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Abstract—This paper provides an introduction to 

programming accelerators using the PGI OpenACC 

implementation in Fortran and C, which is based on 

OpenACC API version 1.0.  The paper explains the use of the 

data construct, and compares the use of the Parallel and 

Kernels construct.  PGI-specific extensions and features, and 

compiler and runtime options, are shown. 
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I.  INTRODUCTION 

In the second half of 2011, a group of vendors came 
together with a goal to standardize a set of directives for 
programming accelerators.  The OpenACC Application 
Program Interface (OpenACC API) is the result of these 
meetings.  OpenACC allows programmers to write 
applications that offload work (both code and the associated 
runtime data the code operates on) from a host CPU to an 
attached accelerator, typically a GPU or similar device.  
Unlike explicit languages such as CUDA or OpenCL, details 
of data transfer between the host and device, kernel launch 
configurations, and synchronization, are all virtualized in the 
programming model. 

Portions of the OpenACC API borrow heavily from 
PGI's Accelerator Programming Model.  PGI introduced its 
Accelerator Programming Model in 2008 and it has 
undergone a couple of revisions since that time.  The goal all 
along has been to provide a higher-level model aimed at 
scientists, engineers, and maintainers of large legacy codes.  
The model itself is directive based, in the spirit of OpenMP, 
as opposed to the CUDA or OpenCL languages which 
require adherence to extensive runtime APIs and usually a 
complete overhaul and rewrite of the low-level kernel 
functions.  In a directive-based model, programmers insert 
comments in the form of directives in Fortran, and pragmas 
in C and C++, which denote to the compiler which data 
structures need to be copied to the device, and which blocks 
of code should run on the device.  Ideally, the code is left in 
a state that, while perhaps not pristine, will work as well as 
the original when run through a compiler that does not 
recognize the accelerator directives. 

As the PGI Model began to gain traction among 
members of the scientific and engineering communities, 
other software development tool vendors provided solutions 
which were, in many of the functional areas, similar in 
scope, but they contained partial or even sometimes extended 

functionality; at the very least the directives were spelled 
differently.  In 2010, PGI began an effort within the 
OpenMP committee to standardize a directive model.  
Members involved with the effort studied many options, and 
it appeared that resolving them would take much longer than 
initially thought.  At CUG in 2011, this author stated that it 
certainly appeared that it was in danger of dying.  
Eventually, this state of affairs led to a series of separate 
meetings between Cray, NVIDIA, and PGI outside of the 
OpenMP umbrella.  CAPS later joined in, and by 
Supercomputing 2011 the OpenACC 1.0 Specification was 
complete.  Today, implementations by the vendors are well 
underway, and there appears to be a chance the specification, 
or something similar, will be pulled back into the OpenMP 
domain at some point in the future. 

II. PROGRAMMING ACCELERATORS USING DIRECTIVES 

A. The Host Side 

All host programs which make use of an accelerator must 
perform the following steps: 

 
1. Select the attached accelerator; initialize the device 

and the runtime 
2. Allocate data on the device 
3. Move data from the host, or initialize it there on the 

device 
4. Launch a kernel or series of kernels 
5. Gather results back from the device 
6. Deallocate the data, free the device 

 
CUDA C/C++ is an explicit language for programming 

accelerators.  The steps are clear, all details are left to the 
programmer, and it leaves little room for confusion or doubt.  
Typical CUDA host code for performing the above steps 
looks like this: 

 
  /* Step 1, showing default behavior */ 
  cudaSetDevice( 0 );  
   

 
  /* Step 2 */ 
  msize = sizeof(float)*n; 
  cudaMalloc(&da,msize);   
  cudaMalloc( &db, msize ); 
  cudaMalloc( &dc, msize ); 

 



  /* Step 3 */ 
  cudaMemcpy( db, b, msize, cudaMemcpyHostToDevice ); 
  cudaMemcpy( dc, c, msize, cudaMemcpyHostToDevice ); 

 
  /* Step 4 */ 
  dim3 threads( 256 );   
  dim3 blocks( n/256 ); 
  vaddkernel<<<blocks,threads>>>( da, db, dc, n );    

 
  /* Step 5 */ 
  cudaMemcpy( a, da, msize, cudaMemcpyDeviceToHost ); 

