
Case Studies in Deploying Cluster Compatibility Mode

Tara Fly, David Henseler, and John Navitsky
OS/IO

Cray, Inc.
Seattle, WA USA

e-mail: {tara,dah,johnn}@cray.com

Abstract— Cray’s addition of Data Virtualization Service
(DVS) and Dynamic Shared Libraries (DSL) to the Cray
Linux Environment (CLE) software stack provides the
foundations necessary for shared library support. The Cluster
Compatibility Mode (CCM) feature introduced with CLE 3
completes the picture and allows Cray to provide “out-of-the-
box” support for independent software vendor (ISV)
applications built for Linux-x86 clusters. Cluster
Compatibility Mode enables far greater workload flexibility,
including install and execution of ISV applications and use of
various third party MPI implementations, which necessitates
a corresponding increase in the complexity of system
administration and site integration. This paper explores
CCM architecture and a number of case studies from early
deployment of CCM into user environments, sharing best
practices learned, with hopes that sites can leverage these
experiences for future CCM planning and deployment.

CCM, CLE, DSL, DVS, IAA, ISV, MPI, ssh, rsh, cluster

I. INTRODUCTION

Cluster Compatibility Mode (CCM) extends the
capabilities of traditional Cray Linux Environment (CLE) to
allow many ISV applications to run without modification and
without adding additional overhead to native Extreme
Scalability Mode (ESM) applications. The traditional Cray
architecture differs from traditional Linux clusters as CLE, by
design, does not provide a full-featured Linux environment.
In addition, on larger scale systems, interactions with ESM
and configuration scalability should be considered when
configuring the system to support CCM. This paper provides
a design overview of CCM, an overview of the architecture of
the Cray system components that interact with CCM, an
overview of the CCM technical components, considerations
for scalability, and some examples of site configurations.

II. DESIGN GOALS

The design goals of CCM were threefold: to provide an
environment to run independent service vendor (ISV)
applications out-of-the-box without modification, to ensure
the capabilities necessary to run these ISV applications
without sacrificing the performance of traditional Extreme
Scalability Mode (ESM) applications, and to continue to
optimize performance moving forward. ISV applications
generally consist of a pre-compiled binary, packaged with a
specific version of a third-party MPI, often requiring a

license for execution. Dynamic Shared Libraries (DSL)
provides the foundation for pre-compiled binaries. Then, with
the addition of shared library support in Cray’s Compute
Node Linux (CNL), it is no longer necessary to compile
specifically for Cray XE/XK systems. Cray provides for
compute node IP-connectivity through Realm Specific IP
Addressing (RSIP), which is used to address licensing needs
of the ISV applications. CCM is then responsible for
addressing additional ISV application needs: specifically in
the areas of MPI-launch support, and Linux Standard Base
compliance. Third-party ISV codes use a number of different
launch mechanisms for job fanout: typically rsh, ssh, or
Linda (over rsh or ssh). In addition, many applications
expect writeable /tmp, dbus, and POSIX shared memory
segments to be persistent through the lifetime of a job.
Finally, CCM continues to optimize for performance. The
goal is to approach native gemini performance below 2048
PEs, which bounds typical ISV application scalability. CCM
was first introduced in CLE 3 with support for TCP. The ISV
Application Acceleration (IAA) component was added to
CLE 4.

CCM does not provide a runtime environment to users, and
was never designed to provide a development environment.
Where users have access to source code, Cray provides the
Cray Programming Environment. Cray’s programming
environment is extensively optimized for scalability and
performance, and uniquely tuned to the Cray systems
architecture. Also, CCM does not attempt to provide the
infrastructure to allow general service provisioning on
compute nodes. Rather, CCM strives to provide the minimal
excess service overhead to still fully support any ISV
Application.

