
The Impact of a Fault Tolerant MPI on Scalable
Systems Services and Applications

Richard Graham∗, Joshua Hursey∗, Geoffroy Vallée∗, Thomas Naughton∗ and Swen Boehm∗
∗ Oak Ridge National Laboratory, Oak Ridge, TN USA 37831
Email: {rlgraham,hurseyjj,valleegr,naughtont,bohms}@ornl.gov

Abstract—Exascale targeted scientific applications must be
prepared for a highly concurrent computing environment where
failure will be a regular event during execution. Natural and
algorithm-based fault tolerance (ABFT) techniques can of-
ten manage failures more efficiently than traditional check-
point/restart techniques alone. Central to many petascale ap-
plications is an MPI standard that lacks support for ABFT. The
Run-Through Stabilization (RTS) proposal, under consideration
for MPI 3, allows an application to continue execution when
processes fail. The requirements of scalable, fault tolerant MPI
implementations and applications will stress the capabilities of
many system services. System services must evolve to efficiently
support such applications and libraries in the presence of system
component failures. This paper discusses how the RTS proposal
impacts system services, highlighting specific requirements. Early
experimentation results from Cray systems at ORNL using
prototype MPI and runtime implementations are presented. Ad-
ditionally, this paper outlines fault tolerance techniques targeted
at leadership class applications.

Keywords-MPI; Fault Tolerance; Runtime Environment; Algo-
rithm Based Fault Tolerance; Run-through Stabilization

I. INTRODUCTION

Scientific applications targeting exascale-class High Perfor-
mance Computing (HPC) machines must be prepared for a
highly concurrent computing environment in which system
component failure will be a normal event during application
execution [1]. As such, application developers are investi-
gating natural and Algorithm-Based Fault Tolerance (ABFT)
techniques that will allow them to manage such process and
memory failures during application execution. These fault tol-
erance techniques often allow the application to recover from
failure more efficiently than what traditional checkpoint/restart
techniques alone can provide.

The Message Passing Interface (MPI) standard supports
many of the leadership class HPC applications on existing
petascale systems. However, the MPI standard currently lacks
semantics and interfaces for sustained application execution
in the presence of process failures. The MPI Forum stan-
dardization body is working to support ABFT applications
and libraries through the efforts of the Fault Tolerance Work-
ing Group. The Run-Through Stabilization (RTS) proposal,
currently under consideration for MPI 3.0, represents a first
step towards a comprehensive fault tolerant MPI standard
supporting process fault tolerant applications and libraries.
This proposal allows an application to continue execution even
when MPI processes fail during execution. The complemen-
tary Process Recovery proposal will follow the RTS proposal

allowing the application to replace failed processes in their
execution environment.

The requirements of a fault tolerant MPI implementation
and application will stress the capabilities of existing system
services. System services will need to evolve and develop
novel interfaces to work efficiently with scalable, fault tolerant
applications. The resource manager, scheduler and network
must all be prepared to support such applications in the
presence of various degrees of system component failure.

This paper is organized as follows with related work dis-
cussed in the relevant sections. Section II outlines some of
the fault tolerance techniques leadership class applications are
experimenting with to prepare for future systems with high
failure rates. Section III describes the current RTS proposal
under consideration by the MPI Forum which is designed to
support those applications. Section IV describes the require-
ments on the runtime environment to support fault tolerance
at the MPI and application levels. Section V discusses cross-
cutting requirements that span the entire system software
stack highlighting specific requirements, and collaboration
opportunities. Before concluding in Section VII, some early
experimentation results from Cray systems at Oak Ridge Na-
tional Laboratory (ORNL) using prototype MPI and runtime
implementations are presented in Section VI.

II. ALGORITHM-BASED FAULT TOLERANCE TECHNIQUES

This section describes some of the ABFT techniques with
which leadership class applications are experimenting. Many
of the techniques described in this section are well established
in literature, but their use in applications has been limited by
the lack of support from underlying system services like MPI.
The User-Level Failure Mitigation (ULFM) RTS proposal
(described in Section III) is designed to allow applications
to experiment with these and other techniques in a portable
manner.

A. Faulty Subgroups

Ensemble-style applications divide their work among au-
tonomous groupings of worker processes, where each worker
group is given a single task to complete. The ensemble groups
are managed by a designated group of manager processes.
If each of the worker and manager groups contain only one
process each, this style resembles a traditional manager-worker
model. More often each of the worker and manager groups

contain a large number of processes working in parallel on
the given task.