 
  /* Step 6 */ 
  cudaFree( da );    
  cudaFree( db ); 
  cudaFree( dc ); 

 
Even CUDA Fortran, which uses higher level syntax than 

CUDA C, is explicit in following these steps, and could be 
considered even more so since da, db, and dc are declared 
differently than a, b, and c in that they have the device 
attribute, and are therefore limited in where they can be used 
in the language: 

 
  real, device, dimension(:), allocatable :: da, db, dc 
 
   allocate( da(1:n), db(1:n), dc(1:n) )   ! step 2 

 
  db = b   ! step 3 
  dc = c 

 
  call vaddkernel<<<n/256,256>>>( da, db, dc, n )   ! step 4 

 
  a = da   ! step 5 

 
  deallocate( da, db, dc )   ! step 6 
 
 

In an implicit, directive-based model, the details of the 
five or six steps which all accelerated host programs must 
have are implied or understood by the compiler based on the 
kernel work that is specified, and as we'll see later, by the 
surrounding context of the program unit.  Take, for instance, 
this annotated loop: 

 
    #pragma acc kernels loop 
    for (i = 0; i < n; i++) 
        a[i] = b[i] + c[i]; 
 
Through compiler analysis it can be determined that data 

areas for a, b, and c of length n must be allocated on the 
device, that data for b and c must be copied from the host to 
the device, that the results in a must be copied from the 
device back to the host, and with a lack of any other 
surrounding context, space for all three arrays should be 
freed. 

Of course in the real world, code is much more 
complicated.  Arrays are multi-dimensional, accesses into the 
arrays are not sequential, perhaps not even regular, complex 

data structures are used, there are function calls, etc.  Much 
of the work over the last several years on the PGI 
Accelerator Model has gone into addressing these issues 
while trying to stay true to the original design goal of 
handling most of the target-specific details within the 
compiler, deciding which parameters should be controllable 
through directive clauses, and providing feedback which 
allows users to understand the decisions the compiler made 
and why. 

 

B. The Device Side 

While most traditional compiler users understand 
assembly language, they don't want to drop down to that 
level in the normal course of their day.  The same is true of 
many GPGPU programmers: they may have written some 
CUDA or OpenCL as they were ramping up the learning 
curve, but they would prefer to leave the device code 
generation to either someone else, such as their younger 
colleagues or a library vendor, or something else, preferably 
their high-level tools.  To understand the challenges in 
providing robust tools, let's first look at the typical hardware 
that these tools target. 

 

 
Figure 1.  NVIDIA Fermi block diagram.  In this instance, fourteen 

streaming multiprocessors each containing thirty-two thread processors. 

Most current GPUs support at least two levels of 
parallelism: an outer doall (fully parallel) loop level, and an 
inner synchronous (SIMD or vector) loop level.  Each level 
can be multidimensional with 2 or 3 dimensions, but the 
domain must be rectangular.  The outer doall level, which in 
OpenACC is called gangs, is typically mapped to the 
processing elements commonly referred to on NVIDIA 
GPUs as the streaming multiprocessors, or in CUDA as a 
thread block.  Likewise, the number of gangs, in CUDA 
parlance, is the number of blocks in a grid.  No 
synchronization is supported by the programming model 
between parallel threads across the gang level.  This is an 
important point.  If you are porting an existing region of host 
code to a GPU, and you suddenly find a reference to 
something that you think will be computed in another gang 
(or the compiler informs you of such), you must either work 
to remap the code using a different schedule or break the 



code into multiple kernels, since the order of execution of 
kernels is deterministic. 

At the inner SIMD or vector level, explicit 
synchronization is supported and required.  In OpenACC, 
this is termed the vector level.  This level is familiar to HPC 
programmers: it can be thought of as equivalent to SIMD 
registers on an x86.  All fully parallel loops, with no 
dependencies between iterations, can be scheduled for either 
doall or synchronous parallel execution, but by definition 
SIMD vector loops that require synchronization can only be 
scheduled for synchronous parallel execution. 

In addition, OpenACC supports an additional level of 
parallelism, corresponding to multiple threads that interleave 
execution on a single core.  This is called the worker level; it 
can be considered similar to Intel hyperthreading or SPARC 
multithreading.  Loop iterations that share data or 
synchronize can be run in parallel at the worker level, since 
those workers will execute on the same physical core, in the 
same gang, and share those resources. 

