
The PGI Fortran and C99 OpenACC Compilers

Brent Leback, Michael Wolfe, and Douglas Miles

The Portland Group (PGI)

Portland, Oregon, U.S.A

brent.leback@pgroup.com

Abstract—This paper provides an introduction to

programming accelerators using the PGI OpenACC

implementation in Fortran and C, which is based on

OpenACC API version 1.0. The paper explains the use of the

data construct, and compares the use of the Parallel and

Kernels construct. PGI-specific extensions and features, and

compiler and runtime options, are shown.

Keywords-OpenACC, accelerator, GPGPU, programming

models

I. INTRODUCTION

In the second half of 2011, a group of vendors came
together with a goal to standardize a set of directives for
programming accelerators. The OpenACC Application
Program Interface (OpenACC API) is the result of these
meetings. OpenACC allows programmers to write
applications that offload work (both code and the associated
runtime data the code operates on) from a host CPU to an
attached accelerator, typically a GPU or similar device.
Unlike explicit languages such as CUDA or OpenCL, details
of data transfer between the host and device, kernel launch
configurations, and synchronization, are all virtualized in the
programming model.

Portions of the OpenACC API borrow heavily from
PGI's Accelerator Programming Model. PGI introduced its
Accelerator Programming Model in 2008 and it has
undergone a couple of revisions since that time. The goal all
along has been to provide a higher-level model aimed at
scientists, engineers, and maintainers of large legacy codes.
The model itself is directive based, in the spirit of OpenMP,
as opposed to the CUDA or OpenCL languages which
require adherence to extensive runtime APIs and usually a
complete overhaul and rewrite of the low-level kernel
functions. In a directive-based model, programmers insert
comments in the form of directives in Fortran, and pragmas
in C and C++, which denote to the compiler which data
structures need to be copied to the device, and which blocks
of code should run on the device. Ideally, the code is left in
a state that, while perhaps not pristine, will work as well as
the original when run through a compiler that does not
recognize the accelerator directives.

As the PGI Model began to gain traction among
members of the scientific and engineering communities,
other software development tool vendors provided solutions
which were, in many of the functional areas, similar in
scope, but they contained partial or even sometimes extended

functionality; at the very least the directives were spelled
differently. In 2010, PGI began an effort within the
OpenMP committee to standardize a directive model.
Members involved with the effort studied many options, and
it appeared that resolving them would take much longer than
initially thought. At CUG in 2011, this author stated that it
certainly appeared that it was in danger of dying.
Eventually, this state of affairs led to a series of separate
meetings between Cray, NVIDIA, and PGI outside of the
OpenMP umbrella. CAPS later joined in, and by
Supercomputing 2011 the OpenACC 1.0 Specification was
complete. Today, implementations by the vendors are well
underway, and there appears to be a chance the specification,
or something similar, will be pulled back into the OpenMP
domain at some point in the future.

II. PROGRAMMING ACCELERATORS USING DIRECTIVES

A. The Host Side

All host programs which make use of an accelerator must
perform the following steps:

1. Select the attached accelerator; initialize the device

and the runtime
2. Allocate data on the device
3. Move data from the host, or initialize it there on the

device
4. Launch a kernel or series of kernels
5. Gather results back from the device
6. Deallocate the data, free the device

CUDA C/C++ is an explicit language for programming

accelerators. The steps are clear, all details are left to the
programmer, and it leaves little room for confusion or doubt.
Typical CUDA host code for performing the above steps
looks like this:

 /* Step 1, showing default behavior */
 cudaSetDevice(0);

 /* Step 2 */
 msize = sizeof(float)*n;
 cudaMalloc(&da,msize);
 cudaMalloc(&db, msize);
 cudaMalloc(&dc, msize);

 /* Step 3 */
 cudaMemcpy(db, b, msize, cudaMemcpyHostToDevice);
 cudaMemcpy(dc, c, msize, cudaMemcpyHostToDevice);

 /* Step 4 */
 dim3 threads(256);
 dim3 blocks(n/256);
 vaddkernel<<<blocks,threads>>>(da, db, dc, n);

