
Third Party Tools for Titan

Richard Graham, Oscar Hernandez, Christos Kartsaklis,
Joshua Ladd and Jens Domke

Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, United States

Email: {rlgraham,oscar,kartsaklisc,laddjs,domkej}@ornl.gov

Jean-Charles Vasnier, Stephane Bihan
and Georges-Emmanuel Moulard

CAPS Enterprise
Rennes, France

Email: {jean-charles.vasnier,stephane.bihan,
georges-emmanuel.moulard}@caps-entreprise.com

Abstract—Over the past few years, as part of the Oak
Ridge Leadership Class Facility project (OLCF-3), Oak Ridge
National Laboratory (ORNL) has been engaged with several
third party tools vendors with the aim of enhancing the
tool offerings for ORNLs GPU-based platform, Titan. This
effort has resulted in enhancements to CAPS’ HMPP compiler,
Allinea’s DDT debugger, and the Vampir suite of performance
analysis tools from the Technische Universität Dresden. In this
paper we will discuss the latest enhancements to these tools,
and their impact on applications as ORNL readies Titan for
full-scale production as a GPU based heterogeneous system.

Keywords-Programming Environments; GPU compilers, Per-
formance Tools, Debuggers, GPU programming

I. INTRODUCTION

A Programming Environment (PE) is defined as the
software stack that supports the application development
cycle for one or more programming models. A typical
PE consists of compilers, programming languages, libraries,
debuggers, and performance tools unified within a common
infrastructure.

During the design of ORNL’s OLCF-3 Cray GPU-based
system, Titan, ORNL tool developers encountered several
challenges. First, there was no production-ready PE for
rapidly porting codes to a hybrid GPU-based system that
could meet petascale-level performance. Second, it was not
clear what the right programming model was and what tools
would be necessary to support a massive, hybrid architecture
like Titan.

Last year we reported on how we approached the problem
[8]. We identified the need for improvements at four ends:
compilers, libraries, performance tools and debuggers. For
this reason we started working with several vendors, namely
CAPS1, Allinea2 and Technische Universität Dresden3, as
well as on our research tools HERCULES [9] and Klonos
[7], towards our PE requirements. This led to considerable
improvements against HMPP [3], DDT [1] and Vampir, such
as numerous extensions to HMPP, the addition of HMPP-

1http://www.caps-entreprise.com
2http://www.allinea.com/
3http://tu-dresden.de

supporting tools, CUDA-awareness built into Vampir, further
DDT scalability, DDT support for HMPP and CUDA, etc.

In this paper we discuss the enhancements made
to Titan’s PE to support the directives-based hybrid
MPI/OpenMP/Accelerator programming model. In this pa-
per we focus specifically on how we enhanced a GPU di-
rectives API, as part of the HMPP compiler, to support C++
codes as well as a HMPP runtime API. As part of this paper
we describe how these enhancements have been used in
the applications. In addition, we describe HMPP extensions
which have been developed to manage the coordination of
work between CPUs and GPUs and/or multiple accelerators
within the node. This will be describe in the context of the
LAMMPS [12] application and how it is being ported to a
hybrid architecture.

On the debuggers front, we will discuss Allinea’s DDT
enhancements to fully support GPUs including support for
in-kernel CAPS HMPP debugging, fast merging of CUDA
threads, and multi-warp stepping. Of particular interest is
the collaboration that is taking place between multiple tool
vendors allowing different tool sets to work seamlessly with
each other. A case study, which will be expanded upon, is
DDT’s support of HMPP compiler directives. The symbiotic
relationship between CAPS and Allinea has resulted in
DDT’s ability to automatically detect HMPP fragments and
allow a user to step into a GPU codelet that is being executed
on multiple nodes at scale.

Furthermore, we will discuss the enhancements made
within the Vampir toolset to support code development and
performance analysis on Titan. These enhancements include,
among other things, improved scalability of the Vampir
analysis tools, revision of the I/O behavior to reduce file
system congestion, and support for CUDA’s performance
counters via the CUPTI [2] interface. In addition, various
enhancements to Vampir’s visualization framework, which
enable large-scale visualization of CPU/GPU traces, will
be described. These include new filter capabilities, support
for derived performance counters as well as a display to
compare multiple traces and their respective statistics.

