but al so relevant
to non-blocking collectives – to be introduced in MP I
version 3.

Receive side progression example

● A well written application should
post its receives early so as to
overlap data transfer with
computation

● But messages typically arrive
during the computation

● Matching occurs and bulk data

MPI_Irecv()

5/3/2012 Cray User Group Proceedings 2012
4

● Matching occurs and bulk data
transfer starts in the next MPI
call, MPI_Wait() if only weak MPI
progression interpretation
supported

● How do we achieve independent
progression?
● Asynchronous progress thread(s)
● Offload to the NIC

Computation

MPI_Wait()

Message arrives

What Gemini Hardware Provides

5/3/2012 Cray User Group Proceedings 2012
5

Gemini Hardware Features and MPI Progress

● DMA Engine with four virtual channels
● Local interrupt can be generated along with a Completion Queue

Event (CQE) upon completion of a TX descriptor (RDMA transaction)
● Remote interrupt and remote CQE can be generated at a target node

when a RDMA transaction has completed
● RDMA fence capability

● Completion Queues configurable for polling or block ing

5/3/2012 Cray User Group Proceedings 2012
6

● Completion Queues configurable for polling or block ing
(interrupt driven)

● Gemini has low overhead method for a process operat ing
in user-space to generate an interrupt at a remote node
(along with a CQE)

● No explicit support for MPI

MPICH2 Enhancements to Support
Asynchronous Progress

5/3/2012 Cray User Group Proceedings 2012
7

Asynchronous Progress

MPICH2 on XE - Basics

● Based on Argonne National Lab (ANL) MPICH2 Nemesis
CH3 channel

● A GNI Nemesis Network Module (Netmod) interfaces t he
upper part of MPICH2 to the XE network software sta ck

● Full support for MPI -2 thread safety level

5/3/2012 Cray User Group Proceedings 2012
8

● Full support for MPI -2 thread safety level
MPI_THREAD_MULTIPLE

● Progress thread infrastructure (although simplistic)
already exists in the library

MPICH2 on XE Basics (2)

● The eager protocol both for intra-node and inter-no de
messaging is CPU intensive and not suitable for
asynchronous progress

● The rendezvous path for intra-node messages is also CPU
intensive and not suitable for asynchronous progres s

5/3/2012 Cray User Group Proceedings 2012
9

● The rendezvous – Long Message Transfer (LMT) – path f or
inter-node messages is not CPU intensive (usually):
● Rendezvous messages up to 4 MB in size normally use a RDMA read

LMT protocol
● Messages larger than 4 MB, or in the case of shorter messages when

hardware resource depletion is occurring, use a cooperative RDMA
write LMT protocol

● The Gemini DMA engine (BTE) is normally used for these transfers

Enhancing MPICH2 on XE for Better MPI
Progress - Goals

● Keep complexity/new software to a minimum

● Minimize impact on short message latency/message ra te

● Don’t focus on a single message transfer protocol p ath for
providing MPI progress (e.g. don’t focus just on RD MA
read protocol)

5/3/2012 Cray User Group Proceedings 2012
10

read protocol)

● First phase focuses on better progression of longer
message sizes (32 – 64 KB or longer)

……

… …

MPICH2 - Progress Thread Model

● Each MPI rank on a node starts
an extra progress thread during
MPI_Init.

● An extra completion queue (CQ)
is created with blocking attribute
during MPI_Init

● The progress threads call
GNI_CqWait and remain

5/3/2012 Cray User Group Proceedings 2012
11

… …

application threadprogress thread

● The progress threads call
GNI_CqWait and remain
blocked in the kernel until an
interrupt is delivered by the
Gemini NIC indicating progress
on an MPI message receive or
send

● Interrupts are only generated
when progressing inter-node
LMT (rendezvous) messages

LMT RDMA Write Path – No Progress

Sender ReceiverSMSG Mailboxes

PE 1

PE 82

PE 5
PE 22

PE 96

4. Register Chunk of App 2. Register Chunk4. Register Chunk of App
Send Buffer

2. Register Chunk
of App Recv Buffer

Cray User Group Proceedings 2012
12

5/3/2012

LMT RDMA Write Path – With Progress

Sender ReceiverSMSG Mailboxes

PE 1

PE 82

PE 5
PE 22

PE 96

4. Register Chunk of App 2. Register Chunk4. Register Chunk of App
Send Buffer

2. Register Chunk
of App Recv Buffer

Cray User Group Proceedings 2012
13

5/3/2012

BTE RX CQ

Core Specialization and MPI
Progress

5/3/2012 Cray User Group Proceedings 2012
14

Progress

Core Specialization

● Modifications to the Linux kernel to allow for dyna mic
partitioning of the cores on a node between applica tion
threads and OS kernel threads and system daemons