III. ARCHITECTURAL OVERVIEW

A. CLE Dynamic Shared Libraries

To understand how to deploy CCM on a Cray, it is
important to understand the Cray system architecture. Cray
uses a single shared-root file system, projected over Network
File System (NFS) from the XE/XK boot node. The shared-
root file system is mounted read-only on all XE/XK service
nodes. If DSL has been installed, the shared-root is projected
by Data Virtualization Service (DVS) to the CLE compute
nodes. The Compute Node Root Runtime Environment
(CNRTE) projects the shared root to compute node images.
CLE users have the option of launching their jobs in native

CLE low OS-noise environment, or using DSL to access the
shared-root through a CRAY_ROOTFS environment
variable. The DSL and CNRTE components are optional on
the XE/XK systems, though required for CCM. CCM runs
on top of the DSL root, although it makes no requirements on
the system default.

Fig. 1 shows a DSL typical implementation with the
shared-root projected to the compute nodes. DVS clients
running on each CLE compute node can be configured with
load-balancing. In a DVS load-balance environment, the
CLE DVS client will select the primary server based on a
node network identifier (nid). If a DVS server fails, the
clients fail over to another DVS server which provides
resiliency and scalability. DVS clients support both page
caching and attribute caching for additional performance
optimization. DVS servers can be run on XIO nodes, or
repurposed compute nodes. Repurposed compute nodes
allow sites to use XE/XK compute nodes as PCI-less service
nodes; these nodes must be statically booted as service nodes,
and are removed from the pool of available compute node
resources. DVS is best configured by the CLE installer.

B. Shared Root

All nodes in the Cray system share a single shared-root
file system. Traditionally, Linux services are managed with
configuration files in /etc, and enabled using the insserv and
chkconfig commands. To provide the ability to run different
services and have different configurations on different nodes,
the XE/XK system establishes an inheritance hierarchy for
the /etc file system on the shared-root. Fig. 2 presents a
simple view of shared-root configuration.

Figure 1. Shared-root projection to compute nodes over DVS

Figure 2. Shared-root specialization

At the root of the hierarchy is a common default view,
which is superseded by a class view and a node specific view
for each node on the system, if available. A given system
node can belong to exactly one system class. System classes
allow the administrator to make configuration file changes
common to multiple nodes providing the same system
functions. For example, an administrator might want to set
up name services in the same fashion on all nodes
functioning as login nodes through a login class view,
whereas external Ethernet IP configuration files could be
managed in the node specific views for a given XIO node.
All configuration files exist in a global system default view
of /etc, which is a directory containing a set of symbolic links
to the original distribution contents of /etc. The CLE installer
sets up the symbolic links in the default view at initial install
time. Afterwards, contents of these links must be managed
through the xtopview utility. All Cray developed software
components deliver their configuration files to /etc/opt/cray
on the shared root, thus providing system configuration
through a single xtopview interface.

C. Compute Node Root Filesystem

DVS servers work by projecting the entire file system
mounted on the DVS server to the CLE compute
environment, which is in turn, mounted to a specified path
location (/dsl by default) on the compute nodes. Users launch
ESM jobs to compute nodes with the aprun command and
aprun performs a chroot into the DSL root, and then launches
the specified executable. Since administrators may want a
different system administration configuration for compute
nodes than they desire on the DVS server, Cray implements a
special class, the cnos class, to provide management of /etc
files mounted on the compute nodes. The cnos class is
common to all DSL jobs, including CCM jobs – this is an
important factor in some of the administration case studies
provided later in this paper.

D. RSIP

RSIP, although not strictly required for CCM, enables
CLE compute nodes to access external network resources.
An RSIP client running on the CLE compute node interfaces
to an RSIP server through an IPIP tunnel. With RSIP,
application packets are forwarded over the IPIP tunnels while
protocol traffic is distributed over the HSN. Administrators
configure a port range that can be used with RSIP. The

number of ports available to any given RSIP client is equal to
the lesser of 255 or:

 num_rsip_servers × num_ports_in_range / num_clients (1)

The total client ports limit the number of outbound
connections from any given compute node.