Since each of the worker groups is autonomous to the other
worker groups, the failure of one worker group does not affect
the completion of a separate worker group. The manager group
must receive notification of the failure of a worker group to
determine if the task given to that failed group can be either
given to another worker group or discarded. In a 2004 paper by
Gropp and Lusk, the authors outlined how a general manager-
worker application might achieve a degree of fault tolerance
given a high-quality MPI implementation that provides process
fault tolerance error handling beyond what is specified by the
MPI standard [2]. The ULFM RTS proposal formalizes the
expected semantics so such applications can be built portably
upon any MPI standard compliant implementation.

When a single process fails in a worker group, the worker
group may manage the failure within their group. If the worker
group is able to recover from the loss of the peer process
then it can do so without the need for external intervention
of the manager group. A basic technique for handling process
failure in the worker group is to cause all processes in that
worker group to fail. To do so an application needs only
to set the error handler on the worker group communicator
to MPI ERRORS ARE FATAL. Even if the worker group
attempts to recover from the loss there are situations in which
it might decide to terminate the group due to a set of failures
that exceed their failure model. In which case any process in
the worker group can call MPI ABORT on the worker group
communicator causing just those processes in that group to
terminate.

To understand how MPI communicator error handlers can
be used to support fault tolerance in ensemble applica-
tions, consider the following simple base case. In this ex-
ample assume that the failure of a manager is critical to
the entire application, and individual worker groups can-
not tolerate process failure so failure of a worker pro-
cess is critical to the worker group. Therefore when a
worker group fails it is important that the failure does not
cause the remainder of the application to abort due to the
cascading nature of the MPI ERRORS ARE FATAL er-
ror handler. The application must replace the default, fa-
tal error handler on MPI COMM WORLD with, at least,
MPI ERRORS RETURN. This will prevent the failure of
a worker group from triggering the failure of the rest of
the application. Since this example assumes the failure of a
manager to be critical to the entire application, the manager
communicator must set a custom error handler that calls
MPI ABORT on MPI COMM WORLD when a process
fails in the manager group. Each of the individual worker
groups create a group-local communicator and use the default,
fatal error handler MPI ERRORS ARE FATAL. From this
base case example, an application can start experimenting
with more resilient manager groups, and specialized worker
groups that can tolerate various sequences of process failure.
Such application experimentation is ongoing with a number
of applications at ORNL.

The MPI library provides the necessary functionality to
contain fatal behavior to just the effected communicators, so
the runtime environment does not need to know about the
groupings of processes. The runtime environment must only
provide the ability to remote terminate a process when directed
to do so by the MPI library.

B. Recovery Blocks

Applications that are iterative in nature may find the concept
of a recovery block to be a useful fault tolerance programming
construct to apply to their application. The recovery block
model breaks up the code into a section of code that performs
some calculation followed by an acceptance test [3]. If the test
fails the application knows that the preceding section of code
executed incorrectly, in the context of this discussion, possibly
due to process failure – though other types of errors can be
detected and handled this way. An application may choose
to terminate the execution, rollback modified data and retry
the previous section of code, or retry the previous calculation
using a different technique. The notion of recovery blocks is
similar to transactions in database systems, but in the context
of the ULFM RTS proposal the user is responsible to rolling
back modified data when the acceptance test fails, if necessary.

Applications will need to use a fault tolerant agreement
operation when constructing acceptance tests that are able to
provide the same pass/fail information to all processes even
in the presence of process failure. The MPI COMM AGREE
operation defined by the ULFM RTS proposal provides the
application with a fault tolerant agreement collective operation
that returns a logical AND over the input flag value. Figure 1
presents a sketch of a recovery block with associated accep-
tance test. In the simplified code sketch the only error handled
is of process failure, and since collectives are guaranteed to
complete and never hang in the presence of process failure it is
acceptable to jump directly to the acceptance test rendezvous
point at the first sign of error.

Application developers experimenting with this fault toler-
ance technique must be careful to manage the overhead of the
synchronization in this model. Some applications may find that
they are able to use the nonblocking MPI COMM IAGREE
to overlap the execution of the acceptance test with the setup
for the next recovery block.

C. Linear Algebra Libraries

ABFT dense linear algebra operations are possibly the most
well studied of all ABFT techniques [4], [5], [6], [7]. The
Fault Tolerant Linear Algebra (FT-LA) project is encapsulating
many of these techniques into a library with a similar set of
functionality as ScaLAPACK [8].

Most of the linear algebra ABFT techniques use a data en-
coding technique similar to diskless checkpointing to recover
data lost to process failure [9]. A checksum of the data in a
slice of the matrix is stored in a spare process. When a process
failure occurs, the checksum data is used to recover the lost
data and the failed process is, often, replaced.