 /* Step 5 */
 cudaMemcpy(a, da, msize, cudaMemcpyDeviceToHost);

 /* Step 6 */
 cudaFree(da);
 cudaFree(db);
 cudaFree(dc);

Even CUDA Fortran, which uses higher level syntax than

CUDA C, is explicit in following these steps, and could be
considered even more so since da, db, and dc are declared
differently than a, b, and c in that they have the device
attribute, and are therefore limited in where they can be used
in the language:

 real, device, dimension(:), allocatable :: da, db, dc

 allocate(da(1:n), db(1:n), dc(1:n)) ! step 2

 db = b ! step 3
 dc = c

 call vaddkernel<<<n/256,256>>>(da, db, dc, n) ! step 4

 a = da ! step 5

 deallocate(da, db, dc) ! step 6

In an implicit, directive-based model, the details of the
five or six steps which all accelerated host programs must
have are implied or understood by the compiler based on the
kernel work that is specified, and as we'll see later, by the
surrounding context of the program unit. Take, for instance,
this annotated loop:

 #pragma acc kernels loop
 for (i = 0; i < n; i++)
 a[i] = b[i] + c[i];

Through compiler analysis it can be determined that data

areas for a, b, and c of length n must be allocated on the
device, that data for b and c must be copied from the host to
the device, that the results in a must be copied from the
device back to the host, and with a lack of any other
surrounding context, space for all three arrays should be
freed.

Of course in the real world, code is much more
complicated. Arrays are multi-dimensional, accesses into the
arrays are not sequential, perhaps not even regular, complex

data structures are used, there are function calls, etc. Much
of the work over the last several years on the PGI
Accelerator Model has gone into addressing these issues
while trying to stay true to the original design goal of
handling most of the target-specific details within the
compiler, deciding which parameters should be controllable
through directive clauses, and providing feedback which
allows users to understand the decisions the compiler made
and why.

B. The Device Side

While most traditional compiler users understand
assembly language, they don't want to drop down to that
level in the normal course of their day. The same is true of
many GPGPU programmers: they may have written some
CUDA or OpenCL as they were ramping up the learning
curve, but they would prefer to leave the device code
generation to either someone else, such as their younger
colleagues or a library vendor, or something else, preferably
their high-level tools. To understand the challenges in
providing robust tools, let's first look at the typical hardware
that these tools target.

Figure 1. NVIDIA Fermi block diagram. In this instance, fourteen

streaming multiprocessors each containing thirty-two thread processors.

Most current GPUs support at least two levels of
parallelism: an outer doall (fully parallel) loop level, and an
inner synchronous (SIMD or vector) loop level. Each level
can be multidimensional with 2 or 3 dimensions, but the
domain must be rectangular. The outer doall level, which in
OpenACC is called gangs, is typically mapped to the
processing elements commonly referred to on NVIDIA
GPUs as the streaming multiprocessors, or in CUDA as a
thread block. Likewise, the number of gangs, in CUDA
parlance, is the number of blocks in a grid. No
synchronization is supported by the programming model
between parallel threads across the gang level. This is an
important point. If you are porting an existing region of host
code to a GPU, and you suddenly find a reference to
something that you think will be computed in another gang
(or the compiler informs you of such), you must either work
to remap the code using a different schedule or break the

code into multiple kernels, since the order of execution of
kernels is deterministic.

At the inner SIMD or vector level, explicit
synchronization is supported and required. In OpenACC,
this is termed the vector level. This level is familiar to HPC
programmers: it can be thought of as equivalent to SIMD
registers on an x86. All fully parallel loops, with no
dependencies between iterations, can be scheduled for either
doall or synchronous parallel execution, but by definition
SIMD vector loops that require synchronization can only be
scheduled for synchronous parallel execution.

In addition, OpenACC supports an additional level of
parallelism, corresponding to multiple threads that interleave
execution on a single core. This is called the worker level; it
can be considered similar to Intel hyperthreading or SPARC
multithreading. Loop iterations that share data or
synchronize can be run in parallel at the worker level, since
those workers will execute on the same physical core, in the
same gang, and share those resources.