IV. CLUSTER COMPATIBILITY MODE ARCHITECTURE

A. Session Initialization

When a batch job is submitted, a batch server contacts its
scheduler, which issues an Batch Application Scheduler
Interface Layer (BASIL) RESERVE request to the
application level placement scheduler (ALPS) to make a
claim on the requested node resources so that they are
available to the job when it executes. The exact contents of
the packet vary by BASIL protocol version, but always
include a ALPS reservation identifier, and a cookie. The
batch server then sends an apbasil CONFIRM request to
associate the claim with a specific process group (PAGG) on
the login node, and to bind the resources to the batch system
for the duration of the reservation. All CCM-compatible
workload managers provide support for a root-owned pre-
execution hook that is called after the resources are bound to
a specific batch reservation. If a job is to execute in Cluster
Compatibility Mode, the pre-execution hook, or prologue
performs several steps during initialization, including:

• Validating that a specific batch job submission is
requesting CCM. As of 4.1UP03, CCM provides
support for configuring CCM for all jobs submitted
to specific batch queues, or alternately by using
custom resource configuration if supported by the
WLM vendor

• Creating a nodelist containing, on separate lines, one
host entry for each PE in the job reservation

• Providing correct and transparent nodefile entries
on the login node and all compute nodes in the job

• Generating ssh key files for the user, if these do not
exist

• Populating .rhosts in the user $HOME directory
when CCM_ENABLERSH has been set for the
system

• Transferring the files necessary to support and
isolate the compute node CCM service
configuration to a specific user/job instance

• Fanning out to all compute nodes in the job using
the xtxqtcmd binary provided with the nodehealth
rpms to prepare the environment

B. Environment Setup

Environment setup performs the following actions:
• preparation of all of the configuration files required

by sshd and xinetd, staging these to a subdirectory
of the compute node’s /var filesystem

• creation of a temporary environment using bind
mounts to provide a writeable /tmp, writeable
/var/tmp, /dev/random, a CCM-specific /var/run
directory, pseudo-terminal support, MPI DAPL
configuration, dbus protocol support, POSIX shared
memory support, sshd configuration and xinetd
configuration.

• providing the ability to extend CCM bind mounts to
accommodate site specific configuration with a
/etc/opt/cray/ccm/ccm_mounts.local configuration
file

The described configuration persists for the lifetime of
the batch reservation. At the end of the batch job execution,
the workload manager calls a post-execution hook, or
epilogue which is responsible for tearing down the CCM
configuration, by:

• validating that the specific batch reservation is
targeted at CCM

• creating a lock on the reservation to prevent
multiple epilogue execution in the case that the
script is resubmitted

• fanning out to each compute node in the job using
xtxqtcmd and attempting to umount any CCM
mounted file systems

• stopping all services started by CCM
• removing all temporary files staged by CCM, if the

virtualized environment was successfully removed
• checking on the health of the node, marking it

administratively down if the CCM environment was
not properly removed

C. Node Health Checker Interaction

As of CLE 4.1UP03, CCM uses the node health checker to
monitor for application exit, and after successful exit of all
applications on the compute node, removes temporary data
and bind mounts. The post-execution hook calls the node
health checker (NHC) directly and, after checking for a small
amount of time, it marks the specific node SUSPECT, exits
the post-execution script, and allows batch system to release
the claim on the nodes. NHC then can asynchronously
monitor for node recovery and restore the nodes to service
once CCM has been torn down. These extensions were made
to provide greater resiliency to out of memory situations, file
system cache flushing and application core dumps and to
provide greater portability between WLM versions and
vendors.

CCM continues to evolve and adapt to the needs of ISV
applications, and site implementation specifics, with the goal
of supporting any ISV application and providing an
increasingly turn-key environment for standard deployments.