1 int rc, allsucceeded;
2
3 // Recovery Block
4 rc = MPI Allreduce(..., comm);
5 if(MPI ERR PROC FAILED == rc) {
6 goto acceptance test;
7 }
8 rc = MPI Allreduce(..., comm);
9 if(MPI ERR PROC FAILED == rc) {

10 goto acceptance test;
11 }
12
13 // Acceptance Test
14 acceptance test:
15 // Check result of computation
16 // The return code in this example.
17 allsucceeded = (MPI SUCCESS == rc);
18 // Agree upon acceptance test
19 MPI Comm agree(comm, &allsucceeded);
20 // If failed, then the allsucceeded will be ’false’
21 if(!allsucceeded) {
22 // Start recovery action
23 }

Fig. 1. Example of a Recovery Block.

Since these algorithms can be complex to implement cor-
rectly and efficiently, encapsulating them in a library allows
an application to take full advantage of the fault tolerant
algorithms without incurring the overhead of providing the
functionality themselves. Further encapsulation of other ABFT
techniques will make it easier for applications to make the
transition from fault-unaware to fault-aware and, even, fault-
tolerant algorithms. Therefore libraries like FT-LA are a step in
the right direction for application developers concerned about
failures.

III. RUN-THROUGH STABILIZATION PROPOSAL FOR MPI

The MPI Forum’s Fault Tolerance Working Group is
charged with defining a set of semantics and interfaces to
enable fault tolerant applications and libraries to be portably
constructed on top of the MPI interface. The Run-Through
Stabilization (RTS) proposal allows an application to continue
running and using MPI even when one or more processes in
the MPI universe fail without replacing those failed processes.
For the most part, process recovery can be achieved using
the dynamic process management interface in MPI. However
since this is a cumbersome task with the existing interfaces,
the working group is pursuing a process recovery proposal
to complement the RTS proposal. For the purposes of this
paper, we will focus our discussion on the RTS proposal and,
in particular, the simplified version of the proposal entitled:
User-Level Failure Mitigation (ULFM).

The RTS proposal has evolved over time as the working
group incorporates feedback from the user and MPI devel-

oper communities. The ULFM version of the RTS proposal
simplifies previous versions [10] to provide only the essen-
tial functionality necessary to build stronger fault tolerance
capabilities as third-party libraries on top of MPI (such as the
original variations). The interfaces and semantics represented
in the ULFM RTS proposal were strongly influenced by
previous work in the area of fault tolerant interfaces for
MPI. The FT-MPI [11] and MPI/FT [12] projects approached
fault tolerance in slightly different ways. The ULFM RTS
proposal was designed to support most, if not all, of the
functionality provided by these, and other projects through
third-party libraries building upon the exposed interfaces and
semantics.

The ULFM RTS proposal assumes fail-stop process failure
meaning that an MPI process permanently stops communi-
cating with other MPI processes, and its internal state is
lost [13]. Other types of faults not currently addressed by the
MPI standard (i.e, reliable message delivery), like Byzantine
failures [14], are left to the application to address, as necessary.

The application is notified of a process failure once it
attempts to communicate directly (e.g., point-to-point op-
erations) or indirectly (e.g., collective operations) with the
failed process through the return code of the function, and
error handler set on the associated communicator. The ULFM
RTS proposal does not change the default error handler of
MPI ERRORS ARE FATAL, so to use these semantics the
application must explicitly change the error handler to, at least,
MPI ERRORS RETURN on all communicators involved
with fault handling in the application.

For point-to-point operations, direct communication be-
tween two active processes is unaffected by the failure of other,
non-participating processes. For example, if process A fails,
process B can still send messages to process C, and vice versa.
It is not until process B tries to communicate with process A
that an error is raised.

For MPI ANY SOURCE receive operations the semantics
are slightly different than those for directed point-to-point op-
erations. For MPI ANY SOURCE receives the MPI imple-
mentation cannot determine if a new process failure is impor-
tant to the correct completion of the receive operation. As such,
upon MPI internal notification of a process failure, block-
ing, unmatched MPI ANY SOURCE receive operations will
complete in error (MPI ERR PROC FAILED). Asymmetri-
cally, unmatched nonblocking MPI ANY SOURCE receive
operations will not complete in error, but rather raise a
warning error of MPI ERR PENDING. The asymmetry is
necessary so as not to violate the message order match-
ing guarantees provided by MPI. When the user receives
the warning error of MPI ERR PENDING they can either
cancel the request, or acknowledge the failure and continue
waiting on the receive. The MPI COMM FAILURE ACK
and MPI COMM GET FAILURE ACKED1 operations al-
low the application to acknowledge a set of failures, and

1Alternative function names are being consider for many of the new MPI
functions. As such, some of the functions may change their names before
acceptance into the MPI standard. No changes are expected to their semantics.

access the current group of acknowledged failures. After
acknowledgement, the pending request can be passed to a test
or wait operation without raising an error until a subsequent,
unacknowledged process failure occurs.

