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Abstract— Cray’s addition of Data Virtualization Service 
(DVS) and Dynamic Shared Libraries (DSL) to the Cray 
Linux Environment (CLE) software stack provides the 
foundations necessary for shared library support. The Cluster 
Compatibility Mode (CCM) feature introduced with CLE 3 
completes the picture and allows Cray to provide “out-of-the-
box” support for independent software vendor (ISV) 
applications built for Linux-x86 clusters.  Cluster 
Compatibility Mode enables far greater workload flexibility, 
including install and execution of ISV applications and use of 
various third party MPI implementations, which necessitates 
a corresponding increase in the complexity of system 
administration and site integration.  This paper explores 
CCM architecture and a number of case studies from early 
deployment of CCM into user environments, sharing best 
practices learned, with hopes that sites can leverage these 
experiences for future CCM planning and deployment. 
 

CCM, CLE, DSL, DVS, IAA, ISV, MPI, ssh, rsh, cluster 

I.  INTRODUCTION 

Cluster Compatibility Mode (CCM) extends the 
capabilities of traditional Cray Linux Environment (CLE) to 
allow many ISV applications to run without modification and 
without adding additional overhead to native Extreme 
Scalability Mode (ESM) applications. The traditional Cray 
architecture differs from traditional Linux clusters as CLE, by 
design, does not provide a full-featured Linux environment.  
In addition, on larger scale systems, interactions with ESM 
and configuration scalability should be considered when 
configuring the system to support CCM.  This paper provides 
a design overview of CCM, an overview of the architecture of 
the Cray system components that interact with CCM, an 
overview of the CCM technical components, considerations 
for scalability, and some examples of site configurations.   

II. DESIGN GOALS 

The design goals of CCM were threefold: to provide an 
environment to run independent service vendor (ISV) 
applications out-of-the-box without modification, to ensure 
the capabilities necessary to run these ISV applications 
without sacrificing the performance of traditional Extreme 
Scalability Mode (ESM) applications, and to continue to 
optimize performance moving forward.   ISV applications 
generally consist of a pre-compiled binary, packaged with a 
specific version of a third-party MPI, often requiring a 

license for execution.  Dynamic Shared Libraries (DSL) 
provides the foundation for pre-compiled binaries. Then, with 
the addition of shared library support in Cray’s Compute 
Node Linux (CNL), it is no longer necessary to compile 
specifically for Cray XE/XK systems.   Cray provides for 
compute node IP-connectivity through Realm Specific IP 
Addressing (RSIP), which is used to address licensing needs 
of the ISV applications.  CCM is then responsible for 
addressing additional ISV application needs: specifically in 
the areas of MPI-launch support, and Linux Standard Base 
compliance.  Third-party ISV codes use a number of different 
launch mechanisms for job fanout: typically rsh, ssh, or 
Linda (over rsh or ssh).  In addition, many applications 
expect writeable /tmp, dbus, and POSIX shared memory 
segments to be persistent through the lifetime of a job.  
Finally, CCM continues to optimize for performance. The 
goal is to approach native gemini performance below 2048 
PEs, which bounds typical ISV application scalability. CCM 
was first introduced in CLE 3 with support for TCP. The ISV 
Application Acceleration (IAA) component was added to 
CLE 4.   

CCM does not provide a runtime environment to users, and 
was never designed to provide a development environment.  
Where users have access to source code, Cray provides the 
Cray Programming Environment.  Cray’s programming 
environment is extensively optimized for scalability and 
performance, and uniquely tuned to the Cray systems 
architecture. Also, CCM does not attempt to provide the 
infrastructure to allow general service provisioning on 
compute nodes. Rather, CCM strives to provide the minimal 
excess service overhead to still fully support any ISV 
Application. 

III.  ARCHITECTURAL OVERVIEW 

A. CLE Dynamic Shared Libraries 

To understand how to deploy CCM on a Cray, it is 
important to understand the Cray system architecture.  Cray 
uses a single shared-root file system, projected over Network 
File System (NFS) from the XE/XK boot node.  The shared-
root file system is mounted read-only on all XE/XK service 
nodes.  If DSL has been installed, the shared-root is projected 
by Data Virtualization Service (DVS) to the CLE compute 
nodes.  The Compute Node Root Runtime Environment 
(CNRTE) projects the shared root to compute node images. 
CLE users have the option of launching their jobs in native 



CLE low OS-noise environment, or using DSL to access the 
shared-root through a CRAY_ROOTFS environment 
variable.  The DSL and CNRTE components are optional on 
the XE/XK systems, though required for CCM.  CCM runs 
on top of the DSL root, although it makes no requirements on 
the system default.   