● Provides an interface to allow application librarie s to
specify whether threads/processes it creates are to be
scheduled on the application partition or the OS pa rtition

5/3/2012 Cray User Group Proceedings 2012
15

scheduled on the application partition or the OS pa rtition

● User of a parallel application specifies at launch time how
many cores, if any, per node to reserve for the OS partition

Core Specialization and MPI progress

● Typical HPC application threads tend to run hot , i.e. they
don’t typically make calls that result in yielding of the core
on which they are scheduled

● Because of this, MPI progress threads need to have at
least one core of a compute unit available per node for
efficient handling of interrupts received from Gemi ni

5/3/2012 Cray User Group Proceedings 2012
16

efficient handling of interrupts received from Gemi ni

● Core Specialization provides a convenient way to pa rtition
cores on a node between hot application threads, and cool
system service daemon threads as well as MPI progre ss
threads.

Job Container/Corespec Example

int disable_job_aff_algo(void) {

int rc;

int fd = open("/proc/job", O_WRONLY);

if (fd == -1){

return -1;

}

rc = write(fd, "disable_affinity_apply",
strlen("disable_affinity_apply"));

if (rc < 0){

close(fd);

return -1;

}

close(fd);

Tell job container package that
the next thread/process created
by this process should not be
placed like an application
thread/process.

5/3/2012 Cray User Group Proceedings 2012
17

close(fd);

return 0;

}

int task_is_not_app(void) {
size_t count;
FILE *f;
char zero[]="0";
char filename[PATH_MAX];

snprintf(filename, sizeof(filename),"/proc/self/tas k/%ld/task_is_app",
syscall(SYS_gettid));

f = fopen(filename, "w");
if (!f) {

return -1;
}

count = fwrite(zero,sizeof(zero),1,f);
if (count != 1) {

fclose(f);
return -1;

}
fclose(f);
return 0;

}

Tell CoreSpec package that this
task (thread) should be
scheduled on OS partition if
one is available, otherwise use
default Linux scheduler policy.

MPI Asynchronous Progress - enabling

● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

5/3/2012 Cray User Group Proceedings 2012
18

Results

5/3/2012 Cray User Group Proceedings 2012
19

Sandia MPI Benchmark (mpi_overhead)

Measures MPI message overhead:

iter_twork_t

overhead = iter_t – work_t

5/3/2012 Cray User Group Proceedings 2012
20

MPI_Irecv()

MPI_Wait()
base_t

Measures application availability:

avail = 1 – (iter_t – work_t)/base_t

http://www.cs.sandia.gov/smb/index.html

SMB – Receive side 64 KB message size
(no progress)

100

120

140

160

180

base_tse
cs

5/3/2012 Cray User Group Proceedings 2012
21

0

20

40

60

80
base_t
work_t
iter_t

µ
se

cs

work loop iterations

SMB – Receive side 64 KB message size
(progress enabled)

100

120

140

160

180

base_tse
cs

5/3/2012 Cray User Group Proceedings 2012
22

0

20

40

60

80
base_t
work_t
iter_t

work loop iterations

µ
se

cs

Availability – no progress

60

70

80

90

100

A
va

ila
bi

lit
y

(%
)

5/3/2012 Cray User Group Proceedings 2012
23

0

10

20

30

40

50

0 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

Sender
ReceiverA

va
ila

bi
lit

y
(%

)

Message length

Availability – progression enabled

60

70

80

90

100

A
va

ila
bi

lit
y

(%
)

5/3/2012 Cray User Group Proceedings 2012
24

0

10

20

30

40

50

0 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

Sender
ReceiverA

va
ila

bi
lit

y
(%

)