Collective operations must be fault-aware, meaning that
they will not hang in the presence of failures [15]. To preserve
failure-free performance, collective operations are not required
to provide uniform return codes. Such a synchronization
requirement would severely impact the performance of many
collective operations (e.g., MPI BCAST). It is important to
notice that since communicator creation calls are also collec-
tive they are also not required to provide uniform return codes,
which might result in a partially created communication object.

Since applications often need to reason about the uniform
completion of an operation, like communicator creation, the
ULFM RTS proposal provides a fault tolerant agreement
algorithm in the form of the MPI COMM AGREE opera-
tion [16]. This special collective operation will tolerate existing
and emerging process failure to reach agreement on a specified
boolean value, and return uniformly at all processes. The
agreement operation is useful in determining the success or
failure of a single or set of operations in a recovery block
(See Section II-B).

Depending on when a failure occurs, when it is noti-
fied to each process, and the communication pattern of the
application it is possible for the application to struggle to
determine safe rendezvous recovery points, the absence of
which can often lead to application deadlock. The ULFM
RTS proposal provides a communicator invalidation operation
that revokes the context of the communicator to assist the
application in regaining control in such circumstances. The
MPI COMM REVOKE operation is a local operation that
propagates a signal to all other alive processes in the com-
municator indicating that the context has been revoked. All
outstanding and future operations on that communicator will
immediately return MPI ERR REVOKED, with the excep-
tion of MPI COMM SHRINK and MPI COMM AGREE.

Once a communicator has been revoked, a new communica-
tor containing only the alive processes from the previous com-
municator can be created using the MPI COMM SHRINK
operation. The shrink operation creates a new communica-
tor, and, unlike other communicator creation operations, it
uniformly returns at all alive calling processes with a valid
communication object even in the presence of process failure.

Though this section has focused on communicators, seman-
tics and interfaces are defined by the ULFM RTS proposal for
the entire MPI specification including one-sided windows and
file handles.

IV. RUNTIME REQUIREMENTS

The ULFM RTS proposal enables applications to continue
running and using the HPC system after losing one or more
processes in the MPI universe. HPC system services largely
have not had to support such fault tolerant applications and
middleware libraries. As such, these system services will need

to evolve and develop novel, flexible interfaces to work effi-
ciently with scalable, fault tolerant applications. This section
outlines many of the needs that stem from the ULFM RTS
proposal, and also highlights additional features that would
further enhance such a fault tolerant HPC environment.

In all of the cases below, proper documentation of exposed
interfaces and expected behavior when process failure is en-
countered is paramount to building a supporting infrastructure
for fault tolerant applications. All of the system services
from low-level network drivers to MPI libraries must work in
concert to provide the quality of service that a fault tolerant
application expects.

An HPC runtime system should support different end-
user scenarios to facilitate alternate uses. This includes the
separation of mechanisms and policies for the target platform.
The runtime should provide interfaces that enable the users to
define policies appropriate for their use cases. This enables the
runtime to be reused for different purposes. The focus of this
paper is on the MPI case, but the runtime should be usable
for other common HPC tasks like debuggers, etc.

The MPI library implementation relies on a runtime sys-
tem that provides several fundamental capabilities to enable
application level fault tolerance. A reliable “out-of-band”
communication subsystem should be provided. This aids in the
bootstrapping of higher-level HPC communication services.
There should also be some support for monitoring of the
parallel execution context. The detection and notification of
failures at the runtime level provides an essential service for
the MPI library. The runtime infrastructure should also support
robust process management and clean-up when abnormal
conditions do arise. Additionally, the runtime infrastructure
itself should be resilient in order to guarantee application
execution despite the occurance of failures at large scale.

There must also be interfaces to facilitate recovery (e.g.,
restart process). These recovery mechanisms will be used by
the MPI implementation to restore the system level aspects
of the failed tasks. Fault tolerance at the runtime level must
be clearly separated from fault tolerance at the MPI level.
This division clarifies the semantics for runtime interfaces,
i.e., “contracts”. For example, the transition between runtime
managed resilience and application managed fault tolerance
that is assumed during the transition between runtime ini-
tialization (rte_init()) and MPI Init(). After the MPI
function returns, the application and MPI library govern the
policies for how failures should be managed.

