
Introduction to OpenACC

Brent Leback
Brent.Leback@pgroup.com
http://www.pgroup.com

1

CUG 2012

mailto:Michael.Wolfe@pgroup.com
http://www.pgroup.com/

2

What is OpenACC?

 PGI Introduced its Accelerator Programming Model in 2008

 It has gone through a few iterations, is currently at version 1.3

 Goal then and now is to produce a higher–level model than

CUDA, aimed at scientists and engineers

 Wanted something that is directive-based, in the spirit of

OpenMP

 A few alternate but similar models were introduced later

 CAPS, Cray

 OpenMP committee attempted to standardize a model in 2010

 Meeting of the minds last fall, OpenACC 1.0 announced at SC11

 See www.openacc.org

3

http://www.openacc.org/

4

GPU Architecture Features

 Optimized for high degree of regular parallelism

 Outer do-all parallelism is fully parallel across the

multiprocessors

 SIMD parallelism within a multiprocessor, which can

synchronize and share data

 High bandwidth memory, support for ECC

 Highly multithreaded (slack parallelism) with hardware thread

scheduling

 Non-coherent hw data caches, sw managed shared memory

 No multiprocessor memory model guarantees

 Low-level atomic functions available, but not generally

recommended
5

GPU Programming Constants

 Initialize/Select the GPU to run on

 Allocate data on the GPU

 Move data from host, or initialize data on GPU

 Launch kernel(s)

 Gather results from GPU

 Deallocate data

6

The Program must:

CUDA Fortran, an Explicit Language

use vaddmod
real, device, dimension(:), allocatable :: da, db, dc

allocate(da(1:n), db(1:n), dc(1:n))

db = b
dc = c

call vadd<<<min((n+255)/256,65535),256>>>(da, db, dc, n)

a = da

deallocate(da, db, dc)

7

Implicit Model

!$acc kernels loop
do i = 1, n

a(i) = b(i) + c(i)
enddo

#pragma acc kernels loop
for(i = 0; i < n; ++i)

a[i] = b[i] + c[i];

Compiler determines

 Need to allocate a, b, c of

length n on the device

 Copyin b and c

 Need to generate and call

a kernel for the specified

operation, decide on a

launch configuration

 Copyout a

 Deallocate a, b, and c

8

Data Directives

C INITIALIZE CONSTANTS AND ARRAYS

C

CALL ALLOC

!$ACC DATA CREATE(U(:NP1,:MP1), V(:NP1,:MP1))

!$ACC& CREATE(UNEW(:NP1,:MP1), VNEW(:NP1,:MP1))

!$ACC& CREATE(PNEW(:NP1,:MP1), UOLD(:NP1,:MP1))

!$ACC& CREATE(VOLD(:NP1,:MP1), POLD(:NP1,:MP1))

!$ACC& CREATE(CU(:NP1,:MP1), CV(:NP1,:MP1))

!$ACC& CREATE(P(:NP1,:MP1), Z(:NP1,:MP1))

!$ACC& CREATE(H(:NP1,:MP1), PSI(:NP1,:MP1))

CALL INITAL

. . .

!$ACC END DATA

 Defines a region where

arrays should be

allocated on the device

 Often just one large

data region per

program

 Clauses define copy

behavior

 Use present clauses in

subprograms

9

The Kernel Construct

#pragma acc kernels loop
copyin(b[0:n*m]) copy(a[0:n*m])

for(i = 1; i < n-1; ++i)

for(j = 1; j < m-1; ++j)

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] +

b[(i+1)*m+j] +

b[i*m+j-1] +

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] +

b[(i-1)*m+j+1] +

b[(i+1)*m+j-1] +

b[(i+1)*m+j+1]);

Most like the PGI

Accelerator region

 Contains loop constructs,

can generate multiple

kernels

 Compiler is free to

schedule kernels onto

hardware, but schedule

can be directed with

clauses

 Currently requires tightly

nested loops, no

undersubscribed gangs
10

The Parallel Construct

!$acc parallel

! Do some redundant gang work here

!$acc loop gang

do j = 1, n

p1 = posin(j,1)

p2 = posin(j,2)

p3 = posin(j,3)

f1 = 0.0; f2 = 0.0; f3 = 0.0

!$acc loop worker, reduction(+:f0,f1,f2)

do i = 1, n

r1 = posin(i,1) - p1

r2 = posin(i,2) - p2

r3 = posin(i,3) - p3

distsqr = r1*r1 + r2*r2 + r3*r3

. . .

Most like an OpenMP

Parallel region

 Contains loop

constructs, generates

one kernel

 Compiler schedule is

fixed by num_gangs

and num_workers

 One worker in each

gang executes

redundantly until a

work-sharing loop is

encountered
11

Some Simple Compiler Tips

12

 The compiler flag to enable OpenACC is

 -acc [= strict | verystrict]

 Use this in combination with the –ta=nvidia target options

 Use the –Minfo=accel option to enable compiler feedback

 PGI Accelerator Model and OpenACC can coexist in the same

program, as can CUDA Fortran and OpenACC. They can share

features.

 Use the PGI_ACC_TIME environment variable to get a quick

accounting of data transfer between host and device, and some

quick kernel statistics

New/Upcoming Features in PGI
Accelerator Compilers

 CUDA-x86 Compilers officially released in January

 PGI OpenCL Compilers for ARM announced in March

 CUFFT interface modules for CUDA Fortran in PGI 12.5

 Support for OpenACC parallel construct in PGI 12.5

 Support for CUDA 4.2, Kepler coming soon

 CUDA Fortran support for textures coming soon

 PGI OpenACC release 1.0 in June or July 2012

 Work on generating PTX directly, with dwarf, is underway

 PGI Accelerator Model 2.0 specification will be out by ISC12

13