II. HMPP OVERVIEW

CAPS HMPP is one of the third-party compilers in Titan.
It is a directives-based compiler and is capable of generating
kernels that have been accelerated in a hybrid CPU/GPU
manner, as well as executing them via the HMPP runtime.
HMPP directives can be added incrementally to existing
applications and are compatible with OpenMP and MPI.
One benefit of using directives is that they preserve legacy
code by discouraging programmers from targeting specific
hardware and thus directives facilitate maintenance beyond
the lifetime of a given platform. This is showcased by HMPP
which can generate code for various GPU architectures or
accelerators.

HMPP is a source-to-source compiler that uses stan-
dard compilers (GNU gcc/gfortran, Intel icc/ifort and PGI
pgcc/pgfortran compilers) as backends to produce the host
binary code. It integrates a C/Fortran-to-CUDA code gener-
ator that produces accelerated versions of kernels as variants
of computations. CUDA code is compiled as shared libraries
using the NVIDIA compiler. HMPP-built applications are
linked with the HMPP runtime that loads and executes the
CUDA code if the GPU is present, or runs the CPU version
otherwise. HMPP directives are safe meta-information added
to the application source code that preserves the semantics
of the the original code. They address the remote execution
(RPC) of functions or regions of code as well as the transfers
of data to and from the accelerator memory. In addition to
HMPP-specific directives, the HMPP compiler also supports
the new OpenACC directive-based parallel programming
standard, which was initially developed by PGI, CRAY and
NVIDIA.

A. C++ Support

HMPP version 3 was extended to support the acceleration
of C++ codes. HMPP provides a GPU directive and a C++
class API to define codelets that will run in the GPU. Both
mechanisms are used to coordinate the work among CPU
and GPUs. The use of the directive is illustrated in the
following example:

template<typename T>
void add_vector(int n, T * y, T * a, T * b)
{
for(int i = 0 ; i < n ; i++)

y[i] = a[i] + b[i];
}
// Instanciate the add_vector<float> template
// and associate it to the codelet "add_vector_float"

#pragma hmppcg entrypoint as add_vector_float,target=CUDA
template void add_vector<float>(int n,
float *y, float *a, float *b);

Figure 1. The HMPP C++ directive that used to define a method that is
translated to CUDA or accelerator code

The directive #pragma hmppcg entrypoint defines a GPU
codelet in a C++ class. Figure 1 shows how this directive can

be applied to a C++ template. When the code is compiled,
the HMPP C++ compiler will instantiate the template and
automatically generate the CUDA version of the code for
the codelet add vector float. The user need to allocate a
GPU device (where the codelet will run) and define two
C++ objects, one for each of the classes Grouplet and
Codelet, to reference the add vector float generated kernel.
The HMPP C++ API provides the classes and methods to
do this. Figure 2 shows how the HMPP C++ API is used
to define an object of class device for allocating a GPU
device and how to retrieve the codelet add vector float from
a grouplet.

// Get an interface to the first available
// CUDA compatible device
hmpprt::Device *device;

device = hmpprt::DeviceManager::getInstance()->
acquireDevice(hmpprt::CUDA);

// Dynamically loads a grouplet which has been generated
// by from current file and the CUDA target

hmpprt::Grouplet *grouplet;
grouplet = new hmpprt::Grouplet(__FILE__, hmpprt::CUDA);

// Get the handle of the "add_vector_float"
// generated codelet
hmpprt::Codelet *codelet;
codelet = grouplet->getCodeletByName("add_vector_float");

Figure 2. Code snippet that shows how to define a grouplet, codelet and
an accelerator device using the HMPP C++ API

Figure 3 shows a code snippet where the data of the
codelet parameters are allocated and uploaded to the GPU
memory using the HMPP C++ API. In HMPP for C++, the

const int nbValues = 16;
vector<float> Y;
vector<float> A;
vector<float> B;

// Allocate the data for each parameter
hmpprt::Data *dataA;
dataA = new hmpprt::Data(device, nbValues * sizeof(float),
codelet->getMemorySpaceByName("a"));

hmpprt::Data *dataB;
dataB = new hmpprt::Data(device, nbValues * sizeof(float),
codelet->getMemorySpaceByName("b"));

hmpprt::Data *dataY;
dataY = new hmpprt::Data(device, nbValues * sizeof(float),
codelet->getMemorySpaceByName("y"));

dataA->allocate();
dataB->allocate();
dataY->allocate();

// Upload data from the host memory to the device memory
dataA->upload(&A[0]);
dataB->upload(&B[0]);

Figure 3. A code snippet that shows how data is allocated and uploaded
to GPU memory using the HMPP C++ API

user needs to create a codelet argument list object that is

used to invoke the codelet with the method call from the
device object. Figure 4 shows how this is done.