Part of the challenge to provide a runtime that can be used
for fault tolerance at the MPI level is to provide an internal
infrastructure that is scalable and a set of capabilities that can
be used for the implementation of fault tolerance mechanisms.
For instance, a tree-based architecture is a typical choice for
the design of a scalable runtime system, where MPI tasks are
the leaves of the tree, and runtime infrastructure the inner
nodes of the tree: it allows reduction at the level of tree
nodes for scalable communications and enable a fair level
of parallelism based on a arity of the tree. For instance,
on Cray platforms, Application Level Placement Scheduler

(ALPS) is used for the deployment of processes across the
compute nodes. It forms a tree-based control network among
the ALPS daemons on the compute nodes [17]. This tree is
rebalanced based on the number of nodes used when launching
remote tasks. However, standard tree-based architectures have
limitations with respect to fault tolerance. To address this issue,
a solution is to make the distinction between the infrastructure
used during application initialization (typically up to the suc-
cessful execution of MPI INIT) and the infrastructure used by
the application until its finalization (typically from MPI INIT
to MPI FINALIZE). During the first “bootstrap” phase, a basic
tree-based infrastructure is deployed and is then used to startup
more advanced architecture such as a binomial graph (BMG)
based topology [18], which guarantee communications despite
the failure of communication channels by setting up redundant
links between the different processes used to instantiate the
runtime infrastructure. With such a runtime architecture, a
route can always be found for communications between MPI
tasks (via redundant communication channels). Therefore, the
application can still be efficiently deployed at scale and it
is guaranteed that applications can successfully run despite
the failures of communication channels or processes internally
used by the runtime infrastructure. Failures at the application
level can then be handled by the ULFM RTS proposal at the
MPI level, as described in Section III.

V. CROSS-CUTTING REQUIREMENTS

There are some system services that have an effect on all the
layers of the HPC software stack. These cross-cutting services
influence the applications, MPI layer, and runtime in different
ways. In this section we highlight capabilities for three of
these services that are important to support fault tolerance in
an HPC context.

A. Network

The main purpose of an MPI library is to provide an
abstraction from the high performance interconnects in HPC
machines, and to provide tuned versions of common com-
munication patterns to applications. These abstractions have
enabled applications to remain portable over the generations
of HPC systems that they must target.

To provide effective fault tolerance capabilities to the appli-
cation, the MPI library relies on a responsive network driver
interface that is both highly efficient, and has well defined
semantics and interfaces for managing failures. The primary
focus of the ULFM RTS proposal is on process failure, but
such process failure is often caused by the failure of resources
supporting the execution of the process. Machine failure will
cause the loss of one or more processes, as will the failure
of a switch. From the perspective of an MPI application these
are all process failure situations since MPI does not expose a
concept of a machine or switch to the application.

When a connection to a remote process fails the network
driver should communicate to the MPI implementation as
much information regarding this failure as possible. If a single
process has failed, then this might be handled differently than

if a switch failed and the remote processes might still be alive.
In the latter case the MPI library might take further action to
determine if the network has become segmented and if the
remote processes are still reachable via another route. So the
more informative and reliable the error information from the
network driver the more flexibility the MPI library has when
determining the most effective and appropriate fault detection
algorithm for that system. The timeliness of this information is
also important to providing fast notification of process failure
to the application.

The ULFM RTS proposal introduces an revocation oper-
ation that revokes the communication context of a commu-
nicator. This operation will immediately complete in error
(MPI ERR REVOKED) all outstanding operations on the
communicator. The network must have the capability to sup-
port such a request from the MPI implementation. If the
network is managing all of the request matching in hardware,
then it should expose the ability to remove all of the requests
that match a given communicator. Since matching of MPI
messages includes the associated communicator, this might be
as simple as removing all registered requests that match an
appropriate bitmask.

Fault tolerant applications that use MPI ANY SOURCE
receives (e.g., manager/worker style applications) will need
the ability to properly cancel these requests. Further, other
fault tolerant applications that may not need to call the revoke
operation may, instead, require the ability to cancel pending
send operations. Though MPI CANCEL is an existing MPI
operation, it is known to be difficult to support. The MPI
library takes the responsibility for managing the subtle se-
mantics of MPI CANCEL, but the underlying network driver
should expose the ability to remove a single, given request
from the matching queue when asked to do so by the MPI
library.