III. INTRODUCING OPENACC

As mentioned above, OpenACC is a new parallel

programming standard describing a set of compiler directives
which can be applied to standard C, C++, and Fortran to
specify regions of code and associated data for offloading
from a host CPU to an attached accelerator. At the most-
basic level, by merely annotating compute-intensive regions
of code with directives, the programmer can target an
accelerator with his or her existing program.

After running a few simple loops and timing the results,
however, it will become clear that care must be taken to
control and optimize data locality. A naive approach that
copies a kernel's data back and forth at each kernel
invocation will almost always run slower than simply
leaving the computation on the CPU. The primary
mechanism to control data locality in OpenACC is the Data
Construct.

A. Data Construct

The data construct defines a region where arrays,
subarrays, and scalars should be allocated on the device.
Clauses in the data construct further define whether data
should be copied from the host to device upon region entry,
copied back to the host as the program exits the region, or
just created and used entirely on the device.

The syntax of the data construct in C and C++ is:
 #pragma acc data [clause [[,] clause]]
 {
 }

And in Fortran:
 !$acc data [clause [[,] clause]]
 !$acc end data

Commonly used clauses in the data construct are:

 if (condition) -- Create the device copies if the condition
is true

 copy (list) -- Create and copy host data both in and out
 copyin (list) -- Create and copy host data in only
 copyout (list) -- Create and copy device data out only at
region exit
 create (list) -- Create the device data structure but no
copying
 deviceptr (list) -- This pointer or dummy argument
references device memory already. Don't create or copy.

Many programs need only one data construct in the entire

program. It usually goes after the corresponding host arrays
have been created and initialized using i/o, which of course
is only supported on the host. Here is an example from an
OpenACC version of the swim benchmark:

 C INITIALIZE CONSTANTS AND ARRAYS
 C
 CALL ALLOC

 !$ACC DATA CREATE(U(NP1,MP1), V(NP1,MP1))
 !$ACC& CREATE(UNEW(NP1,MP1),VNEW(NP1,MP1))
 !$ACC& CREATE(PNEW(NP1,MP1), UOLD(NP1,MP1))
 !$ACC& CREATE(VOLD(NP1,MP1), POLD(NP1,MP1))
 !$ACC& CREATE(CU(NP1,MP1), CV(NP1,MP1))
 !$ACC& CREATE(P(NP1,MP1),Z(NP1,MP1))
 !$ACC& CREATE(H(NP1,MP1), PSI(NP1,MP1))

 CALL INITAL

Two other data directives are commonly used. A declare
directive is similar to the data directive, but uses the scope of
the entire function, subroutine, or program as an implicit data
region. It is inserted after the declaration, and takes most of
the same clauses as the data directive.

The other is an executable directive and is used to

synchronize the host and device copies of the array,
subarray, or scalar while you are inside of a data region,
either explicit or implicit. It's syntax in C/C++ is:

 #pragma acc update [clause [[,] clause]]

And in Fortran:
 !$acc update [clause [[,] clause]]

and the common clauses are:
 if (condition) -- Do the update if the condition is true
 device (list) -- Update the device copy from the host data
 host (list) -- Update the host copy from the device data

At least one instance of device or host must appear in the

directive. The update directive is commonly used in a
number of situations:

1. When sharing computation between the host and
device.

2. Gathering some set of intermediate results from the
device to perform a conditional test on the host.

3. Writing intermediate results generated on the device
using i/o which is only supported on the host.

4. Collecting halos of device data for sharing with
other processes via MPI or some other
communication mechanism.

5. Storing halos or new parameter values collected
from other processes or host inputs back to the
device.

In practice, we've found that collecting halos into one

contiguous buffer and doing one update, packing and
unpacking on both sides, usually performs better than doing
multiple updates.