 

III. INTRODUCING OPENACC 

 
As mentioned above, OpenACC is a new parallel 

programming standard describing a set of compiler directives 
which can be applied to standard C, C++, and Fortran to 
specify regions of code and associated data for offloading 
from a host CPU to an attached accelerator.  At the most-
basic level, by merely annotating compute-intensive regions 
of code with directives, the programmer can target an 
accelerator with his or her existing program. 

After running a few simple loops and timing the results, 
however, it will become clear that care must be taken to 
control and optimize data locality.  A naive approach that 
copies a kernel's data back and forth at each kernel 
invocation will almost always run slower than simply 
leaving the computation on the CPU.  The primary 
mechanism to control data locality in OpenACC is the Data 
Construct. 

A. Data Construct 

The data construct defines a region where arrays, 
subarrays, and scalars should be allocated on the device.  
Clauses in the data construct further define whether data 
should be copied from the host to device upon region entry, 
copied back to the host as the program exits the region, or 
just created and used entirely on the device. 

 
The syntax of the data construct in C and C++ is: 
    #pragma acc data [ clause [[,] clause ] ] 
    { 
    } 
 
And in Fortran: 
    !$acc data [ clause [[,] clause ] ] 
    !$acc end data 
 

Commonly used clauses in the data construct are: 

  if ( condition )  -- Create the device copies if the condition 
is true 

 
  copy ( list ) -- Create and copy host data both in and out 
  copyin ( list )  -- Create and copy host data in only 
  copyout ( list ) -- Create and copy device data out only at 
region exit 
  create ( list ) -- Create the device data structure but no 
copying 
  deviceptr ( list ) -- This pointer or dummy argument 
references device memory already.  Don't create or copy. 

 
Many programs need only one data construct in the entire 

program.  It usually goes after the corresponding host arrays 
have been created and initialized using i/o, which of course 
is only supported on the host.  Here is an example from an 
OpenACC version of the swim benchmark: 

 
   C       INITIALIZE CONSTANTS AND ARRAYS 
   C 
             CALL ALLOC 

 
  !$ACC DATA CREATE(U(NP1,MP1), V(NP1,MP1)) 
  !$ACC& CREATE(UNEW(NP1,MP1),VNEW(NP1,MP1)) 
  !$ACC& CREATE(PNEW(NP1,MP1), UOLD(NP1,MP1)) 
  !$ACC& CREATE(VOLD(NP1,MP1), POLD(NP1,MP1))   
  !$ACC& CREATE(CU(NP1,MP1), CV(NP1,MP1)) 
  !$ACC& CREATE( P(NP1,MP1),Z(NP1,MP1)) 
  !$ACC& CREATE(H(NP1,MP1), PSI(NP1,MP1)) 

 
             CALL INITAL 
 
 

Two other data directives are commonly used.  A declare 
directive is similar to the data directive, but uses the scope of 
the entire function, subroutine, or program as an implicit data 
region.  It is inserted after the declaration, and takes most of 
the same clauses as the data directive. 

 
The other is an executable directive and is used to 

synchronize the host and device copies of the array, 
subarray, or scalar while you are inside of a data region, 
either explicit or implicit.   It's syntax in C/C++ is: 

 
    #pragma acc update [ clause [[,] clause ] ] 
 
And in Fortran: 
    !$acc update [ clause [[,] clause ] ] 
 

and the common clauses are: 
  if ( condition ) -- Do the update if the condition is true 
  device ( list ) -- Update the device copy from the host data 
  host ( list ) -- Update the host copy from the device data 

 
At least one instance of device or host must appear in the 

directive.  The update directive is commonly used in a 
number of situations: 

1. When sharing computation between the host and 
device. 



2. Gathering some set of intermediate results from the 
device to perform  a conditional test on the host. 

3. Writing intermediate results generated on the device 
using i/o which is only supported on the host. 

4. Collecting halos of device data for sharing with 
other processes via MPI or some other 
communication mechanism. 

5. Storing halos or new parameter values collected 
from other processes or host inputs back to the 
device. 

 
In practice, we've found that collecting halos into one 

contiguous buffer and doing one update, packing and 
unpacking on both sides, usually performs better than doing 
multiple updates.  