V. JOB EXECUTION

A. Linux Cluster JobLaunch

On a traditional Linux cluster, a user requests an
allocation from a workload manager. The workload manager

allocates node resources for the job, and then launches the
job on one of the nodes. The MPI programming model
provides a message passing interface to provide inter-process
communication. Consider the simple case of an MPI hello
world, submitted on two nodes, launched with:

 mpirun –machinefile $NODEFILE –np 2 mpi_hello

The mpirun command reads the file specified by
--machinefile, processes a list of nodes, distributes the
executable to -np nodes using ssh or rsh to provide this
transport and executes program mpi_hello on each of these
nodes. In traditional clusters, the batch system is responsible
for job allocation and application placement.

B. Cluster Compatibility Mode Job Launch

On a XE/XK system, the batch system is responsible for
resource scheduling, but ALPS provides application
placement. Unlike the cluster model, application launch
occurs on a login node that is not part of the compute cluster.
The Cray CCM architecture implements a similar model to
cluster job launch, adapting to ALPS placement model. This
architecture is shown in Fig. 3.

CCM job launch is initiated from an XE/XK login node.
The application user submits a job through a workload
manager, which then requests the resources associated with
the job, allocates the nodes, and executes the script on a
MOM / sbatchd node. A job script includes any job and
environment setup, and a ccmrun statement. The ccmrun
command is responsible for initiating cluster services and for
placing a single copy of the application launch command
onto the first node in the job claim.

To set up a cluster environment, ccmrun launches a
single copy of special program called ccmlaunch passing as
argument the application binary or command, and all
associated launch arguments.

The ccmrun command bypasses binary transfer of the
target executable, instead passing the application path to an
apinit process on the compute nodes.

Apinit sets up the job context and gemini context
(including a PTAG and a cookie), which allows the placed
job to access the HSN. Apshepherd then executes a chroot
into the DSL root, and executes ccmlaunch. The ccmlaunch
command starts a selected set of system services on the
compute nodes. These services include nscd, rpcbind, an
alternate sshd listening on port 203, and optionally xinetd to
provide rsh, rlogin, and rexec services.

All services are started specifically by running the
/etc/init.d service scripts in the compute node CNRTE root. A
full Linux init sequence is not performed on the compute
node however; rather CCM anticipates any requisite services
for the limited set of services it provides. System
administrators may also enable NIS for CCM compute node
jobs. NIS must be configured globally in the ccm.conf
configuration file as ypservices will fail and delay startup if
not properly configured.

Figure 3. CCM Job Execution

Once service initialization is complete, ccmlaunch sets
up a sync barrier to ensure that daemons have completed
initialization on all compute node jobs, and then queries
ALPS for the local Programming Environment (PE) rank. If
ccmlaunch determines itself to be executing on PE[0], it acts
in the role of CCM head node. The application launch
command provided to ccmrun is then placed on the node for
execution, and ccmlaunch monitors for job termination. On
all other PE ranks, ccmlaunch sleeps until the application job
has terminated. Without this sleep, aprun would detect the
exit of the application on the ranks, and initiate a teardown of
all job nodes.

Figure 4 shows an MPI application launch in the CCM
environment; the dashed line represents the synchronization
barrier used for service initiation. In this illustration, the
application processes are direct children of the CCM-
provided sshd. All processes are confined to the ALPS-
managed PAGG, allowing them access to the gemini
network. As the gemini context is unique to each job launch,
all processes in the PAGG are torn down after every ccmrun
command.

VI. REMOTE APPLICATION LAUNCH

CCM provides password-less ssh and rsh setup to provide
turn-key support for ISV application launch, and to prevent
accidental interference with other user jobs. This section
describes how CCM configures the environment for remote
application launch.

A. Secure Shell

Standard MPI application launch requires password-less
key exchange between the nodes. Traditional Beowulf-type
clusters require the user to set up a password-less key pair on
the system-level node. On a Linux-based distribution, this is
done by running ssh-keygen.