// Create the codelet argument list
hmpprt::ArgumentList arguments;

// Call the codelet
arguments.addArgument(Y.size());
arguments.addArgument(dataY);
arguments.addArgument(dataA);
arguments.addArgument(dataB);
device->call(codelet, arguments);

Figure 4. Code snippet that shows how invoke a codelet using the HMPP
C++ API

Finally the result can be transferred from the GPU to the
host (CPU) and the GPU memory is freed. This is done by
invoking the download and free methods from the HMPP
data object. This is shown in Figure 5.

// Download output data from the device to the host
dataY->download(&Y[0]);

dataA->free();
dataB->free();
dataY->free();

Figure 5. Code snippet that shows how to transfer data from the GPU to
the host and free the GPU memory

B. Data Distribution Support

As the number of cores keeps growing, it is essential
to help developers to easily distribute data and computa-
tions over multiple CPUs and GPUs. The HMPP directives
support CPU and multi-GPU programming by enabling
developers to spread out a collection of data on multiple
devices and the CPU. This feature was developed with the
idea to support the LAMMPS application using the C++
API of HMPP. The HMPP data distribution directives can
also be used in C and Fortran code. Figure 6 shows the data
distribution directive that can be placed before a parallel
code region such as a loop.

//expr : a device number
#pragma hmpp <myGroup> parallel, device="expr"

Figure 6. The HMPP data distribution directive

Each directive in the parallel region is pushed in a queue.
All directive operations of the queue are then executed over
the devices at the end of the parallel region. The directive
operations in the parallel region are associated to a device
whose number is defined according to the value of the
device clause expression. For instance, if the expression of
the device clause is based on the loop induction variable,
each directive operation will be executed in parallel in
a device whose number depends on the iteration value.
Figure ?? shows a data distribution code example, where

the distribution of a collection of data is performed over
two CUDA devices.

#pragma hmpp <my_grp> parallel, device="i%2"
for (i = 0; i < N; ++i)
{

#pragma hmpp <my_grp> new, data["x[i]"]
#pragma hmpp <my_grp> allocate,data["x[i]"], &
data["x[i]"].size={10000}

#pragma hmpp <my_grp> my_cdlt callsite
f(x[i]);

#pragma hmpp <my_grp> release, data["x[i]"]
#pragma hmpp <my_grp> delete, data["x[i]"]
}

Figure 7. The HMPP data distribution directive is used to distribute the
array x on multiple devices.

In the case of LAMMPS, the same effect was achieved
using the HMPP C++ API to distribute half of the data
between the GPU and CPU for the computeCodelet kernel.
Figure II-B shows the allocation of the two devices, a CPU
and a GPU device, using the HMPP C++ API.

//allocation of the devices: GPU as device 0
//and CPU as device 1
devices[0] = hmpprt::DeviceManager::getInstance()->
getFirstCUDADevice();
devices[1] = hmpprt::DeviceManager::getInstance()->
getHostDevice();

//retrieve the grouplets using the
// name of the generated .so
grouplets[0] = new hmpprt::Grouplet("pair_lj_cut-cuda.so);
grouplets[1] = new hmpprt::Grouplet("pair_lj_cut-host.so);

// retrieve the codelets
codelets[0] = grouplets[0]->
getCodeletByName("computeCodelet");

codelets[1] = grouplets[1]->
getCodeletByName("computeCodelet");

}
}

Figure 8. The HMPP C++ API to allocate two devices (a GPU and a
CPU) that will be used to distribute the data elements of the array f for
the computeCodelet codelet

The array f of the computeCodelet function is split in
two different arrays associated to two different devices: a
CPU and a GPU. All other arrays of the function are fully
allocated on each device. The effects of the data distribution
is shown in Figure 9.

• !!"##"$!%&!'%()*!
!

!
• !!"##"$!%&!+,-./,(*!

!"#$%"&'(& !"#$%"&)(&

& &

!

0! 123! &4"5!
!

0! &4"5!6!12783!
!

0! 2!
!

