

Third Party Tools for Titan

Richard Graham, Oscar Hernandez,
Christos Kartsaklis, Joshua Ladd,
Jens Domke (Oak Ridge National Laboratory)

Jean-Charles Vasnier,
Stephane Bihan, and Georges-Emmanuel Moulard
(CAPS Enterprise)

Presented by: Joshua S. Ladd

2 Managed by UT-Battelle
 for the U.S. Department of Energy

Goals
• Provide OLCF-3 users with high productivity programming

languages & compilers.
• Provide a programming environment with tools to support

the porting of codes.
• Work with vendors to provide compiler, performance, and

debugger capabilities needed to port applications with
GPUs :
–  CAPS enterprise (OpenHMPP Directives)
–  The Portland Group (Accelerator Directives)
–  Cray (OpenMP for Accelerators)
–  NVIDIA
–  TU-Dresden (Vampir)
–  Allinea (DDT)

•  Joint Standardization Efforts: OpenACC, OpenMP ARB

3 Managed by UT-Battelle
 for the U.S. Department of Energy

Improve Productivity and Portability
•  The Directive based approach provides:

–  Incremental porting/development
–  Fast Prototyping

•  The programmer can quickly produce code that runs in the accelerator
–  Increases Productivity

•  Few code modifications to produce accelerated code
–  Retargetable to different architectures (CPU, GPUs, FPGAs)
–  Tools can assist the user generate the directives, debug them,

and do performance analysis

•  Leading technologies with accelerator directives:
–  OpenACC directives (Cray, PGI, CAPS, NVIDIA)
–  CAPS OpenHMPP directives
–  PGI accelerator directives

4 Managed by UT-Battelle
 for the U.S. Department of Energy

Compilers Available for OLCF-3

Compiler	

Vendor	

C/C++	
 Fortran	
 CUDA	
 C	
 /	

OpenCL	

CUDA	

Fortran	

OpenHMPP	
 PGI	
 	

Acc	
 Dir	

OpenACC	

	

OpenMP	

CPU	

Cray	
 	
 X	
 X	
 X	
 	
 X	

PGI	
 X	
 X	
 P	
 X	
 X	
 X	

CAPS	
 HMPP	
 X	
 X	
 X	
 X	
 X	

NVIDIA	
 X	

Pathscale	
 X	
 X	
 P	
 P	
 X	

Intel	
 X	
 X	
 X	

GNU	
 X	
 X	
 X	

X = Supported
P = In Progress

•  Cray, CAPS, and NVIDIA are directly involved with the OLCF-3 Effort

5 Managed by UT-Battelle
 for the U.S. Department of Energy

Current Work
•  We are currently working with Vendors to provide a set of tools that

target the application needs for OLCF-3
•  We are also building a tool environment to support the applications:

6 Managed by UT-Battelle
 for the U.S. Department of Energy

Programming Models
•  System supports: C/C++/Fortran, OpenMP, MPI, SHMEM
•  GPU accelerator directives: OpenACC and OpenHMPP directives
•  We identified features needed for programmability, performance

improvements or bugs.
–  C++ support [Feature]
–  Fortran module support [Feature]
–  Inlining support [Feature]
–  Need to allocate data directly in the GPU [Performance]
–  3D scheduling support for thread blocks [Performance]
–  Support for libraries [Feature]
–  Codelet functions [Feature]
–  Worksharing between devices in nodes. [Feature]

7 Managed by UT-Battelle
 for the U.S. Department of Energy

•  C/Fortran OpenHMPP and OpenACC directive-based programming
model (API-based for C++)
–  Offload functions and regions onto accelerators
–  Manage CPU-GPU data movements
–  Finely tune loop optimizations and use of hardware specific features
–  Complementary to OpenMP and MPI

•  A source-to-source HMPP compiler
–  Generates CUDA/OpenCL/MiC kernels
–  Works with standard compilers

•  A runtime library
–  Dispatch computations on

available GPUs
–  Scale to multi-GPU systems

HMPP Overview

8 Managed by UT-Battelle
 for the U.S. Department of Energy

HMPP Enhanced Features: Driven by
OLCF Application Needs

• MADNESS:
–  API for C++ applications

•  LAMMPS:
–  Multi-GPU and CPU data distribution

•  LSMS:
–  Seamless integration of accelerated libraries

9 Managed by UT-Battelle
 for the U.S. Department of Energy

HMPP for C++ Applications
• Runtime API close to OpenCL with one directive to let

HMPP generate the CUDA version of a function
template<typename	
 T>	

void	
 add_vector(int	
 n,	
 T	
 *	
 y,	
 T	
 *	
 a,	
 T	
 *	
 b)	
 	

{	

	
 	
 for(int	
 i	
 =	
 0	
 ;	
 i	
 <	
 n	
 ;	
 i++)	

	
 	
 	
 	
 	
 	
 y[i]	
 =	
 a[i]	
 +	
 b[i];	

}	

	
 	