Network provided collective operations must also be aware
that process failure may occur during the collective operation.
The ULFM RTS proposal requires that these collective oper-
ations never hang in such a situation. As such, may hardware
collective implementations may need a feedback mechanism
to flush the collective when an error has been encountered.

B. Resource Manager

An HPC runtime provides the interface between the resource
manager and the MPI layer. Most HPC resource managers
assume that once a process failure occurs that the application
job should be terminated so as not to waste resources on an
application that is not capable of handling such an error and
will likely hang. This assumption has been guided by the MPI
standard which defaults to a fatal approach to process failures
which would necessitate such a global rule for job termination.
The ULFM RTS proposal does not replace the default fatal
behavior. The proposal defines what should happen when the
MPI library encounters a process failure and the application
has asked for the opportunity to handle such errors. The
application communicates to the MPI library that it is willing
to handle process failures by replacing the default MPI error

handler. Additionally, the runtime can use these resource
manager interfaces to improve how it manages resilience for
the parallel job.

The resource manager should expose an interface to the
runtime that allows the MPI library to communicate whether
or not it is able to handle process failure. To remain backwards
compatible with prior MPI implementations and existing,
fault-unaware applications such an interface should default to
the existing fatal behavior. An MPI implementation that is
fully compliant with the ULFM RTS proposal would use this
interface to indicate to the resource manager that it should
hand control for job termination in abnormal circumstances to
the MPI library. It is possible that the MPI library encounters
a sequence of process failures that it is not able to recover
from. In such a situation, the resource manager should expose
an interface for the MPI library to abort the job, and let the
runtime and resource manager clean up.

Today, resource managers must be fault tolerant to continue
providing service when one or more machines in the HPC
system are down for maintenance. When those machines
fail, the resource manager recovers its own communication
mechanism, and reports the failure to the scheduler so no new
jobs will be scheduled on that resource. This resilient commu-
nication network, and notification service could greatly benefit
a fault tolerant MPI implementation. The MPI implementation
must detect process failure (node failure is seen to the appli-
cation as one or more processes failing together), and notify
all alive processes of the failure. If the MPI implementation
and the resource manager are both doing failure detection and
notification in parallel this increases the noise on the system,
load on the network, and overhead seen by the application.
A high-quality resource manager should expose this resilient
communication network and failure notification service to the
MPI library and runtime to reduce these overheads.

It has been shown that some applications need fewer re-
sources at the start and end of their execution cycle [19], and
other applications need a certain proportion of processes for
execution (e.g., power of two number of processes). A fault
tolerant application that recovers from a set of process failures
may decide to remove other alive processes to regain the
proper proportion of process and/or to increase locality among
the remaining processes. In such a situation, potentially large
numbers of functioning machines are idle while the application
continue execution. The resource manager should expose an
interface to allow the application and MPI library to return
resources to the scheduler when they are no longer needed
for the application. Optionally, a resource manager might also
expose a set of interfaces to allow the MPI library to request
more resources to replace failed resources during execution.

The resource manager has the authoritative view of the
resources. Therefore, it is best equipped to provide information
to the runtime for bootstrapping the parallel job. The resource
manager should provide an interface to this global information
at a “node” local level, which will enhance the startup of tasks
on the system. This can also help to distribute the initialization
of services and enhance the overall scalability for the runtime

and ultimately the application.

C. Scheduler

As mentioned in the previous section, it is useful for the MPI
library to have the ability to return resources to the scheduler
that are no longer needed, and, potentially, request replacement
resources. The MPI library will communicate these needs
through the resource manager interfaces, but the scheduler has
the authority on how this request is handled so must be aware
of the potential for such requests.

The scheduler must realize that fault tolerant applications
(and even some not fault tolerant applications [19], [20]) can
benefit from a more dynamic scheduling environment. Such
applications are more aware of the changing system resources
and able to adapt accordingly. The scheduler is able to increase
throughput when it allows an application to return functioning,
but no longer needed resources back to the available pool of
resources.

The application might request replacement resources be
added to their allocation to assist in the recovery of their
application execution. This request is communicated from
the application through the MPI library and subsequently the
resource manager before reaching the scheduler. The scheduler
should immediately respond with whether or not it can service
such a request, and, if it can, then the estimated time until the
resources are available. Once the resources are available the
scheduler should communicate their availability to the MPI
library so that it know where it should launch replacement
processes, in cooperation with the application.