B. Present Data 

 
One change between the PGI Accelerator Model and 

OpenACC should potentially help developers when porting 
codes to OpenACC.  When accelerator compute regions are 
not lexically within data regions, i.e. there has been a 
subprogram call, the PGI Accelerator Model requires the 
reflected attribute for the procedure argument.  Then at 
compile time the compiler will insert a hidden argument into 
the calling sequence so both the host pointer and device 
pointer can be passed along.  OpenACC uses a runtime 
lookup table, keyed by the host address, to determine if a 
device copy of the data exists, and if so, fetches the 
appropriate device address from this table.  Thus far we've 
found the overhead for the lookup, which exists entirely in 
host memory, is minimal. 

 
Programmers can explicitly list subprogram variable 

names using these clauses on the data or declare directives 
and direct the runtime behavior: 
  present ( list ) -- Device copy must be present 
  present_or_copy ( list ) -- If device copy not present, create 
and copy 
  present_or_copyin ( list ) -- If device copy not present, 
create and copyin 
  present_or_copyout ( list ) -- If device copy not present, 
create and copyout 
  present_or_create ( list ) -- If device copy not present, just 
create 

 
The OpenACC specification states, and the PGI compiler 

has defaults, which make the use of these present clauses 
unnecessary in many cases.  For instance, arrays which 
appear inside the kernels construct which do not appear in 
any enclosing data clauses are treated as present_or_copy.  It 
is also worth noting that these clause names can be 
shortened, for example, pcopyin is synonymous with 
present_or_copyin. 

 
 
 

C. Kernels Construct 

 
The OpenACC kernels construct has been supported 

since PGI 12.3, and is a straight-forward translation from the 
PGI Accelerator region construct.  It specifies a region of 
code that is to be compiled into one or more accelerator 
kernels, executed in sequence.   The kernels directive itself 
can take most of the data clauses presented previously.  Each 
kernel can differ in the number of gangs and workers it 
utilizes.  For instance, simple reductions can be recognized 
and implemented with two kernels, one for local reductions 
within a gang, and one to do the final reduction using the 
results generated by the first kernel. 

Earlier, we presented a combined directive that contained 
both a kernel construct and a loop construct.  For more 
complicated cases, separate loop constructs are usually 
inserted inside of the kernels construct.  Within a kernels 
construct, these loop constructs are typically used to describe 
what type of parallelism to use to execute the loop. 

 
Clauses which are typically used on the loop directive 

when they are within the kernels construct are: 
  collapse ( n )  -- Collapse n tightly nested loop iterations 
   gang ( n )      -- Iterations of loop executed across n gangs 
  worker ( n )   -- Iterations of loop executed across n workers 
per gang 
  vector ( n )   -- Iterations of loop executed in strips of length 
n 
   seq -- Iterations of loop executed sequentially within a 
worker 
  independent -- Assert that iterations of loop are data-
indepedent to each other 

 
Again from the swim benchmark, here is an example of 

loop directives contained with the kernels construct: 
 

   !$ACC KERNELS  
   !$ACC LOOP GANG, VECTOR(16) 
   DO 100 J=1,N 
  !$ACC LOOP GANG, VECTOR(16) 

    DO 100 I=1,M 
          CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J) 
          CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1) 
          Z(I+1,J+1) = (FSDX*(V(I+1,J+1) –  
  1                               V(I,J+1))-FSDY*(U(I+1,J+1) 
  1      -U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1)) 
          H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J )* 
  1           U(I,J) + V(I,J+1)*V(I,J+1)+V(I,J)*V(I,J)) 

  100 CONTINUE 
 
As this example shows, one of the advantages of the 

kernels construct over the parallel construct is the flexibility 
the compiler or programmer has in scheduling the loops 
using multi-dimensional decompositions, which can enable 
tiling and data-reuse using shared memory. 

 
Here is a listing of the compiler -Minfo output for this 

loop: 



162, Loop is parallelizable 
164, Loop is parallelizable 
 Accelerator kernel generated 
162, !$acc loop gang, vector(16) ! blockidx%y threadidx%y 
164, !$acc loop gang, vector(16) ! blockidx%x threadidx%x 

       Cached references to size [17x17] block of 'p' 
       Cached references to size [17x17] block of 'v' 
       Cached references to size [17x17] block of 'u' 
 
The compiler is able to generate device code that utilizes 

17x17 blocks of shared memory to hold a tile of p, u, and v 
for each gang. 