Figure 9. The distribution of the array f between a GPU and CPU device
for the LAMMPS application

Figure 10 shows the allocation and upload of the dis-
tributed array for the two devices:

//size of first part of f
int size0_f = (inum / nb_devices) * 3;
//size of rest of f
int size1_f = (atom->nmax-(inum / nb_devices)) *3)

//allocate first part of f on device 0
data_f[0] = new hmpprt::Data(devices[0],
sizeof(double) * size0_f);

//allocate rest of f on device 1
data_f[1] = new hmpprt::Data(devices[1],
sizeof(double) * size1_f);

//send first part of f on device 0
data_f[0]->upload(f[0]);

//send the rest of f on device 1
// f[inum /nb_devices]): address of
data_f[1]->upload(f[inum /nb_devices]);

// the beginning of the second part
...

Figure 10. The allocation and upload of the distributed array on two
devices using the HMPP C++ API

Finally the codelet is executed in the GPU and CPU using
a loop. This is shown in Figure 11.

//execution of the compute function with f array
//distributed on two devices
for(int i=0; i<nb_devices; i++){
//creation of the list of arguments
arg_list[i] = new hmpprt::ArgumentList(codelets[i]);

//add the codelet arguments to the list
arg_list[i]->addArgument(atom->ntypes + 1);
arg_list[i]->addArgument(atom->nlocal);
arg_list[i]->addArgument(nlocal + atom->nghost);
arg_list[i]->addArgument(split[i *2 + 0]);
arg_list[i]->addArgument(split[i *2 + 1]);
arg_list[i]->addArgument(force->newton_pair);
arg_list[i]->addArgument(data_x[i]);
arg_list[i]->addArgument(data_f[i]);
arg_list[i]->addArgument(data_type[i]);
arg_list[i]->addArgument(data_numneigh2[i]);
arg_list[i]->addArgument(data_special_lj[i]);
arg_list[i]->addArgument(data_cutsq[i]);
arg_list[i]->addArgument(data_lj1[i]);
arg_list[i]->addArgument(data_lj2[i]);
arg_list[i]->addArgument(data_ilist[i]);
arg_list[i]->addArgument(data_full_j[i]);

//execute the codelet in the two devices
devices[i]->call(codelets[i],*(arg_list[i]));

}

Figure 11. A code snippet that shows the invocation of the computeCodelet
that will be executed in the GPU and CPU where the data has been
distributed between two devices

C. Library Support

The LSMS [13] application calculates the interactions
between electrons and atoms in magnetic materials. The
CPU profile of the application showed that the BLAS and
LAPACK functions take about 95% of the execution time.
Figure 12 shows the part of the code where calls to these
libraries are done.

Figure 13 shows how the LSMS library calls are ported
to GPU by replacing calls to BLAS and LAPACK by calls

do iblk=nblk,2,-1
call zgetrf(...)
call zgetrs(...)
call zgemm(...)
call zgemm(...)

enddo
call zgemm(...)

Figure 12. LSMS calls to the BLAS and LAPACK libraries

to NVIDIA CUBLAS and CULA.

do iblk=nblk,2,-1
...
call cula_device_zgetrf(...)
call cula_device_zgetrs(...)
call cublas_zgemm(...)
call cublas_zgemm(...)

enddo
call cublas_zgemm(...)
call cublas_get_matrix(...)

Figure 13. LSMS calls to the BLAS and LAPACK libraries are replaced
by calls to NVIDIA CUBLAS and CULA

As there is no one-to-one mapping among similar func-
tions in libraries like BLAS and cuBLAS, calls to a CPU
library call cannot be directly replaced by a call to the GPU
version of the library. HMPP offers a proxy mechanism to
seamlessly deal with this. HMPP allows the user to replace
the calls of original library functions by their equivalent
GPU version (using directives) while keeping the original
CPU library calls in the code. A hmppalt directive with the
name of the proxy is inserted before the calls to the original
library functions (See lines 18, 20, 22, 24, 27 in Figure 14).

Depending on the execution context, the proxy can call
either be the CPU or GPU version of the library. Each
library function used in the proxy needs to be declared in the
application source file with the hmppalt declare directive (
see lines 1, 6 and 11 of Figure 14). At compile time, HMPP
generates two versions of the code, the first one calling the
GPU library function in the proxy and the second one using
the original library. A code snipped of the HMPP proxy
definition is shown in Figure 15.