Message length

S3D Application

● Hybrid MPI/OpenMP
● Joint work by ORNL and

Cray to prepare app for
either using accelerators
or OpenMP only on node

● Large messages for the
data set considered

|-- ----

| Time% | Time | -- | Calls |Total

|-- ----

100.0% | 333.554284 | -- | 2022296 |Total

|-- ----

| 56.7% | 189.059471 | -- | 605408 |USER

||=== ====

| 38.3% | 127.905679 | -- | 869027 |MPI

||--- ----

5/3/2012 Cray User Group Proceedings 2012
25

● Large messages for the
data set considered || 23.7% | 78.906595 | -- | 61200 |mpi_waitall_

|| 11.8% | 39.426609 | -- | 6960 |mpi_wait_

|| 2.4% | 7.933348 | -- | 399480 |mpi_isend_

||=== ====

| 4.1% | 13.729663 | -- | 546009 |OMP

|…

MPI Msg

Bytes

MPI Msg

Count

< 16 Bytes 16 – 256B

Bytes

256 – 4K

Bytes

4K – 64K

Bytes

64 K – 1M

Bytes

2223830363

6

401311 1795 27 100806 2 298681

S3D Timings with and without Progression

3

4

5

6

T
im

e
 p

e
r

S
3

D
 t

im
e

st
e

p
 (

se
co

n
d

s)

5/3/2012 Cray User Group Proceedings 2012
26

0

1

2

13 14 15 16

T
im

e
 p

e
r

S
3

D
 t

im
e

st
e

p
 (

se
co

n
d

s)

Application cores per node

Without progression

With progression

Runs done on 64 XK nodes

MILC Application

● Flat MPI application
● Message sizes more varied, both eager and

rendezvous protocols are being used
● Significant amount of intra-node

messaging

1.2E+06

1.4E+06

m
es

sa
ge

 c
ou

nt

5/3/2012 Cray User Group Proceedings 2012
27

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

Message length

m
es

sa
ge

 c
ou

nt

MILC Application – MPI_Wait time

● App was modified to measure time spent in core
gather/scatter communication scheme

● Non-blocking send/recvs used with some intervening
work

● Max MPI_Wait time reduced significantly

1000

1200

5/3/2012 Cray User Group Proceedings 2012
28

0

200

400

600

800

2048 4096 8192

avg. wait time with progress

max wait time with progress

avg. wait time no progress

max wait time, no progress

se
co

nd
s

2048 runs had to be run 16
ranks/per nod due to memory size

MILC Application – actual runtime

● The actual runtime changed much more modestly
● Load imbalance and MPI_Allreduce sync points may lim it

the actual speedup for this particular job type for MILC
● ~8 % improvement at 8192 ranks
● ~2 % improvement at 4096 ranks

3500

4000

4500

5/3/2012 Cray User Group Proceedings 2012
29

se
co

nd
s

0

500

1000

1500

2000

2500

3000

3500

2048 4096 8192

no progress

with progress

Conclusions

● Thread-based method to progress does show some
promise based on micro-benchmarks

● The current approach can be effective for applicati ons
with larger messages (at least 32 KB), but a mixtur e of
messages using eager and rendezvous path limits the
usefulness of the progress threads

5/3/2012 Cray User Group Proceedings 2012
30

usefulness of the progress threads

● Not shown in the data here, but in the paper, that for flat
MPI codes, CoreSpec is highly recommended when tryin g
to use this thread-based progress mechanism

Future Work

● Enhance GNI interface to allow for more efficient u se of
the DMA (BTE) engine, allowing for better handling of
shorter MPI messages (< 32KB)

● Use extensions to the CoreSpec/job package to sched ule
the progress threads on unused hyperthreads for next
generation of Gemini interconnect

5/3/2012 Cray User Group Proceedings 2012
31

generation of Gemini interconnect

● Enhancements to GNI to more efficiently wake up
progress threads

● Integrate the improved progress thread framework ba ck
into mainline Nemesis MPICH2 code

Acknowledgements

● John Levesque and Steve Whalen for assistance with
MILC and S3D.

This material is based upon work supportedby the Defense Advanced Research
Projects Agency under its Agreement No. HR0011-07-9-0001. Any opinions,

5/3/2012 Cray User Group Proceedings 2012
32

Projects Agency under its Agreement No. HR0011-07-9-0001. Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency. This work was supported in
part by the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract DE-AC02-06CH11357