Figure 4. Simplified CCM Job Launch

The resulting keys are stored in the $HOME/.ssh
directory; additionally, $HOME/.ssh must have 0600
permission. CCM attempts to create password-less ssh key
pairs on the login node, if such keypairs do not exist.
Otherwise, the user is responsible for generating ssh key
pairs. On the compute side, the sshd is configured to allow
key-based authentication. In the CCM implementation, the
CCM startup process transfers the public key of the user to
the job compute nodes. These compute nodes place the
public key file in a path file location. The CCM sshd is
configured to accept the keypair through the sshd_config
AuthorizedKeyFile in lieu of the authorized_keys in
$HOME/.ssh. This allows CCM to isolate itself from the
user’s login environment. CCM derives its sshd_config from
the /etc/ssh/sshd_config file in the cnos class view, and
appends only a small set of options. This allows the CCM
ssh to more easily co-exist with site-built ssh alternatives.
The sshd service is started with /etc/init.d/sshd, so it can
support site-built packages.

B. Remote Shell

The rsh protocol is provided by xinetd. CCM enables rsh,
rexec and rlogin and then starts rpcbind and xinetd services.
CCM populates a local CCM file with correctly formatted
.rhosts contents, and then mounts this file on top of
$HOME/.rhosts. For sites wanting to use rsh, the
administrator must configure CCM_ENABLERSH in the
ccm.conf file, and the site must allow a user to create a
$HOME/.rhosts file with mode 0600 permissions, as well as

allowing root execute on $HOME. As the rsh protocol does
not encrypt its communications and has weaker password-
less authentication mechanisms, site administrators can
choose to disable CCM rsh support entirely.

VII. CLUSTER COMPATIBILITY MODE JOB LAUNCH

To support ssh and rsh, a user must be able to execute a
login shell on the compute nodes. Compute Node Linux does
not require either user accounts or home directories.
Supporting users requires new configuration and planning for
the system administrator. This section provides some
examples of working configurations at sites.

The most common implementations of providing /home to
CCM are by sourcing /home on lustre and or hosting /home
off of an external NFS file server. The home directories on
any XE/XK internal login / login gateway nodes are typically
the same as the /home directories mounted on the compute
nodes and any automated user environment configuration
makes this assumption. For external login nodes, the batch
submission routes the request to an internal batch node
manager, and all CCM configuration is initiated from within
the XE/XK system. In theory, home directories for internal
and external login nodes should not need to be the same from
a CCM perspective. Separating /home on internal and
external nodes may be an impractical configuration for other
reasons and subsequent deployment use cases assume a
transparent /home.

An ssh connection will authenticate a user using Name
Service Switch (NSS), specifying that CCM use static

password, NIS, or compat semantics. Node specialization
will first look for /etc/nsswitch.conf in the cnos class view,
then the node specialized view of the DVS server, the class
view of the DVS server and finally the default view. Sites
using a login class view will need to separately administer
any password management files. As a tradeoff, sites gain
greater configurability to manage CCM user authentication to
meet scalability and security requirements.

Fig. 5 depicts a site with external login nodes, and using
LDAP for user authentication. Transparent /home is
provided from an external NFS volume throughout the
system. A common, external LDAP server provides name
service resolution.

Here, the DVS server mounts an external NFS /home
directory, and then projects that directory to the compute
node. The same directory is also mounted on the XE/XK
Login node and the esLogin node. The compute node here is
configured to talk to an RSIP server, which, in turn, can
speak to an external LDAP server. The login gateway and
esLogin can talk to the LDAP server directly. RSIP on the
compute nodes is required in this configuration to
authenticate the user.

Fig. 6 illustrates a compute node talking to an NIS slave
server running on an I/O gateway node. The gateway node
has the necessary IP connectivity to talk to the NIS master.
This configuration eliminates the need for an RSIP server to
support name services on the compute node. Instead, it
distributes the load to the NIS server. On an XE/XK system,
the NIS server must be located on the high-speed network
(HSN), due to a RSIP and sunrpc compatibility limitation.
The same configuration can be used to support LDAP to limit
LDAP server load.