B. Present Data

One change between the PGI Accelerator Model and

OpenACC should potentially help developers when porting
codes to OpenACC. When accelerator compute regions are
not lexically within data regions, i.e. there has been a
subprogram call, the PGI Accelerator Model requires the
reflected attribute for the procedure argument. Then at
compile time the compiler will insert a hidden argument into
the calling sequence so both the host pointer and device
pointer can be passed along. OpenACC uses a runtime
lookup table, keyed by the host address, to determine if a
device copy of the data exists, and if so, fetches the
appropriate device address from this table. Thus far we've
found the overhead for the lookup, which exists entirely in
host memory, is minimal.

Programmers can explicitly list subprogram variable

names using these clauses on the data or declare directives
and direct the runtime behavior:
 present (list) -- Device copy must be present
 present_or_copy (list) -- If device copy not present, create
and copy
 present_or_copyin (list) -- If device copy not present,
create and copyin
 present_or_copyout (list) -- If device copy not present,
create and copyout
 present_or_create (list) -- If device copy not present, just
create

The OpenACC specification states, and the PGI compiler

has defaults, which make the use of these present clauses
unnecessary in many cases. For instance, arrays which
appear inside the kernels construct which do not appear in
any enclosing data clauses are treated as present_or_copy. It
is also worth noting that these clause names can be
shortened, for example, pcopyin is synonymous with
present_or_copyin.

C. Kernels Construct

The OpenACC kernels construct has been supported

since PGI 12.3, and is a straight-forward translation from the
PGI Accelerator region construct. It specifies a region of
code that is to be compiled into one or more accelerator
kernels, executed in sequence. The kernels directive itself
can take most of the data clauses presented previously. Each
kernel can differ in the number of gangs and workers it
utilizes. For instance, simple reductions can be recognized
and implemented with two kernels, one for local reductions
within a gang, and one to do the final reduction using the
results generated by the first kernel.

Earlier, we presented a combined directive that contained
both a kernel construct and a loop construct. For more
complicated cases, separate loop constructs are usually
inserted inside of the kernels construct. Within a kernels
construct, these loop constructs are typically used to describe
what type of parallelism to use to execute the loop.

Clauses which are typically used on the loop directive

when they are within the kernels construct are:
 collapse (n) -- Collapse n tightly nested loop iterations
 gang (n) -- Iterations of loop executed across n gangs
 worker (n) -- Iterations of loop executed across n workers
per gang
 vector (n) -- Iterations of loop executed in strips of length
n
 seq -- Iterations of loop executed sequentially within a
worker
 independent -- Assert that iterations of loop are data-
indepedent to each other

Again from the swim benchmark, here is an example of

loop directives contained with the kernels construct:

 !$ACC KERNELS
 !$ACC LOOP GANG, VECTOR(16)
 DO 100 J=1,N
 !$ACC LOOP GANG, VECTOR(16)

 DO 100 I=1,M
 CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J)
 CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1)
 Z(I+1,J+1) = (FSDX*(V(I+1,J+1) –
 1 V(I,J+1))-FSDY*(U(I+1,J+1)
 1 -U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1))
 H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J)*
 1 U(I,J) + V(I,J+1)*V(I,J+1)+V(I,J)*V(I,J))

 100 CONTINUE

As this example shows, one of the advantages of the

kernels construct over the parallel construct is the flexibility
the compiler or programmer has in scheduling the loops
using multi-dimensional decompositions, which can enable
tiling and data-reuse using shared memory.

Here is a listing of the compiler -Minfo output for this

loop:

162, Loop is parallelizable
164, Loop is parallelizable
 Accelerator kernel generated
162, !$acc loop gang, vector(16) ! blockidx%y threadidx%y
164, !$acc loop gang, vector(16) ! blockidx%x threadidx%x

 Cached references to size [17x17] block of 'p'
 Cached references to size [17x17] block of 'v'
 Cached references to size [17x17] block of 'u'

The compiler is able to generate device code that utilizes

17x17 blocks of shared memory to hold a tile of p, u, and v
for each gang.