To more efficiently handle such requests for more resources,
the scheduler might consider retaining a small pool of spare
resources shared between all jobs to act as replacements for
failed resources. This spare pool can service short, small
(possibly preemptible) jobs ensuring that they are readily
available when a fault tolerant application requires them for
recovery. So when an application requests more resources the
turn around time for that request can be diminished.

Based on the expected time to resource availability an
application can decide how to proceed with recovery. If the
expected time is short, the application might decide to wait
for the resources to become available before recovering. If
the expected time is long, the application might decide to
continue execution with the reduced number of processes and
then rebalance once the resources become available. The key
concept here is that the application is being provided sufficient
information to make informed decisions, and interfaces to
communicate their needs to the various system services.

VI. EARLY EXPERIMENTATION RESULTS

The testing for our preliminary experiments were done on
two Cray XK6 systems at ORNL. The machines, Chester
and Jaguar, are the development and production platforms,
respectively, for the Oak Ridge Leadership Computing Facility
(OLCF). Jaguar has completed the first phase of an upgrade
that will result in the Titan supercomputer. The current version
of Jaguar (April 2012) is comprised of 200 cabinets containing

18,688 nodes with AMD Opterons processors, each with 16
cores, for a total of 299,008 cores. In addition, 960 of Jaguar’s
18,688 compute nodes contain a NVIDIA graphical processing
unit (GPU). The nodes have 32GB of memory per node, with
2GB per core. The Chester development machine is a single
cabinet Cray XK6 of 80 nodes (16 cores per node, each with
a NVIDIA GPU). Both Chester and Jaguar use the Gemini
interconnect.

A. ULFM RTS Prototype Performance

The NetPIPE benchmark was used to assess the 1-byte
latency and bandwidth impact of the modifications necessary
for the ULFM RTS prototype compared with a build of Open
MPI without fault tolerance support. For these tests we used
the Chester machine at ORNL. The shared memory 1-byte
latency incurred a 1% overhead between the unmodified versus
modified Open MPI implementation. The bandwidth overhead
was negligible for shared memory on this machine. In testing
of the Gemini interconnect, no noticeable difference in per-
formance was seen between the unmodified versus modified
Open MPI implementation.

Prior work has demonstrated with the previous, expanded
RTS proposal that collective overhead is minimal over com-
municators that include masked failed processes [15]. The
ULFM RTS proposal only supports collectives over dense
communicators where all processes are active. As such we
have been able to use unmodified fault-unaware collective
operations that exit at the first sign of process failure. An out-
of-band notification service will force an error at processes that
are indirectly dependent upon a failed process, as described
in [15]. Since the fault-unaware collective operations were
unchanged, so was the performance characteristics of these
collective operations for the ULFM RTS proposal.

Prior work has shown that the MPI COMM AGREE oper-
ation can be implemented such that it has similar complexity
as a MPI ALLREDUCE operation [16].

B. Runtime Performance

This section presents preliminary performance evaluation
of the runtime system developed at ORNL. In this document,
we focus on the time to set up a BMG topology in order to
have redundant communication channels, as well as runtime
scalability.

Our runtime prototype supports the deployment of a BMG
topology between the processes of the runtime infrastructure.
This topology has been proven to be a good candidate for fault
tolerance thanks the redundant links it sets up. We set up the
BMG topology on top of the tree-topology used for the boot-
strapping runtime infrastructure. The current implementation
is based on a centralized implementation that identify the set
of missing communication channels when mapping the BMG
topology on top of the tree topology. Table I shows the time
required to perform this mapping: the nodes are the nodes of
the topology, i.e., all MPI ranks as well as all processes of the
runtime infrastructure.

Nodes Time (in seconds)
1024 0.19
2048 0.25
4096 0.47
8192 1.21
16384 3.10
32768 12.68
65536 65.36

131072 297.95

TABLE I
TIME TO MAP A BMG TOPOLOGY

The runtime supports deployment via different resource
managers, which on Cray is based on ALPS [17]. ALPS
is used to launch applications on Cray compute nodes from
within a job allocation. As such, the runtime startup leverages
information available in ALPS for the initialization of a tree
topology used during job startup. The runtime uses an on-node
resource manager interface that provides information about
the control network tree that ALPS maintains internally when
launching the tasks on the compute nodes. This node-local
interface reduces the overhead to configure the base agents
used in the runtime system. Additionally, the startup of these
base agents can be done using a single ALPS launch command
(i.e., a single aprun invocation). Once this base agent is
available the runtime distributes the additional information
(deployment and connection topology information) to start the
target executable for the job.