Figure 5. Transparent home directories with external LDAP server

Figure 6. Compute nodes talking to internal NIS slave

CCM attempts to limit name service activity by starting
up a name service caching daemon for each job instance.
Since nscd starts on every job launch, each new job launch
may make a single request to the name server. Since job
launch is simultaneous, initial job launch can potentially put
a heavy simultaneous load on the name servers. Site policy
should consider this load and their system size when
choosing the name service authentication method and
determining the number and placement of name servers.
Some configurations are only appropriate for smaller
systems. Static password authentication will provide the
maximal scaling and performance.

A final consideration when using LDAP or NIS with
CCM is that the configuration files are shared between CLE
ESM jobs running on the DSL root and CCM jobs, as these
files will share the same /etc/nsswitch.conf. As this poses
distributed denial of service potential in a large site, the
following alternative was devised. As mentioned previously,
an administrator can add additional CCM mount points.
These mount points are specified in a configuration file:
/etc/opt/cray/ccm/ccm_mounts.local. An administrator can
specify a separate configuration file to be used only for CCM
jobs, without modifying the configuration seen when running
ESM jobs with a simple entry like:

 /etc/nsswitch.conf.ccm /etc/nsswitch.conf bind 0

VIII. CSA ACCOUNTING INTERACTIONS

Experience has shown that improper CSA accounting
can break CCM jobs using MPI with the InfiniBand Verbs
API. When a job is initiated on a Cray XE/XK system, the
PAGG job ID is first obtained by the batch system that
launches the job. For interactive jobs, the PAGG job ID is
obtained at login time by the pam_job module. ALPS uses

the PAGG job ID to uniquely identify the job for accounting
purposes. CSA provides an ioctl interface to pass job
accounting data to the CSA kernel software, which then
stores the data in pacct. The sshd configuration on an XE/XK
login node is configured to use pluggable authentication
modules (PAM), and to include pam_job during session
management, triggering the creation of a new PAGG job ID
on every login. The PAGG is a nearly inescapable job
container that contains all user processes. The only time a
new PAGG would be assigned is when a new login session is
created by sshd, which is one of the mechanisms that third-
party mpirun and mpiexec uses to distribute work to other
nodes in a cluster. If mpirun is configured to use ssh and the
pam_job is loaded, the new ssh session and all children of
that ssh session will be placed in a new process aggregate
group.

As previously described, during application launch,
ALPS associates the PAGG job ID with a unique gemini
PTag, which is used to establish the gemini protection
domain. Only jobs within the specific PAGG can access the
high-speed network. If an application escapes the job
container, it will get errors when attempting to use the
InfiniBand Verbs API.

IX. THE NFS ROOT SQUASHED ENVIRONMENT

In many sites, administrators choose to serve home
directories with NFS root_squash enabled. In an NFS root
squashed environment, the NFS server assigns the
anonymous user id nobody to all root user access initiated by
an NFS client. DVS preserves all attributes when projecting
an NFS volume to clients running on a compute node, so
client accesses from compute nodes respect root squashed
home directories. The initial CCM implementation created
temporary user key files for each CCM session, mounted on
top of the existing keys in the user $HOME/.ssh directory.
Since password-less ssh requires 600 permissions on .ssh, the
contents of this directory cannot be viewed on the CLE
compute node, and this initial implementation was discarded.
Today, the user public key from the login node is transferred
to the compute node, and an alternate authorized_keys file is
specified to avoid this limitation. Longer term, prototyping is
being done on shifting to a host-based authentication in the
CCM context only, with a return to dynamic key generation.

A final implication of root squashed home directories is
the impact on sites using rsh for MPI job launch. Due to the
previously discussed interaction of pam_rhosts and the
shared-root, CCM relies on a correct .rhosts file in the user
home directory. For CCM to provide temporary and
transparent rsh services, root must be able to execute within
the user home directory. If home directory permissions are
correct, CCM will bind a correct rhost file on top of .rhosts in
the home directory. The CCM rhosts file also restricts
password-less rsh to the nodes assigned to the job, preventing
accidental interference with other jobs on the system. If
security policy does not allow these permissions, users will

need to stage their own .rhosts file with the correct contents
or use ssh launch as the alternative.