//	
 Instantiate	
 the	
 add_vector<float>	
 template	
 and	
 	

//	
 associate	
 it	
 to	
 the	
 codelet	
 "add_vector_float"	
 	

#pragma	
 hmppcg	
 entrypoint	
 as	
 add_vector_float,	
 target=CUDA	
 	

template	
 void	
 add_vector<float>(int	
 n,	
 float	
 *y,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 *a,	
 float	
 *b);	
 	

•  Templates not supported by OpenACC
• MADNESS – heavily dependent on templates

10 Managed by UT-Battelle
 for the U.S. Department of Energy

HMPP Data Distribution
•  Directives for C and Fortran

–  Define a multi-GPU data distribution scheme and let HMPP execute over
multiple devices

float	
 vin1[NB][SIZE][SIZE],	
 vin2[NB][SIZE][SIZE],	
 vout[NB][SIZE][SIZE];	

.	
 .	
 .	

	

#pragma	
 hmpp	
 parallel,	
 device="i%2"	

	
 	
 for(
 i=0;i<NB;i++)	
 {	

	
 	
 	
 //Allocate	
 the	
 mirrors	
 for	
 vin1,	
 vin2	
 and	
 vout	

#pragma	
 hmpp	
 allocate,	
 data["vin1[i]”,	
 ...],	
 size={size,size}	

	
 	
 	
 	
 //Transfer	
 data	
 to	
 the	
 GPU	
 from	
 the	
 mirrors	

#pragma	
 hmpp	
 advancedload,	
 data["vin1[i]","vin2[i]","vout[i]”]	

	
 	
 	
 	
 ...	

#pragma	
 hmpp	
 sgemm	
 callsite	

	
 	
 	
 	
 sgemm(
 vin1[i],	
 vin2[i],	
 vout[i]	
);	

	
 	
 	
 	
 ...	

//Get	
 back	
 the	
 result	

#pragma	
 hmpp	
 delegatedstore,	
 data["vout[i]"]	

	
 	
 	
 }	

3D

2D

GPU 1

GPU 0

11 Managed by UT-Battelle
 for the U.S. Department of Energy

HMPP Accelerated Library Integration

•  Use accelerated libraries as an alternative to the original library
–  Keep one single source code with CPU and GPU libraries
–  Uses hmppalt directives with a proxy mechanism

•  Compatible with CUBLAS, MAGMA, CULA libraries
•  Access of data allocated by library with directives

12 Managed by UT-Battelle
 for the U.S. Department of Energy

LSMS case study
• Already existing GPU version using cuBLAS and CULA libraries

!$hmppalt	
 myproxy	
 declare,	
 name="zgemm",	
 fallback=true	

SUBROUTINE	
 lsmszgemm(error,transa,...)	

...	

END	
 SUBROUTINE	
 lsmszgemm	

	
 	

!$hmppalt	
 lsms	
 declare,	
 name="zgetrf",	
 fallback=true	

SUBROUTINE	
 lsmszgetrf(error,	
 m,	
 n,	
 a,	
 lda,	
 ipiv,	

info)	
 	

...	

END	
 SUBROUTINE	
 lsmszgetrf	
 	

...	

!$hmpp	
 advancedload	
 	

do	
 iblk=nblk,2,-­‐1	

!$hmppalt	
 myproxy	
 	

call	
 zgetrf(...)	

…	

!$hmppalt	
 myproxy	

call	
 zgemm(...)	

!$hmppalt	
 myproxy	

call	
 zgemm(...)	

enddo	

Declare	
 proxy	
 interfaces	

Call	
 HMPP	
 alterna>ve	
 library	

while	
 keep	
 original	
 call	
 in	
 place	

do	
 iblk=nblk,2,-­‐1	
 	

	
 	
 	
 	
 ...	

	
 	
 	
 	
 call	
 cula_device_zgetrf(...)	
 	

	
 	
 	
 	
 call	
 cula_device_zgetrs(...)	

	
 	
 	
 	
 call	
 cublas_zgemm(...)	
 	

	
 	
 	
 	
 call	
 cublas_zgemm(...)	

enddo	

call	
 cublas_zgemm(...)	

call	
 cublas_get_matrix(...)	

13 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir Toolset

• VampirTrace	

–  Applica>on	
 instrumenta>on	

–  Pre-­‐run	
 phase	

–  Via	
 compiler	
 wrapper,	
 library	

wrapper	
 and/or	
 third-­‐party	

soJware	

–  Measurement	

–  Event	
 collec>on	
 (func>ons	
 calls,	

MPI,	
 OpenMP,	
 performance	

counter,	
 memory	
 usage,	
 I/O,	

GPU)	

–  Timer	
 synchroniza>on	

–  Filtering	
 and	
 grouping	
 of	
 events	

•  Vampir	
 (Client	
 and	
 Server)	

–  Trace	
 visualiza>on	
 soJware	

–  Alterna>ve	
 and	
 supplement	

to	
 automa>c	
 analysis	

–  Show	
 dynamic	
 run-­‐>me	

behavior	
 graphically	

–  Provide	
 sta>s>cs	
 and	

performance	
 metrics	

–  Interac>ve	
 browsing,	

zooming,	
 selec>ng	

capabili>es	

14 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir Performance Analysis Tools