One current drawback of the kernels construct is that
loops need to be tightly nested for the compiler to be able to
generate good kernels. At PGI, we hope to address that
limitation as we gain experience with the parallel
construct.Define abbreviations and acronyms the first time
they are used in the text, even after they have been defined in
the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc,
dc, and rms do not have to be defined. Do not use
abbreviations in the title or heads unless they are
unavoidable.

D. Parallel Construct

The OpenACC API also defines another type of compute
construct, the parallel construct. The parallel construct is
more explicit user-specified parallelism than the kernels
construct, and much like the OpenMP parallel construct.
The OpenACC parallel construct immediately launches a
specified number of gangs, where each gang contains a
specified number of workers. One worker in each gang
starts executing the code in the parallel construct
redundantly, just like threads in an OpenMP parallel
construct, until they reach a work-sharing loop construct. At
that point, the iterations of the work-sharing loop are spread
across the gangs and workers within each gang, as specified
by the construct. By default, outer loops are shared across
the gangs. Inner loops are work-shared amongst the workers
in a gang, a.k.a. the threads in the threadblock.

The parallel construct results, in many cases, in the
annotated OpenACC loop to look very similar to the exising
OpenMP annotations over the same structure. This is an
advantage to this construct that may make initial ports to
OpenACC easier.

In OpenMP, the number of threads is fixed once you
enter a parallel region, except in cases of nested parallelism.
Likewise, with the parallel OpenACC construct, the number
of gangs, and the number of workers in a gang, is fixed upon
entering the parallel region. Only one kernel will be
generated and launched at runtime.

Here is a snippet from a Fortran nbody example that

shows the use of the parallel construct:

 !$acc parallel
 ! gang-redundant work goes here
 !$acc loop gang
 do j = 1, n

 p1 = posin(j,1)
 p2 = posin(j,2)
 p3 = posin(j,3)
 f1 = 0.0; f2 = 0.0; f3 = 0.0
 !$acc loop worker, reduction(+:f0,f1,f2)
 do i = 1, n
 r1 = posin(i,1) - p1
 r2 = posin(i,2) - p2
 r3 = posin(i,3) - p3
 distsqr = r1*r1 + r2*r2 + r3*r3
 distsqr = distsqr + softensqr
 distinv = 1.0 / distsqr
 distinv3 = distinv*distinv*distinv
 s = posin(i,4) * distinv3
 f1 = f1 + r1*s
 f2 = f2 + r2*s
 f3 = f3 + r3*s
 end do
 fmassinv = posin(j,4)
 v1 = velocity(j,1) + f1*fmassinv*dtime
 v2 = velocity(j,2) + f2*fmassinv*dtime
 v3 = velocity(j,3) + f3*fmassinv*dtime
 . . .
end do
!$acc end parallel

Clauses available in the Parallel construct and not in the

Kernels construct:
 num_gangs() - fixed number of gangs in the parallel
construct
 num_workers() - fixed number of workers per gang used
when a worker-shared parallel loop is encountered
 reduction() - explicitly defined reduction operator, similar
to OpenMP
 vector_length() - defines the vector length for SIMD
operations in the loop
 private() - data that is replicated, one copy per gang
 firstprivate() - replicated like private, but initialized with the
host values

PGI support for the parallel construct will be first enabled

in PGI 12.5 and available in May, 2012.

IV. INTEROPERABILITY AND PGI-SPECIFIC

FEATURES

The PGI Accelerator compilers will accept code
containing both OpenACC directives and PGI Accelerator
Model directives. Generally, it will be best to recompile all
code with the same version of PGI compiler to guarantee
data directives are handled consistently between the two
models.

Besides renaming the directives, users looking to migrate
completely from the PGI Accelerator Model to OpenACC
need to be aware of a few other changes:

1. C Subarrays are specified differently in

OpenACC. Since the C language has no
standard subarray notation, PGI used notation

that matched Fortran, with lower and upper
bounds. OpenACC has adopted Intel's Array
Notation for C, which uses a starting index and
length. So, x[0:n-1] for n elements of x has
become x[0:n].