Figure 15 shows that when the proxy executes the GPU
version of the library, it gets the mirror of the data in
the device memory and only calls the CUBLAS zgemm
function. Having a proxy simplifies the process of calling
different versions of the library while achieving the same
performance as the original or the GPU version of the code.

III. DDT DEBUGGER

A scalable, hybrid aware debugger is a critical compo-
nent of Titan’s programming environment. By employing
sophisticated tree topologies, Allinea, working alongside
ORNLs Applications Performance Tools, have deployed the
DDT debugger. Field-tested on actual development code at
ORNL, DDT has been shown to scale-up to over 200,000

1. !$hmppalt myproxy declare, name="zgemm" ,
extend(error,...), fallback=true

2. SUBROUTINE lsmszgemm(error,transa,transb,
m,n,k,alpha,a,lda,b,ldb,beta,c,ldc)

3. ...
4. END SUBROUTINE lsmszgemm
5.
6. !$hmppalt lsms declare, name="zgetrf" ,

extend(error,...), fallback=true
7. SUBROUTINE lsmszgetrf(error, m, n, a,

lda, ipiv, info)
8. ...
9. END SUBROUTINE lsmszgetrf
10.
11. !$hmppalt lsms declare, name="zgetrs" ,

extend(error,...), fallback=true
12. SUBROUTINE lsmszgetrs(error, trans, n, nrhs, a,

lda, ipiv, b, ldb, info)
13. ...
14. END SUBROUTINE lsmszgetrs
15. ...
16. !$hmpp advancedload
17. do iblk=nblk,2,-1
18. !$hmppalt myproxy
19. call zgetrf(...)
20. !$hmppalt myproxy
21. call zgetrs(...)
22. !$hmppalt myproxy
23. call zgemm(...)
24. !$hmppalt myproxy
25. call zgemm(...)
26. enddo
27. !$hmppalt myproxy
28. call zgemm(...)
29. !$hmpp delegatedstore

Figure 14. A hmppalt proxy directive is inserted before the calls to the
original library functions. This will enable the HMPP to call either the CPU
or GPU version of the library.

void lsmszgemm_(){

hmpp_mirror = hmpprti_get_mirror(mirror);
A = hmpprt_data_get_device_address(hmpp_mirror);

hmpprt_cuda_lock_context();
cublaZgemm();
hmpprt_cuda_unlock_context();

}

Figure 15. A code snippet of the HMPP proxy.

cores. Allinea has employed a co-design methodology in
developing DDT, working closely with Cray and CAPS to
tightly integrate DDT into Crays advanced programming
environment. As a result, DDT is a debugger designed from
the ground-up for large-scale hybrid systems. In addition to
MPI/OpenMP parallel programs, DDT is fully supported on
NVIDA GPUs and is capable of stepping into CUDA kernels
with multi-warp stepping capabilities. In addition, DDT
is capable of stepping into and through HMPP codelets.
Recently, Allinea has added support for CUDA memory
debugging capabilities, allowing a user to visualize the
physical memory layout of their code spread over both host
and device memory.

IV. VAMPIR/VAMPIRTRACE PERFORMANCE TOOL

One performance analysis tool for parallel and hybrid
applications is the Vampir toolset [6], [10]. It consists of
three major components, named the Open Trace Format
library (OTF), VampirTrace and Vampir. VampirTrace is
used in the pre-run phase to prepare the source code or
binary of the application with instrumentation of function
calls, library wrapping, etc, to gather events during the run.
At runtime VampirTrace, i.e. libraries linked into the binary,
processes the events and passes them to the OTF library.
OTF will then save the events, depending on their origin,
into trace streams and will write one file containing the event
stream for each MPI process, OpenMP thread and thread
executed on an accelerator. Besides that, OTF provides
post-processing tools to de-/compress, modify and analyze
the trace. The visualization and analysis component of the
Vampir toolset is the Vampir client and server, henceforth
referred to as Vampir. The purpose of the server is to analyze
the trace in parallel and aggregate enough main memory
on the compute nodes to open/load the trace. The client
visualizes the data analyzed and transferred by the server,
and offers a variety of methods to interact with the trace, like
scrolling, zooming, highlighting of interesting areas, etc.

