
The Impact of a Fault Tolerant MPI on
Scalable Systems Services and Applications

Richard L. Graham, Joshua Hursey, Geoffroy Vallee,
Thomas Naughton, Swen Boehm

Oak Ridge National Laboratory
{rlgraham,hurseyjj,valleegr,naughtont,bohms}@ornl.gov

Presented by: Joshua Ladd Cray Users Group – April 29-May 3, 2012

2

Outline

•  Motivation & Problem Statement

•  Algorithm-Based Fault Tolerance Techniques

•  Run-Through Stabilization Proposal to the MPI Forum

•  Runtime Environment Requirements

•  Cross-Cutting Requirements

•  Early Experimentation Results

•  Conclusion

3

Fault Tolerance and HPC

•  Fault tolerance is important to HPC applications
–  Large scale and long runtimes lead to increased opportunity for failure

to disrupt the application (MTTI, MTBF, …)
–  Projected that process failure will become a normal event in the future
–  C/R techniques alone will not be enough to handle the rate of failure

•  Natural & Algorithm Based Fault Tolerance (ABFT)
e.g., checksums stored in peers, rewinding computation, redundant computation

•  Entire HPC software stack lacks support for portable, fault
tolerant applications.

Dongarra, J., Beckman, P., et al., “The International Exascale Software Roadmap,”
International Journal of High Performance Computer Applications, 2011 (to appear).

4

Motivation & Problem Statement

•  The entire HPC software stack lacks support for portable,
fault tolerant applications.

•  The MPI Forum is developing interfaces and semantics that
will allow an application to manage failures during
execution.

•  However, the requirements of a fault tolerant MPI
application will stress the capabilities of existing system
services.
–  These services will need to evolve and develop novel interfaces to

work effectively with scalable, fault tolerant applications.

5

Outline

•  Motivation & Problem Statement

•  Algorithm-Based Fault Tolerance Techniques

•  Run-Through Stabilization Proposal to the MPI Forum

•  Runtime Environment Requirements

•  Cross-Cutting Requirements

•  Early Experimentation Results

•  Conclusion

6

Algorithm-Based Fault Tolerance (ABFT)
Techniques
•  Faulty Subgroups

–  Ensemble-style applications
–  Extensive reliance on error handlers

•  Recovery Blocks
–  Iterative applications
–  Execution block followed by an

acceptance test
•  Linear Algebra Libraries

–  Encapsulate fault tolerant versions
of commonly used linear algebra
operations.

–  FT-LA project to support
ScaLAPACK

7

Outline

•  Motivation & Problem Statement

•  Algorithm-Based Fault Tolerance Techniques

•  Run-Through Stabilization Proposal to the MPI Forum

•  Runtime Environment Requirements

•  Cross-Cutting Requirements

•  Early Experimentation Results

•  Conclusion

8

MPI Forum's Fault Tolerance Working Group

•  Application involved fault tolerance (not transparent FT)

•  Starting with fail-stop process failure
–  A process failure in which the MPI process permanently stops

communicating with other MPI processes, and its internal state is lost.

•  Two Complementary Proposals:
–  Run-Through Stabilization: (Target: MPI-3.0)

•  Continue running and using MPI even if one or more MPI processes fail

–  Process Recovery: (Target: MPI-3.1)
•  Replace MPI processes in existing communicators, windows, file handles

MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

9

User-Level Failure Mitigation (ULFM)
Run-Through Stabilization (RTS) Proposal
•  Failures are managed on a per-communicator basis

–  MPI_ERR_PROC_FAILED: operation failed due to process failure
•  Point-to-Point Communication

–  Communication between active processes is unaffected by the failure
of a non-participating process.

•  Collective Communication
–  Fault-aware: Will not hang in the presence of process failure, but may

not return the same return code at all processes.
•  Communicator Creation

–  Behave as other collectives. Therefore, it is possible that some
processes see a valid communicator while others do not.

–  MPI_COMM_SHRINK(comm, &newcomm)

MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

10

User-Level Failure Mitigation (ULFM)
Run-Through Stabilization (RTS) Proposal
•  MPI_COMM_SHRINK(comm, &newcomm)	

–  A special fault tolerant creation operation that creates a new
communicator with just the alive processes of an input communicator.

•  MPI_COMM_REVOKE(comm)	
–  Any one process can revoke the communication context of a

communicator at all processes
–  All subsequent, non-local operations on that communicator will return

an error MPI_ERR_REVOKED	
–  Eventually all other processes will see the error, even if they did not

call MPI_COMM_REVOKE().
•  MPI_COMM_AGREE (comm, &flag)  

MPI_COMM_IAGREE(comm, &flag, &req)	
–  Collective fault tolerant agreement operation that will return uniformly

at all processes with the same return code and value for flag.
–  flag is a boolean argument, and agreement takes the logical AND of

all input values.
MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

11

Outline

•  Motivation & Problem Statement

•  Algorithm-Based Fault Tolerance Techniques

•  Run-Through Stabilization Proposal to the MPI Forum

•  Runtime Environment Requirements

•  Cross-Cutting Requirements

•  Early Experimentation Results

•  Conclusion

12

Runtime Requirements for FT in HPC

•  Support scalable application launch & management
–  MPI and non-MPI applications

•  Reliable out-of-band communications
–  Bootstrapping higher-level HPC communication services

•  Process failure detection and notification

•  Robust process management and clean-up

•  Support for process recovery

•  Support scalable & resilient communication
–  Example: Binomial graph (BMG) topology

13

Outline

•  Motivation & Problem Statement

•  Algorithm-Based Fault Tolerance Techniques

•  Run-Through Stabilization Proposal to the MPI Forum

•  Runtime Environment Requirements

•  Cross-Cutting Requirements

•  Early Experimentation Results

•  Conclusion

14

Cross-Cutting Requirements:
Interconnection Network
•  Must have well defined semantics and interfaces for

managing process, node, and switch failure.
•  Expose as much information about the failure as possible

to assist the layer above in managing the problem
effectively.
–  An MPI library might take different actions if it knew that the process

failed versus the switch between the processes failed.
•  Must be able to remove a request from the hardware

matching queue
•  Collective operations must be fault-aware. So hardware

collectives might need a feedback mechanism to flush the
collective operation when an error occurs.