• Custom improvements for the OLCF-3 system
•  Focused on three main areas

–  Scaling the Vampir tools to higher processor counts
–  Integrating GPU support for a comprehensive analysis of

heterogeneous systems
–  Additional usability enhancements

15 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir toolset challenges

• Support for GPU tracing
• Scaling up to a Titan-sized HPC-system
• Overcome I/O challenges related to the huge amount of

data generated by traces as well as the number of tracing
streams

• General enhancements in terms of usability and analysis
possibilities

16 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir GPU support for Titan

•  Successive CUDA support based on latest
CUDA releases

•  How CUDA fits into Vampir’s design
–  accelerator threads treated like OMP threads
–  CUDA memcpy treated like MPI communication

•  Tracing of multiple CUDA kernels in one
executable

•  Tracing of asynchronous GPU events
•  Tracing of performance counters on GPUs

Currently	
 done	
 via	
 library	
 wrapping	

	

	

	

	

	

	

	

Reuse	
 of	
 known	
 metrics:	

Thread	
 =	
 Kernel	

	

	

	

	

	

	

Message	
 =	
 cudaMemCpy	

	

	

Application

API

Library

Dynamic Linker
Enter/
Leave

Pr
oc

es
s

A
 (

H
os

t)

K
er

ne
l A

‘ (
G

PU
)

H
os

t-
M

em
or

y

G
PU

-M
em

or
y

1234

„foo“

0.98

TRUE

17 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir Scalability Improvements

•  Parallelization of VampirTrace tools: otfmerge, vtfilter, otfprofile
–  enable the processing of traces with >10k streams!!

•  Enhanced output of otfprofile
–  Global message statistics
–  Time spent in MPI
–  Process clustering information

•  Improved MPI behavior of VampirServer
–  Analyze traces with >10k analysis processes
–  Allows to analyze traces on the entire Titan system

•  New displays
–  Performance radar (performance counter for all processes over time)
–  Highlight performance bottlenecks (related to counters)

18 Managed by UT-Battelle
 for the U.S. Department of Energy

I/O Challenge

•  Online trace file compression (reduce i/o load)
–  Find pattern and record only one (aka rewind)
–  Find pattern irregularities: use marker to highlight pattern irregularities

•  Visualization of those compressed traces via multiplexing the
recorded pattern (only in the display, not in memory) to show the
trace as a whole

•  Use IOFSL to aggregate large number of streams in a small
number of files (instead of saving each stream in one file) to
reduce the load for the Lustre meta data server

19 Managed by UT-Battelle
 for the U.S. Department of Energy

S3D on Jaguar (200k+ cores)

20 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir Usability/Analysis Enhancements

•  Vampir clients for all major OS platforms (Linux, Mac, Win)
•  Automatic generation of filter files (based on previous runs) to trace

only performance relevant parts
•  Performance Radar

–  Derived counters
–  Highlighting of function anomalies based on user defined thresholds

•  Enhanced filtering capabilities
–  functions, functions groups, processes inside of Vampir

•  Compare View
–  Compare multiple traces directly, while showing them in one display

21 Managed by UT-Battelle
 for the U.S. Department of Energy

Vampir Usability/Analysis Enhancements

 Performance Radar Compare View

22 Managed by UT-Battelle
 for the U.S. Department of Energy

Allinea DDT Debugger

• Work with Allinea to improve the scalability of the DDT
debugger

• Data Analysis
–  Parallel Watchpoints
–  Addition of “sparklines”
–  Scalable data analysis
–  Scalable breakpoints,
stepping and program
stack queries

• Major GPU enhancements

23 Managed by UT-Battelle
 for the U.S. Department of Energy

DDT Integration with Cray PE
• Support for Abnormal Process Termination (APT), allows to

attach DDT to aborted process and review stack

• Multiple core file support using xt_setup_core_handler()
• Open MPI (Cray XK/alps) version support

24 Managed by UT-Battelle
 for the U.S. Department of Energy

DDT GPU Support

• Cray compiler support
–  Stepping into OpenACC regions
–  Setting breakpoints within OpenACC regions

• Support for HMPP directives
–  stepping into HMPP codelets

• Multiwarp stepping in CUDA codes
• CUDA memory debugging capabilities

–  Identify memory leaks on the device
–  Visual display of memory allocated on host and device

25 Managed by UT-Battelle
 for the U.S. Department of Energy

DDT Debugging with HMPP directives

26 Managed by UT-Battelle
 for the U.S. Department of Energy

DDT and OpenACC Directives

27 Managed by UT-Battelle
 for the U.S. Department of Energy

DDT and VisIT
•  Integration with VisIT (Available with VisIT 2.5 summer 2012)

–  Coupling advanced application generated data visualization
capabilities with scalable debugging

28 Managed by UT-Battelle
 for the U.S. Department of Energy

Thank you for your attention!

• Questions and comments are most welcome

