
Introduction to OpenACC

Brent Leback
Brent.Leback@pgroup.com
http://www.pgroup.com

1

CUG 2012

mailto:Michael.Wolfe@pgroup.com
http://www.pgroup.com/

2

What is OpenACC?

 PGI Introduced its Accelerator Programming Model in 2008

 It has gone through a few iterations, is currently at version 1.3

 Goal then and now is to produce a higher–level model than

CUDA, aimed at scientists and engineers

 Wanted something that is directive-based, in the spirit of

OpenMP

 A few alternate but similar models were introduced later

 CAPS, Cray

 OpenMP committee attempted to standardize a model in 2010

 Meeting of the minds last fall, OpenACC 1.0 announced at SC11

 See www.openacc.org

3

http://www.openacc.org/

4

GPU Architecture Features

 Optimized for high degree of regular parallelism

 Outer do-all parallelism is fully parallel across the

multiprocessors

 SIMD parallelism within a multiprocessor, which can

synchronize and share data

 High bandwidth memory, support for ECC

 Highly multithreaded (slack parallelism) with hardware thread

scheduling

 Non-coherent hw data caches, sw managed shared memory

 No multiprocessor memory model guarantees

 Low-level atomic functions available, but not generally

recommended
5

GPU Programming Constants

 Initialize/Select the GPU to run on

 Allocate data on the GPU

 Move data from host, or initialize data on GPU

 Launch kernel(s)

 Gather results from GPU

 Deallocate data

6

The Program must:

CUDA Fortran, an Explicit Language

use vaddmod
real, device, dimension(:), allocatable :: da, db, dc

allocate(da(1:n), db(1:n), dc(1:n))

db = b
dc = c

call vadd<<<min((n+255)/256,65535),256>>>(da, db, dc, n)

a = da

deallocate(da, db, dc)

7

Implicit Model

!$acc kernels loop
do i = 1, n

a(i) = b(i) + c(i)
enddo

#pragma acc kernels loop
for(i = 0; i < n; ++i)

a[i] = b[i] + c[i];

Compiler determines

 Need to allocate a, b, c of

length n on the device

 Copyin b and c

 Need to generate and call

a kernel for the specified

operation, decide on a

launch configuration

 Copyout a

 Deallocate a, b, and c

8

Data Directives

C INITIALIZE CONSTANTS AND ARRAYS

C

CALL ALLOC

!$ACC DATA CREATE(U(:NP1,:MP1), V(:NP1,:MP1))

!$ACC& CREATE(UNEW(:NP1,:MP1), VNEW(:NP1,:MP1))

!$ACC& CREATE(PNEW(:NP1,:MP1), UOLD(:NP1,:MP1))

!$ACC& CREATE(VOLD(:NP1,:MP1), POLD(:NP1,:MP1))

!$ACC& CREATE(CU(:NP1,:MP1), CV(:NP1,:MP1))

!$ACC& CREATE(P(:NP1,:MP1), Z(:NP1,:MP1))

!$ACC& CREATE(H(:NP1,:MP1), PSI(:NP1,:MP1))

CALL INITAL

. . .

!$ACC END DATA

 Defines a region where

arrays should be

allocated on the device

 Often just one large

data region per

program

 Clauses define copy

behavior

 Use present clauses in

subprograms

9

The Kernel Construct

#pragma acc kernels loop
copyin(b[0:n*m]) copy(a[0:n*m])

for(i = 1; i < n-1; ++i)

for(j = 1; j < m-1; ++j)

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] +

b[(i+1)*m+j] +

b[i*m+j-1] +

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] +

b[(i-1)*m+j+1] +

b[(i+1)*m+j-1] +

b[(i+1)*m+j+1]);

Most like the PGI

Accelerator region

 Contains loop constructs,

can generate multiple

kernels

 Compiler is free to

schedule kernels onto

hardware, but schedule

can be directed with

clauses

 Currently requires tightly

nested loops, no

undersubscribed gangs
10

The Parallel Construct

!$acc parallel

! Do some redundant gang work here

!$acc loop gang

do j = 1, n

p1 = posin(j,1)

p2 = posin(j,2)

p3 = posin(j,3)

f1 = 0.0; f2 = 0.0; f3 = 0.0

!$acc loop worker, reduction(+:f0,f1,f2)

do i = 1, n

r1 = posin(i,1) - p1

r2 = posin(i,2) - p2

r3 = posin(i,3) - p3

distsqr = r1*r1 + r2*r2 + r3*r3

. . .

Most like an OpenMP

Parallel region

 Contains loop

constructs, generates

one kernel

 Compiler schedule is

fixed by num_gangs

and num_workers

 One worker in each

gang executes

redundantly until a

work-sharing loop is

encountered
11

Some Simple Compiler Tips

12

 The compiler flag to enable OpenACC is

 -acc [= strict | verystrict]

 Use this in combination with the –ta=nvidia target options

 Use the –Minfo=accel option to enable compiler feedback

 PGI Accelerator Model and OpenACC can coexist in the same

program, as can CUDA Fortran and OpenACC. They can share

features.

 Use the PGI_ACC_TIME environment variable to get a quick

accounting of data transfer between host and device, and some

quick kernel statistics

New/Upcoming Features in PGI
Accelerator Compilers

 CUDA-x86 Compilers officially released in January

 PGI OpenCL Compilers for ARM announced in March

 CUFFT interface modules for CUDA Fortran in PGI 12.5

 Support for OpenACC parallel construct in PGI 12.5

 Support for CUDA 4.2, Kepler coming soon

 CUDA Fortran support for textures coming soon

 PGI OpenACC release 1.0 in June or July 2012

 Work on generating PTX directly, with dwarf, is underway

 PGI Accelerator Model 2.0 specification will be out by ISC12

13