A. Enhancements for OLCF-3

The next step in terms of scalability of the OLCF-3 project
brought new challenges for the performance analysis tools.
In the beginning of OLCF-3, we identified four major areas
where the Vampir toolset needs to be improved to allow the
performance analysis of the whole Titan system. The first
and obvious challenge is the support for tracing of GPUs.
Besides that, the toolset had to be enhanced in the scope of
I/O performance, scalability and usability. In the following,
we will introduce the changed made by the vendor up to
now.

In cooperation with NVIDIA, the vendor was able to sup-
port always the latest CUDA library version, which is ver-
sion 4.1 right now, inclusive CUPTI 2.0 GPU performance
counters. To fit into the general design of processes/threads
and messages within Vampir, the CUDA threads will be
visualized as threads, which belong to one process, and
the memory transfers between host CPU and GPU are
shown as black lines, which is similar to MPI messages.
VampirTrace is capable of tracing multiple/different CUDA
kernels executed by one binary and the developers improved
the accuracy of the timing information for asynchronous
kernel execution while using CUPTI to measure the timing-
events. A visualization of the result is shown in Fig. 16.
The traced program is a GPU-accelerated Monte Carlo
simulation for x-ray transport4.

In terms of scalability, the vendor implemented MPI paral-
lelized versions of their post-processing tools, like otfprofile,

4http://code.google.com/p/mcgpu/

Figure 16. Master timeline, call tree for process 0 and the CUDA thread,
and GPU counter ”localMemomyPerKernel” for a Monte Carlo simulation
on the GPU

otfmerge and vtfilter, to enable the post-processing of traces
with more than 10.000 streams. The Vampir developers
improved the MPI behavior of vampirserver to run efficiently
with more than 10.000 analysis processes, which allows
the user to analyze traces with over 200.000 streams, i.e.
analyzing a trace of an application utilizing complete Titan
is possible.

To relieve to load for the meta data server of Lustre,
the VampirTrace/OTF developers implemented routines to
use the IOFSL library [5]. In doing so, the user is able to
allocate a small number of compute nodes dedicated to run
the IOFSL servers, whereby each server aggregates multiple
trace streams into one file. A reduction/compression of the
trace data during runtime is available within VampirTrace.
If VampirTrace identifies patterns inside of the stream, e.g.
similar iterations of a do-loop, then it saves one represen-
tative. Vampir is capable to duplicate those representatives
and visualize/analyze the trace as a whole without additional
memory requirement.

Besides the previous discussed improvements, the vendor
was working on the usability and enhanced the analysis
possibilities within Vampir and VampirTrace. The usability
features are among others the accessibility, i.e. predefined
colors for humans with daltonism, and the Vampir client
was made available for Mac OS X, wherewith the client
can be used on all three common operating system: Linux,
Mac OS X and Windows. Additionally, the vendor developed
the automatic generation of filter files based on previous
runs, so that VampirTrace will only collect the performance
relevant events of the subsequent run. To get an general

overview of the trace data without loading it into with
Vampir, the output of otfprofile was enhanced. This includes
global message statistics, like minimum, maximum and
average message sizes, the time spend in MPI routines, i.e.
minimum, maximum and the average time across processes,
and process clustering information, which is similar to the
process clustering within Vampir. The enhanced analysis
possibilities within Vampir include derived counters, which
can be defined by the user and can be made up of hardware
performance counters. In addition, the client offers new filter
capabilities, e.g. filtering of functions, functions groups or
processes, and offers the highlighting of function anomalies
using thresholds of performance or timing values to assist
the user with the analysis and the search for bottlenecks. One
problem was, that Vampir had only a display to visualize one
performance counter for one stream. To get an overview of
one counter for all processes over time, the Performance
Radar display was developed, which offers an easier way
to identify bottlenecks or computational imbalances inside
of the application. Furthermore, a new display was imple-
mented to directly compare two or more traces. This display
enables the time-wise alignment of the traces and it enables
the visualization of common Vampir displays next to each
other, i.e. the user does not has to switch between windows
to compare the cache misses for two traces, for instance.
Figure 17 shows an example of the ”Compare View” display
for four different runs of land model simulations within the
Community Earth System Model [11]. Based on different
input sets for spring, summer, fall and winter, we are able
to identify variations in the computational intensity in the
traces.

