Open MPI for Cray XE/XK Systems

Samuel K. Gutierrez – LANL

Nathan T. Hjelm – LANL

Manjunath Gorentla Venkata – ORNL

Richard L. Graham - Mellanox

Cray User Group (CUG) 2012

May 2, 2012

UNCLASSIFIED

A Collaborative Effort

UNCLASSIFIED-LA-UR-12-20482

First Things First – Open MPI Overview

- Open-Source Implementation of the MPI-2 Standard
- Developed and Maintained By
 - Academia
 - Industry
 - National Laboratories

- Supports a Range of High-Performance Network Interfaces
 - Infiniband
 - Cray SeaStar
 - ... and Now Cray Gemini

The Gemini System Interconnect³ – An Overview

- Network Used by the Cray XE and XK System Families
- Successor to the Cray SeaStar* Network Interconnect
- 3D Torus Network Built of Gemini ASICs
- Gemini ASIC
 - Provides 2 NICs and a 48-port Router
 - Connects 2 Opteron Nodes
 - Provides 10 Torus Connections 2 x (+X, -X, +Z, -Z) 1 x (+Y, -Y)

User Application

MPI API

Modular Component Architecture (MCA)

Framework			Framework						Framework		
Component	:	Component	Component	:	Component	Component		Component	Component	:	Component

UNCLASSIFIED-LA-UR-12-20482

MPI API

E.g. MPI_Send, MPI_Recv, MPI_Bcast

MPI API

Modular Component Architecture (MCA)

Framework			Framework						Framework		
Component	:	Component	Component	:	Component	Component		Component	Component	:	Component

- Modular Component Architecture (MCA)
 - Backbone of Open MPI
 - Plugin System
 - Finds, Loads, and Parameterizes Components
- Open MPI Hearts MCA Parameters

Modular Component Architecture (MCA)

Framework			Framework						Framework		
Component	:	Component	Component	:	Component	Component		Component	Component	:	Component

UNCLASSIFIED-LA-UR-12-20482

Frameworks

- Functionality Specification
- E.g. Resource Manager, Point-to-Point, Collective Algorithm

Modular Component Architecture (MCA)											
Framework			Framework						Framework		
Component		Component	Component	:	Component	Component		Component	Component	:	Component

UNCLASSIFIED-LA-UR-12-20482

- Components
 - Implementation of a Framework Type A Plugin
 - E.g. SLURM RAS Component, Open IB BTL Component
- What a Developer Typically Creates to Support New Functionality
- Module: an Instance of a Component

Modular Component Architecture (MCA)

Open MPI's Plugin Architecture – Main Code Sections¹

- Open MPI Layer (OMPI)
 - MPI API and Support Logic
- Open Run-Time Environment (ORTE)
 - Run-Time System
- Open Portability Access Layer (OPAL)
 - OS-Specific/Utility Code

Operating System

UNCLASSIFIED-LA-UR-12-20482

The Port - ORTE

Environment-Specific Services (ESS)

- Run-Time Environment (RTE) Setup
- Messaging, Routing, Module Exchange (ModEx)
- Process Naming Job Size and Locality Information

Process Lifecycle Management (PLM)

- Central Switchyard for All Process Management
- Resource Allocation, Process Mapping, Process Launch, Process Monitoring

Resource Allocation Subsystem (RAS)

Job Resource Availability and Allocation

RML Routing Table (ROUTED)

"Next Hop" Routing Services – De Bruijn

OMPI Point-to-Point Overview¹

PML

UNCLASSIFIED-LA-UR-12-20482

Byte Transfer Layers (BTLs)¹

Transport Interface Support Plugins

Think: Byte Transfer Driver

Thin Abstraction Layer Above Target Device

- Source/Destination Preparation
- Protocol Definition Short, Medium, Long
- Send, Sendl, Put, Get

No Notion of MPI Semantics

UNCLASSIFIED-LA-UR-12-20482

The Port: New BTLs

Kernel-Assisted (Single Copy) Shared Memory BTL

- Used Exclusively for Intra-Node Communication
- Leverages XPMEM (http://code.google.com/p/xpmem/)
- Currently Named vader in Development Trunk