2. OpenACC only allows contiguous subarrays to
be allocated on the device.

3. Reductions are explicit in the parallel construct.
4. OpenACC uses runtime present checks rather

than reflected as mentioned above. There is no
support for mirrored data in OpenACC.

5. PGI may accept declaration-style array
specifications in data clauses when in fact they
should be array or subarray sections.

CUDA Fortran and OpenACC can also coexist. As an

extension, PGI OpenACC can properly recognize and
operate with CUDA Fortran device arrays. OpenACC
kernels can also call CUDA Fortran device functions.

A. Compiler Options, Feedback, and Profiling

We are currently using compiler options from the PGI

Accelerator Model to control GPU code generation. With
the first 1.0 general release of the OpenACC functionality we
will determine whether or not we need to pull these into the
OpenACC specific flags. Until then, these are the pertinent
flags for users to be aware of:

 -acc Enable recognition of OpenACC directives
 -acc=strict|verystrict Level of warnings for non-OpenACC
directive conformance
 -Minfo=accel Compiler will produce informational
messages about accelerator optimization
 -ta=nvidia Control NVIDIA target code generation
options

We have shown some examples of the Minfo accelerator

compiler output above. The key things to look for are the
amount of data transfered for each array, and the loop
schedules generated for each accelerator kernel.

Runtime profiling can be controlled in the PGI

OpenACC compiler, and in the PGI accelerator model, by
use of the PGI_ACC_TIME environment variable. Setting
this variable will instruct the runtime to print launch statics
for each kernel that was generated, and data region
encountered. The statistics include the number of launches,
the launch configuration, and the time is microseconds (total,
max, min, and average) for each kernel. If data transfer is
required for the kernel, that is included as well. Otherwise,
for data regions, the output contains total time for data
transfer for that region.

Accelerator Kernel Timing data for a simple example:

C:\Users\Leback\openacc\samples\acc_f3a.f90
 smooth

 32: region entered 20 times
 time(us): init=0
 34: kernel launched 20 times
 grid: [128x128] block: [16x16]
 time(us): total=221085 max=11059 min=11051

avg=11054
C:\Users\Leback\openacc\samples\acc_f3a.f90
 smooth
 24: region entered 20 times
 time(us): init=0
 26: kernel launched 20 times
 grid: [128x128] block: [16x16]
 time(us): total=221083 max=11058 min=11050

avg=11054
C:\Users\Leback\openacc\samples\acc_f3a.f90
 main
 128: region entered 1 time
 time(us): init=0
 data=43765

For data other than time-based information, PGI utilizes

its own accel_lib an f90 module, and a corresponding C
library to extract the number of data transfers and number of
regions entered. Users can insert these calls into their code
to get counter values that are kept at runtime, from either C
or Fortran.

 integer function acc_regions()
 end function
 integer function acc_kernels()
 end function
 integer function acc_allocs()
 end function
 integer function acc_frees()
 end function
 integer function acc_copyins()
 end function
 integer function acc_copyouts()
 end function
 integer(8) function acc_bytesalloc()
 end function
 integer(8) function acc_bytesin()
 end function
 integer(8) function acc_bytesout()
 end function

V. CONCLUSION

In this paper we've touched on what we believe to be the
most commonly used OpenACC v1.0 features. For a
complete list of features, OpenACC users are encouraged to
download the entire OpenACC specification from
www.openacc.org. Areas we have not touched on in this
paper include asynchronous control, the OpenACC runtime
library, and environment variables. We fully expect the API
specification to change as developers gain more experience
and as the baseline for accelerator target architectures gain
added functionality.

REFERENCES

[1] The OpenACC Application Programming Interface, Version 1.0,

November 2011. www.openacc.org

[2] Michael Wolfe, High Performance Compilers for Parallel
Computers, Addison-Wesley, 1996

[3] The PGI Accelerator Compilers with OpenACC, by Michael Wolfe,
PGI Compiler Engineer.
http://www.pgroup.com/lit/articles/insider/v4n1a1.htm