VII. CONCLUSION

Scientific applications are investigating natural and ABFT
techniques that will allow them to more efficiently manage
process failure in exascale systems. The MPI Forum’s Fault
Tolerance Working Group is working to support ABFT ap-
plications and libraries through proposals like the ULFM
RTS proposal. This proposal, currently under consideration
for MPI 3.0, allows an application to continue execution even
when MPI processes fail during execution. The MPI libraries
and runtime environments support fault tolerant applications
will stress the capabilities of most existing system services.
This paper presents a discussion of how these various system
services will need to evolve and develop novel interfaces to
work efficiently with scalable, fault tolerant applications.

To withstand the projected failure rates of exascale systems
the entire software stack must be resilient and working in
concert. This level of integration and cooperation is necessary
to provide the application with every opportunity to efficiently
manage failures as they emerge during normal execution so
they can best harness exascale class machines.

ACKNOWLEDGMENTS

Research sponsored by the Mathematical, Information, and
Computational Sciences Division, Office of Advanced Scien-
tific Computing Research, U.S. Department of Energy, under
Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

REFERENCES

[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374–388, 2009.

[2] W. Gropp and E. Lusk, “Fault tolerance in message passing interface
programs,” International Journal of High Performance Computing Ap-
plications, vol. 18, no. 3, pp. 363–372, 2004.

[3] B. Randell, “System structure for software fault tolerance,” in Proceed-
ings of the international conference on reliable software. New York,
NY, USA: ACM Press, 1975, pp. 437–449.

[4] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. 33, no. 6, pp.
518–528, 1984.

[5] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, pp. 1628–1641, 2008.

[6] Y. Du, P. Wang, H. Fu, J. Jia, H. Zhou, and X. Yang, “Building
single fault survivable parallel algorithms for matrix operations using
redundant parallel computation,” International Conference on Computer
and Information Technology, pp. 285–290, 2007.

[7] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery patterns for
iterative methods in a parallel unstable environment,” SIAM Journal of
Scientific Computing, vol. 30, no. 1, pp. 102–116, 2007.

[8] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based
fault tolerance applied to high performance computing,” Journal of
Parallel and Distributed Computing, vol. 69, no. 4, pp. 410 – 416,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731508002141

[9] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp.
972–986, October 1998.

[10] J. Hursey, R. L. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard, and
D. G. Solt, “Run-through stabilization: An MPI proposal for process
fault tolerance,” in EuroMPI 2011: Proceedings of the 18th EuroMPI
Conference, Santorini, Greece, September 2011.

[11] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-
Grbovic, and J. J. Dongarra, “Process fault-tolerance: Semantics, design
and applications for high performance computing,” International Journal
for High Performance Applications and Supercomputing, vol. 19, no. 4,
pp. 465–478, 2005.

[12] R. Batchu, Y. S. Dandass, A. Skjellum, and M. Beddhu, “MPI/FT: A
model-based approach to low-overhead fault tolerant message-passing
middleware,” Cluster Computing, vol. 7, no. 4, pp. 303–315, Jan 2004.

[13] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An
approach to designing fault-tolerant computing systems,” ACM Trans-
actions on Computing Systems, vol. 1, pp. 222–238, August 1983.

[14] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[15] J. Hursey and R. Graham, “Analyzing fault aware collective
performance in a process fault tolerant MPI,” Parallel Computing,
vol. 38, no. 1-2, pp. 15–25, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167819111001414

[16] J. Hursey, T. Naughton, G. Vallee, and R. L. Graham, “A log-scaling
fault tolerant agreement algorithm for a fault tolerant MPI,” in EuroMPI
2011: Proceedings of the 18th EuroMPI Conference, Santorini, Greece,
September 2011.

[17] Cray XTTM System Management, S-2393-22 ed., Cray, Jul. 2009.
[Online]. Available: http://docs.cray.com/books/S-2393-22

[18] T. Angskun, G. Bosilca, and J. Dongarra, “Binomial graph: A scalable
and fault-tolerant logical network topology,” in International Symposium
on Parallel and Distributed Processing and Applications. Springer,
2007, pp. 471–482.

[19] T. Armstrong, Z. Zhang, D. Katz, M. Wilde, and I. Foster, “Scheduling
many-task workloads on supercomputers: Dealing with trailing tasks,”
in Many-Task Computing on Grids and Supercomputers (MTAGS), 2010
IEEE Workshop on, November 2010, pp. 1 –10.

[20] R. Sudarsan, C. Ribbens, and D. Farkas, “Dynamic resizing of
parallel scientific simulations: A case study using LAMMPS,” in
Computational Science – ICCS 2009, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2009, vol. 5544, pp. 175–184.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-01970-8 18