Gemini BTL

- Used Exclusively for Inter-Node Communication
- Leverages Cray's Generic Network Interface (uGNI)
- Currently Named ugni in Development Trunk

UNCLASSIFIED-LA-UR-12-20482

BTL Management Layer¹

- Manages Multiple BTLs Within in Single Process
- No Modifications Needed for Port

UNCLASSIFIED-LA-UR-12-20482

Point-to-Point Management Layer¹

- Provides Point-to-Point Functionality Required by the MPI Layer
- Minor Modification Required for Port

UNCLASSIFIED-LA-UR-12-20482

More About the XPMEM BTL - Vader

MPICH Nemesis-like Design

- Lock-Free Message Queues
- "Fast Boxes" I.e. Per-Peer Receive Queues for Short Messages

Copy Backend Changes Based on Message Size

- E.g. **bcopy** [a,b) **memcpy** Otherwise
- User Tunable with Good Defaults

Cross-Process Memory Mapping Allows for RDMA-Like Semantics

- Copy-In/Copy-Out (CICO) Avoided
- No Backing Store Required
- Heavy Use of Registration Cache

XPMEM Support Requires Kernel Patch and User-Level Library

Already Available and Leveraged by Cray's Native MPI Implementation

More About the uGNI BTL

Protocols

- Short Message Fast Memory Access (FMA) Short Messaging (SMSG)
- Medium Message FMA RDMA
- Long Message Block Transfer Engine (BTE) RDMA

Lazy Connection Establishment

Resource Utilization Directly Related to Application Communication Characteristics

Improved Collectives: Cheetah²

ORNL's Cheetah – A Framework for Collective Operations

- Collectives Implemented with Collective Primitives
- Each Primitive is Optimized for a Particular Communication Path
- Progressed Asynchronously and Independently When Semantics Permit

UNCLASSIFIED-LA-UR-12-20482

Improved Collectives: Cheetah²

- Base Collectives (BCOL) Implements Collective Primitives
- Subgrouping (SBGP) Provides Process Grouping Rules
- Multilevel (ML) Coordinates Collective Primitive Execution
- For Design and Implementation Details: See Cheetah Publications

UNCLASSIFIED-LA-UR-12-20482

Improved Collectives: uGNI BCOL Barrier

Implemented uGNI Cheetah Barrier

- Fan-In/Fan-Out Algorithm
- Atomic Barrier Leverages Atomic Operations Provided by the uGNI Library
- Currently Only Supports MPI_Barrier

UNCLASSIFIED-LA-UR-12-20482

Performance Evaluation - Setup

Test Beds

- Cielo 142,304 Core XE6
- Enhanced Jaguar 299,008 Core XK6

Point-to-Point Latency

OSU's MPI Mico-Benchmark Suite – osu_latency & osu_multi_lat

Point-to-Point Bandwidth

OSU's MPI Mico-Benchmark Suite – osu_bibw & osu_mbw_mr

Barrier Latency

MPI_Barrier in a Tight Loop – Average Latency Reported

Vader Latency on AMD Magny-Cours

Vader Bandwidth on AMD Magny-Cours

uGNI BTL Latency on XE6

uGNI BTL Bandwidth on XE6

Performance of Cheetah Barriers on XK6

Ongoing/Future Work

Point-to-Point Stabilization/Optimization

- Already Tested at 128k Processors (Cielo)
- Investigating New Protocols

Continue Collectives Work

- Evaluate Performance and Scalability Characteristics of the Atomic Collective Operations at Larger Scales
- Evaluate the Potential for Implementing Other Collective Operations Using the Atomic Collective Operations
- Work with Friendly Testers
- Prepare for General Release

Thanks!

Questions?

- Questions?
- Comments?

References

- [1] Open MPI. 13 Feb. 2012 < open-mpi.org >.
- [2] R. Graham, et al., "Cheetah: A Framework for Scalable Hierarchical Collective Operations," CCGRID 2011, 2011.
- [3] R. Alverson, et al., "The Gemini System Interconnect," in High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on, Aug. 2010, pp. 83 -87.