One current drawback of the kernels construct is that 
loops need to be tightly nested for the compiler to be able to 
generate good kernels.  At PGI, we hope to address that 
limitation as we gain experience with the parallel 
construct.Define abbreviations and acronyms the first time 
they are used in the text, even after they have been defined in 
the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, 
dc, and rms do not have to be defined. Do not use 
abbreviations in the title or heads unless they are 
unavoidable. 
 

D. Parallel Construct 

The OpenACC API also defines another type of compute 
construct, the parallel construct. The parallel construct is 
more explicit user-specified parallelism than the kernels 
construct, and much like the OpenMP parallel construct.  
The OpenACC parallel construct immediately launches a 
specified number of gangs, where each gang contains a 
specified number of workers.  One worker in each gang 
starts executing the code in the parallel construct 
redundantly, just like threads in an OpenMP parallel 
construct, until they reach a work-sharing loop construct. At 
that point, the iterations of the work-sharing loop are spread 
across the gangs and workers within each gang, as specified 
by the construct.  By default, outer loops are shared across 
the gangs.  Inner loops are work-shared amongst the workers 
in a gang, a.k.a. the threads in the threadblock.   

The parallel construct results, in many cases, in the 
annotated OpenACC loop to look very similar to the exising 
OpenMP annotations over the same structure.  This is an 
advantage to this construct that may make initial ports to 
OpenACC easier.   

In OpenMP, the number of threads is fixed once you 
enter a parallel region, except in cases of nested parallelism.  
Likewise, with the parallel OpenACC construct, the number 
of gangs, and the number of workers in a gang, is fixed upon 
entering the parallel region.  Only one kernel will be 
generated and launched at runtime.   

 
Here is a snippet from a Fortran nbody example that 

shows the use of the parallel construct: 
 

  !$acc parallel 
  !  gang-redundant work goes here 
  !$acc loop gang 
  do j = 1, n 

    p1 = posin(j,1) 
    p2 = posin(j,2) 
    p3 = posin(j,3) 
    f1 = 0.0; f2 = 0.0; f3 = 0.0 
    !$acc loop worker, reduction(+:f0,f1,f2) 
    do i = 1, n 
        r1 = posin(i,1) - p1 
        r2 = posin(i,2) - p2 
        r3 = posin(i,3) - p3 
        distsqr = r1*r1 + r2*r2 + r3*r3 
        distsqr = distsqr + softensqr 
        distinv = 1.0 / distsqr 
        distinv3 = distinv*distinv*distinv 
        s = posin(i,4) * distinv3 
        f1 = f1 + r1*s 
        f2 = f2 + r2*s 
        f3 = f3 + r3*s 
    end do 
    fmassinv = posin(j,4) 
    v1 = velocity(j,1) + f1*fmassinv*dtime 
    v2 = velocity(j,2) + f2*fmassinv*dtime 
    v3 = velocity(j,3) + f3*fmassinv*dtime 
    . . . 
end do 
!$acc end parallel 
 
Clauses available in the Parallel construct and not in the 

Kernels construct: 
  num_gangs() - fixed number of gangs in the parallel 
construct 
  num_workers() - fixed number of workers per gang used 
when a worker-shared parallel loop is encountered 
  reduction() - explicitly defined reduction operator, similar 
to OpenMP 
  vector_length() - defines the vector length for SIMD 
operations in the loop 
  private() - data that is replicated, one copy per gang 
  firstprivate() - replicated like private, but initialized with the 
host values 

 
PGI support for the parallel construct will be first enabled 

in PGI 12.5 and available in May, 2012. 
 

IV. INTEROPERABILITY AND PGI-SPECIFIC 

FEATURES 

The PGI Accelerator compilers will accept code 
containing both OpenACC directives and PGI Accelerator 
Model directives.  Generally, it will be best to recompile all 
code with the same version of PGI compiler to guarantee 
data directives are handled consistently between the two 
models. 