15

Cross-Cutting Requirements:
Resource Manager
•  Assume: Once a process failure occurs the application

should be terminated (so as not to waste resources)
–  Runtime must have the ability to override this default behavior, and

request that the resource manager allow the application to continue
operating after process loss.

–  The runtime is then responsible for assisting the MPI library and
application in managing process failures, and notifying the resource
manager when it is no longer able to do so.

•  Currently, must be resilient to node failure in order to
sustain jobs when nodes outside of their allocations fail.
–  Expose this resilient out-of-band communication to the runtime and

MPI libraries so as to reduce system noise and not duplicate effort.
•  It would be useful to 'give back' resources that are no

longer needed to the system.

16

Cross-Cutting Requirements:
Scheduler
•  It would be useful to 'give back' resources that are no

longer needed to the system.
–  When recovering from failure some applications may decide to remove

other alive processes to regain the proper proportion of processes.
•  Fault tolerant applications can benefit from a more

dynamic scheduling environment.
–  The ability to dynamically extend their allocation to replace failed

resources.
•  Possibly using a shared pool of nodes that are used by small, pre-emptible jobs

to aid in a quick turn around time.

•  Expose an interface to query if the scheduler supports
various additional capabilities
–  For example, releasing allocated nodes or requesting replacement

nodes

17

Cross-Cutting Requirements

•  Application must be provided sufficient information to
make informed decisions, and interfaces to communicate
their needs.

•  Documentation of any and all exposed interfaces

•  Collaboration and coordination of activities between
system software layers

18

Outline

•  Motivation & Problem Statement

•  Algorithm-Based Fault Tolerance Techniques

•  Run-Through Stabilization Proposal to the MPI Forum

•  Runtime Environment Requirements

•  Cross-Cutting Requirements

•  Early Experimentation Results

•  Conclusion

19

Experimental environments

•  Cray XK6 at ORNL
–  Production platform: JaguarPF

•  Phase-V of Titan upgrade (April 2012)

–  Development & Testing: Chester
•  Single cabinet XK6 with same specs as JaguarPF

•  80 nodes, 1280 total cores, 32GB/node memory, Gemini, etc.

Resource Size/type
Cabinets 200

Compute Nodes 18,688

Compute Cores 29,008 AMD Opteron
Interlagos

Nodes w/ GPUs 960 NVIDIA

Total Memory 600TB

Interconnect Gemini

Peak Perf. 3.3 pflops/s

* Image courtesy of the National Center for Computational Sciences, Oak Ridge National Laboratory.

20

Early Experimentation Results:
ULFM RTS MPI Prototype
•  NetPIPE Latency/Bandwidth

–  1% overhead in shared memory latency
–  Negligible impact on shared memory bandwidth
–  Negligible impact on performance over the Gemini interconnect

•  Collectives:
–  Existing collectives over point-to-point did not need to be modified
–  The collectives only needed to error out when a failure is encountered

•  Agreement:
–  Log scaling performance results presented at EuroMPI 2011
–  Performance similar to an MPI_Allreduce over the alive processes.

Hursey, J., Naughton, T., Vallee, G., Graham, R., “A Log-Scaling Fault Tolerant
Agreement Algorithm for a Fault Tolerant MPI,” EuroMPI, 2011.

21

Early Experimentation Results:
Runtime Prototype
•  Prototype supports different connection topologies

–  Used to connect runtime agents, e.g., tree, mesh, BMG
•  Example: At launch a tree-based “bootstrap” topology is setup

•  Binomial graph (BMG) topology to create redundant
communication channels
–  Improves FT & scalability properties
–  To setup the BMG, nodes are mapped to

 the topology and reuse any existing
 “bootstrap” links

–  Table shows current BMG mapping times

Nodes Time (sec)

1024 0.19
2048 0.25
4096 0.47
8192 1.21

16384 3.10
32768 12.68
65536 65.36

131071 297.95

22

Useful Cray Enhancements for FT Runtime

•  ALPS
–  Public interfaces for ALPS with full documentation
–  C library interface to ALPS at both service & compute nodes

•  Specifically to the placement data (e.g., placement_list)
–  Set policy for ALPS to avoid killing all tasks in same app

•  Avoid killing all tasks with same appId if one task fails/aborts
–  Extensible ALPS daemon (e.g, apinit)

•  To avoid duplication for base runtime agents
–  Provide public interface to communication system used by ALPS

•  Failure data
–  Publish RAS data about failures

•  Example information about network link & node failure history

23

Conclusions

•  Scientific applications are looking to Algorithm-Based Fault
Tolerance techniques to more efficiently manage process
failure in exascale systems.

•  The User-Level Failure Mitigation Run-Time Stabilization
proposal allows an application to continue execution even when
one or more processes fail during execution.

