Introduction to OpenACC

CUG 2012

Brent Leback

Brent.Leback@pgroup.com
http://www.pgroup.com

The Portland Group®

mailto:Michael.Wolfe@pgroup.com
http://www.pgroup.com/

Accelerate!

The Portland Group®

What is OpenACC?

O PGl Introduced its Accelerator Programming Model in 2008

= |t has gone through a few iterations, is currently at version 1.3

O Goal then and now is to produce a higher—level model than
CUDA, aimed at scientists and engineers

 Wanted something that is directive-based, in the spirit of
OpenMP

[A few alternate but similar models were introduced later

= CAPS, Cray
d OpenMP committee attempted to standardize a model in 2010

 Meeting of the minds last fall, OpenACC 1.0 announced at SC11

J See www.openacc.orq

The Portland Group®

http://www.openacc.org/

a Y—— Execution Queue)

Control I
i : ¥
Dual Warp Issue Dual Warp Issue Dual Warp Issue
Frme— Frmmee— D —
CPU 2
g J 2
t S
(W
B
@) e
|_
Spedial Special Spedial Special Special Special
Function Function Function Function Function Function
Unit Unit Unit Unit Unit Unit
Host $1 &1 1 3 $ 3
HW User S/W HW User SW HW User SW
M emor y Cache Selectable Cache Cache Selectable Cache (Cache Selectable Cache
Level 2 Cache)
! DMA Device Memory
©2010 The Portland Group, Inc.
4

The Portland Group®

GPU Architecture Features

 Optimized for high degree of regular parallelism

 Outer do-all parallelism is fully parallel across the
multiprocessors

 SIMD parallelism within a multiprocessor, which can
synchronize and share data

d High bandwidth memory, support for ECC

O Highly multithreaded (slack parallelism) with hardware thread
scheduling

U

Non-coherent hw data caches, sw managed shared memory

d No multiprocessor memory model guarantees

= Low-level atomic functions available, but not generally
recommended

The Portland Group®

GPU Programming Constants

The Program must:

A Initialize/Select the GPU to run on

 Allocate data on the GPU

 Move data from host, or initialize data on GPU
O Launch kernel(s)

d Gather results from GPU

J Deallocate data

The Portland Group®

CUDA Fortran, an Explicit Language

use vaddmod
real, device, dimension(:), allocatable :: da, db, dc

allocate(da(1:n), db(1:n), dc(1l:n))

db
dc

b
C

call vadd<<<min((n+255)/256,65535),256>>>(da, db, dc, n)
a = da

deallocate(da, db, dc)

The Portland Group®

Implicit Model

é§a$c ki'“"ﬁls loop Compiler determines
i=1,

a(i) = b(i) + c(1) = Need to allocate a, b, ¢ of
enddo

length n on the device
= Copyinb and c

#pragma acc kernels loop = Need to generate and call
for(1 =05 1 <n; ++1) a kernel for the specified
a[i] = b[i] + c[i]; . .
operation, decide on a
launch configuration
= Copyout a

= Deallocate a, b, and ¢

The Portland Group®

Data Directives

C INITIALIZE CONSTANTS AND ARRAYS
C

CALL ALLOC
I$ACC DATA CREATE(U(:NP1,:MP1), V(:NP1,:MP1))
1$ACC& CREATE(UNEW(:NP1,:MP1), VNEW(:NP1,:MP1))
1$ACC& CREATE(PNEW(:NP1,:MP1), UOLD(:NP1,:MP1))
1$ACC& CREATE(VOLD(:NP1,:MP1), POLD(:NP1,:MP1))
1$ACC& CREATE(CU(:NP1,:MP1), CV(:NP1,:MP1))
1$ACC& CREATE(P(:NP1,:MP1), Z(:NP1,:MP1))
1$ACC& CREATE(H(:NP1,:MP1), PSI(:NP1,:MP1))

CALL INITAL

I$ACC END DATA

 Defines a region where
arrays should be
allocated on the device

 Often just one large
data region per
program

 Clauses define copy
behavior

 Use present clauses in
subprograms

The Portland Group®

The Kernel Construct
J Most like the PGI

#pragma acc kernels loop Accelerator region
copyin(b[@:n*m]) copy(a[@:n*m]) :
fFor(i =1; i < n-1; ++i) Contains loop constructs,
for(3 = 15 3 < m-1; ++) can generate multiple
a[i*m+j] = wo * b[i*m+j] + kernels
wl*(b[(i-1)*m+j] + : :
b[(i+1)*m+j] + d Compiler is free to
blirme3-1] + schedule kernels onto
ALl hardware, but schedule

w2*(b[(i-1)*m+j-1] + _ _
b[(i-1)*msj+1] + can be directed with

b[(i+1)*m+j-1] + clauses

Pl 30O currently requires tightly
nested loops, no
undersubscribed gangs

10

The Portland Group®

The Parallel Construct

 Most like an OpenMP
I$acc parallel Parallel regiOn

! Do some redundant gang work here D C .
ontains loo
I$acc loop gang p

o1 constructs, generates
pl = posin(j,1) one kernel
. zzz:g;; Q Compiler schedule is
f1 = 0.0; f2 = 0.0; 3 = 0.0 fixed by num_gangs

I$acc loop worker, reduction(+:f0,f1,f2) and num_workers
doi-=1, .
crr el 0 One worker in each

rl = posin(i,1) - p1

r2 = posin(i,2) - p2 gang executes

r3 = posin(i,3) - p3 redundantly until a
distsqr = rl*rl + r2*r2 + r3*r3 Work'Sharing IOOp iS

encountered

11

The Portland Group®

U

Some Simple Compiler Tips

The compiler flag to enable OpenACC is

= -acc [=strict | verystrict]

= Use this in combination with the —ta=nvidia target options
Use the —Minfo=accel option to enable compiler feedback
PGl Accelerator Model and OpenACC can coexist in the same

program, as can CUDA Fortran and OpenACC. They can share
features.

Use the PGI_ACC_TIME environment variable to get a quick
accounting of data transfer between host and device, and some
guick kernel statistics

12

The Portland Group®

New/Upcoming Features in PGI
Accelerator Compilers

CUDA-x86 Compilers officially released in January

PGl OpenCL Compilers for ARM announced in March
CUFFT interface modules for CUDA Fortran in PGI 12.5
Support for OpenACC parallel construct in PGI 12.5
Support for CUDA 4.2, Kepler coming soon

CUDA Fortran support for textures coming soon

PGl OpenACC release 1.0 in June or July 2012

Work on generating PTX directly, with dwarf, is underway

4
4
4
4
4
4
4
d
d

PGl Accelerator Model 2.0 specification will be out by ISC12

13

The Portland Group®