Besides renaming the directives, users looking to migrate 
completely from the PGI Accelerator Model to OpenACC 
need to be aware of a few other changes: 

 
1. C Subarrays are specified differently in 

OpenACC.  Since the C language has no 
standard subarray notation, PGI used notation 



that matched Fortran, with lower and upper 
bounds.  OpenACC has adopted Intel's Array 
Notation for C, which uses a starting index and 
length.  So, x[0:n-1] for n elements of x has 
become x[0:n]. 

2. OpenACC only allows contiguous subarrays to 
be allocated on the device.   

3. Reductions are explicit in the parallel construct. 
4. OpenACC uses runtime present checks rather 

than reflected as mentioned above.  There is no 
support for mirrored data in OpenACC. 

5. PGI may accept declaration-style array 
specifications in data clauses when in fact they 
should be array or subarray sections. 

 
CUDA Fortran and OpenACC can also coexist.  As an 

extension, PGI OpenACC can properly recognize and 
operate with CUDA Fortran device arrays.  OpenACC 
kernels can also call CUDA Fortran device functions. 

 

A. Compiler Options, Feedback, and Profiling 

 
We are currently using compiler options from the PGI 

Accelerator Model to control GPU code generation.  With 
the first 1.0 general release of the OpenACC functionality we 
will determine whether or not we need to pull these into the 
OpenACC specific flags.  Until then, these are the pertinent 
flags for users to be aware of: 

 
    -acc  Enable recognition of OpenACC directives 
   -acc=strict|verystrict  Level of warnings for non-OpenACC 
directive conformance 
   -Minfo=accel Compiler will produce informational 
messages about accelerator optimization 
    -ta=nvidia    Control NVIDIA target code generation 
options 

 
We have shown some examples of the Minfo accelerator 

compiler output above.  The key things to look for are the 
amount of data transfered for each array, and the loop 
schedules generated for each accelerator kernel. 

 
Runtime profiling can be controlled in the PGI 

OpenACC compiler, and in the PGI accelerator model, by 
use of the PGI_ACC_TIME environment variable.  Setting 
this variable will instruct the runtime to print launch statics 
for each kernel that was generated, and data region 
encountered.  The statistics include the number of launches, 
the launch configuration, and the time is microseconds (total, 
max, min, and average) for each kernel.  If data transfer is 
required for the kernel, that is included as well.  Otherwise, 
for data regions, the output contains total time for data 
transfer for that region. 

 
Accelerator Kernel Timing data for a simple example: 
 
C:\Users\Leback\openacc\samples\acc_f3a.f90 
  smooth 

    32: region entered 20 times 
        time(us): init=0 
        34: kernel launched 20 times 
            grid: [128x128]  block: [16x16] 
            time(us): total=221085 max=11059 min=11051 

avg=11054 
C:\Users\Leback\openacc\samples\acc_f3a.f90 
  smooth 
    24: region entered 20 times 
        time(us): init=0 
        26: kernel launched 20 times 
            grid: [128x128]  block: [16x16] 
            time(us): total=221083 max=11058 min=11050 

avg=11054 
C:\Users\Leback\openacc\samples\acc_f3a.f90 
  main 
    128: region entered 1 time 
        time(us): init=0 
                  data=43765 
 
For data other than time-based information, PGI utilizes 

its own accel_lib an f90 module, and a corresponding C 
library to extract the number of data transfers and number of 
regions entered.  Users can insert these calls into their code 
to get counter values that are kept at runtime, from either C 
or Fortran. 

 
    integer function acc_regions() 
    end function 
    integer function acc_kernels() 
    end function 
    integer function acc_allocs() 
    end function 
    integer function acc_frees() 
    end function 
    integer function acc_copyins() 
    end function 
    integer function acc_copyouts() 
    end function 
    integer(8) function acc_bytesalloc() 
    end function 
    integer(8) function acc_bytesin() 
    end function 
    integer(8) function acc_bytesout() 
    end function 
 

V. CONCLUSION 

In this paper we've touched on what we believe to be the 
most commonly used OpenACC v1.0 features.  For a 
complete list of features, OpenACC users are encouraged to 
download the entire OpenACC specification from 
www.openacc.org.  Areas we have not touched on in this 
paper include asynchronous control, the OpenACC runtime 
library, and environment variables.  We fully expect the API 
specification to change as developers gain more experience 
and as the baseline for accelerator target architectures gain 
added functionality. 
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