X. GRAPHICAL USER INTERFACE SUPPORT

The CLE Linux distribution includes the X Window
System (X11) for GUI support. As the goal of CCM is to
provide the capability to run any pre-compiled binary, it also
provides a mechanism for graphical user interface support
through ssh forwarding and ccmlogin. To get end-to-end
X11 tunneling back to a desktop, a user connects to the
XE/XK login node in an ssh session with X-forwarding
enabled. Next, the user requests an interactive session from
the batch system, indicating to the WLM that it should
propagate environment to a CCM job. Finally, the user
connects to the head node of the CCM job, requesting
ccmlogin to propagate the environment to the compute node.
Like ccmrun, ccmlogin will start up services for the session,
and then will initiate an ssh session to the numerically first
node of the job reservation. The user logs into the node,
completing the X-tunnel. Fig. 7 illustrates the X-forwarding
process.

Providing interactive user shell on the compute node
does pose challenges to a cluster administrator. The batch
system needs to be configured to place the batch interactive
shell on the same node, or must be capable of propagating the
DISPLAY environment variable to the new shell. Users can
inadvertently forget to exit the shell, and leave system
resources consumed. Administrators may want to consider
enabling ssh keepalive, or advising interactive users to do so,
to prevent sshd from closing the connection. Batch wall clock
timers can be used to terminate interactive users after a
specified duration of time.

XI. WORKLOAD MANAGER INTEGRATION

The CCM package includes batch prologue and epilogue
scripts that need to be called by the WLM. These script
callouts can be integrated with existing batch hooks. Both
CLE and WLM documentation provide information about
configuring scripts with the batch system. To enable on an
XE/XK system, the administrator must configure the batch
system to call these scripts and must designate to CCM
specific target batch queues or a specific set of batch
resources as allocated to CCM jobs. In addition, the
resources or queues must be configured in the WLM.

Each supported WLM has the capability of restricting
the number of nodes to a given queue, or the number of total
batch resources of a particular type that can be requested.

Figure 7. X11 Forwarding through batch system

Administrators can use these options to apply any
number of restrictions when deploying CCM on site: e.g. the
maximum size of a CCM job, the number of simultaneous
CCM jobs allowed at a given time, the time of day jobs can
be submitted to CCM, restricting CCM to a certain subset of
the system, the total number of nodes that can run CCM at
any given time. Administrators can set aside a smaller set of
resources for interactive CCM users, and put aggressive
timeouts to prevent users from accidentally tying up machine
resources.

CCM provides a few additions to help support end user
application launch scripts. One such feature is transparent
node lists through the cluster. Without CCM, the workload
manager nodes file on the login node is incorrect, containing
the hostname of the mom node rather than the lists of hosts in
the job. During initialization, CCM corrects the nodes file to
reflect all of the PEs in the reservation, as would be seen on a
standard Linux cluster. Additionally, CCM makes sure that
the correct nodes file is present on the compute nodes.

Cray XE/XK systems do not provide batch node
managers on the compute nodes. Where industry workload
managers scale to tens of thousands of nodes, the ALPS
architecture is designed to scale to hundreds of thousands of

nodes. There are a few customer visible side effects;
customer scripts can run qstat commands on the master mom
node, but not individual job nodes, and MPI applications that
were compiled to support Moab/Torque native launchers
need to explicitly disable native launch through MPI
command options: “--mca plm ^tm --mca ras ^tm –x”.

XII. CONCLUSION

Cluster Compatibility Mode allows customers to run
their existing applications on an XE/XK system, while not
compromising traditional extreme scalability mode
workloads. Cray continues to work actively with ISVs to
provide Cray native ports where appropriate, and encourages
Customers should use Cray Native applications when
available, as these always provide the optimal performance
and scalability. ESM provides optimal performance and
scalability when customers have access to application source
code. CCM addresses the need to run applications that have
been built for standard Linux x86 clusters. Looking to the
future, CCM will continue to work to optimize performance,
and adapt to customer needs.