V. CONCLUSION

The purpose of this paper has been to present the enhance-
ments to the CAPS, DDT and Vampir/VampirTrace tools
for the upcoming Cray-based Titan system. We continue
to collaborate with a number of vendor to enhance their
offerings as part of the Cray PE hardening. The PE is being
tested on existing systems and applications already make use
of it and follow up with its developments. These tools are
available to be used at production level on Titan.

ACKNOWLEDGMENT

This work was funded by the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC. This research used resources of
the Leadership Computing Facility at Oak Ridge National
Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725 with UTBattelle, LLC.

REFERENCES

[1] The Distributed Debugging Tool. http://www.allinea.com,
2008.

Figure 17. The Compare View for the land model simulation of CESM
shows small but important variations in the computational intensity. The
computational intensity in the land model is among others influenced by
the solar radiation, which differs with the change of seasons.

[2] CUDA Tools SDK: CUPTI User.s Guide. http:
//developer.download.nvidia.com/compute/DevZone/docs/
html/C/doc/CUPTI Users Guide.pdf, 2011.

[3] HMPP: Many-Core Programming Environment.
http://www.caps-entreprise.com/upload/ckfinder/userfiles/
files/HMPP HybridMulticoreParallelProgramming/CAPS
PROD EN HMPP.pdf, 2011.

[4] The OpenACC Application Programming Interface. http:
//www.openacc-standard.org/Downloads/OpenACC.1.0.pdf,
2011.

[5] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,
R. Ross, L. Ward, and P. Sadayappan. Scalable I/O forwarding
framework for high-performance computing systems. In IEEE
International Conference on Cluster Computing (Cluster ’09),
pages 1–10, September 2009.

[6] Holger Brunst and Andreas Knüpfer. Vampir. In Encyclopedia
of Parallel Computing. Springer, October 2011.

[7] Wei Ding, Oscar Hernandez, Chung-Hsing Hsu, Richard Gra-
ham, and Barbara M. Chapman. Bioinspired similarity-based
planning support for the porting of scientific applications.
In 4th Workshop on Parallel Architectures and Bioinspired
Algorithms, Galveston Island, Texas, USA, 2011.

[8] R. Graham, P. Shamis, O. Hernandez, C. Kartsaklis, T. Mintz,
and C. Hsu. A Programming Environment for Heterogeneous
Multi-Core Computer Systems. In Cray User Group (CUG),
May 2011.

[9] C. Kartsaklis, O. Hernandez, C. Hsu, T. Ilsche, W. Joubert, ,
and R. Graham. HERCULES: A Pattern Driven Code Trans-
formation System. In International Workshop on High-Level

Parallel Programming Models and Supportive Environments
(HIPS), May 2012.

[10] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias
Jurenz, Matthias Lieber, Holger Mickler, Matthias S. Müller,
and Wolfgang E. Nagel. The Vampir Performance Analysis
Tool-Set. In Michael Resch, Rainer Keller, Valentin Himm-
ler, Bettina Krammer, and Alexander Schulz, editors, Tools
for High Performance Computing, pages 139–155. Springer
Berlin Heidelberg, 2008.

[11] Keith Oleson, David Lawrence, Gordon Bonan, Mark
Flanner, Erik Kluzek, Peter Lawrence, Samuel Levis, Sean
Swenson, Peter Thornton, Aiguo Dai, Mark Decker, Robert
Dickinson, Johannes Feddema, Colette Heald, Forrest
Hoffman, Jean-Francois Lamarque, Natalie Mahowald, Guo-
Yue Niu, Taotao Qian, James Randerson, Steve Running,
Koichi Sakaguchi, Andrew Slater, Reto Stockli, Aihui
Wang, Zong-Liang Yang, Xiaodong Zeng, and Xubin Zeng.
Technical Description of version 4.0 of the Community
Land Model (CLM). Technical Report NCAR/TN-478+STR,
National Center for Atmospheric Research, April 2010.
http://nldr.library.ucar.edu/repository/collections/TECH-
NOTE-000-000-000-848.

[12] Steve Plimpton. Fast parallel algorithms for short-range
molecular dynamics. Journal of Computational Physics,
117(1):1 – 19, 1995.

[13] Timothy J. Sheehan, William A. Shelton, Thomas J. Pratt,
Philip M. Papadopoulos, Philip LoCascio, and Thomas
H. Duni gan. The locally self-consistent multiple scattering
code in a geographically distributed linked mpp environment.
Parallel Computing, 24(12-13):1827 – 1846, 1998.