Fig. 1 shows a DSL typical implementation with the 
shared-root projected to the compute nodes.  DVS clients 
running on each CLE compute node can be configured with 
load-balancing.  In a DVS load-balance environment, the 
CLE DVS client will select the primary server based on a 
node network identifier (nid).  If a DVS server fails, the 
clients fail over to another DVS server which provides 
resiliency and scalability.  DVS clients support both page 
caching and attribute caching for additional performance 
optimization.  DVS servers can be run on XIO nodes, or 
repurposed compute nodes.  Repurposed compute nodes 
allow sites to use XE/XK compute nodes as PCI-less service 
nodes; these nodes must be statically booted as service nodes, 
and are removed from the pool of available compute node 
resources. DVS is best configured by the CLE installer. 

B. Shared Root 

All nodes in the Cray system share a single shared-root 
file system.  Traditionally, Linux services are managed with 
configuration files in /etc, and enabled using the insserv and 
chkconfig commands. To provide the ability to run different 
services and have different configurations on different nodes, 
the XE/XK system establishes an inheritance hierarchy for 
the /etc file system on the shared-root. Fig. 2 presents a 
simple view of shared-root configuration.   
 
 

 
 

Figure 1.  Shared-root projection to compute nodes over DVS 

 
 

Figure 2.  Shared-root specialization 

At the root of the hierarchy is a common default view, 
which is superseded by a class view and a node specific view 
for each node on the system, if available. A given system 
node can belong to exactly one system class.  System classes 
allow the administrator to make configuration file changes 
common to multiple nodes providing the same system 
functions.  For example, an administrator might want to set 
up name services in the same fashion on all nodes 
functioning as login nodes through a login class view, 
whereas external Ethernet IP configuration files could be 
managed in the node specific views for a given XIO node.  
All configuration files exist in a global system default view 
of /etc, which is a directory containing a set of symbolic links 
to the original distribution contents of /etc.  The CLE installer 
sets up the symbolic links in the default view at initial install 
time.  Afterwards, contents of these links must be managed 
through the xtopview utility.  All Cray developed software 
components deliver their configuration files to /etc/opt/cray 
on the shared root, thus providing system configuration 
through a single xtopview interface.    

C. Compute Node Root Filesystem 

DVS servers work by projecting the entire file system 
mounted on the DVS server to the CLE compute 
environment, which is in turn, mounted to a specified path 
location (/dsl by default) on the compute nodes. Users launch 
ESM jobs to compute nodes with the aprun command and 
aprun performs a chroot into the DSL root, and then launches 
the specified executable.   Since administrators may want a 
different system administration configuration for compute 
nodes than they desire on the DVS server, Cray implements a 
special class, the cnos class, to provide management of /etc 
files mounted on the compute nodes.  The cnos class is 
common to all DSL jobs, including CCM jobs – this is an 
important factor in some of the administration case studies 
provided later in this paper. 

 

D. RSIP 

RSIP, although not strictly required for CCM, enables 
CLE compute nodes to access external network resources.  
An RSIP client running on the CLE compute node interfaces 
to an RSIP server through an IPIP tunnel.  With RSIP, 
application packets are forwarded over the IPIP tunnels while 
protocol traffic is distributed over the HSN. Administrators 
configure a port range that can be used with RSIP.  The 



number of ports available to any given RSIP client is equal to 
the lesser of 255 or: 
 
 num_rsip_servers × num_ports_in_range / num_clients (1) 
 
The total client ports limit the number of outbound 
connections from any given compute node. 

IV.  CLUSTER COMPATIBILITY MODE ARCHITECTURE 

A. Session Initialization 

When a batch job is submitted, a batch server contacts its 
scheduler, which issues an Batch Application Scheduler 
Interface Layer (BASIL) RESERVE request to the 
application level placement scheduler (ALPS) to make a 
claim on the requested node resources so that they are 
available to the job when it executes.  The exact contents of 
the packet vary by BASIL protocol version, but always 
include a ALPS reservation identifier, and a cookie.  The 
batch server then sends an apbasil CONFIRM request to 
associate the claim with a specific process group (PAGG) on 
the login node, and to bind the resources to the batch system 
for the duration of the reservation.  All CCM-compatible 
workload managers provide support for a root-owned pre-
execution hook that is called after the resources are bound to 
a specific batch reservation. If a job is to execute in Cluster 
Compatibility Mode, the pre-execution hook, or prologue 
performs several steps during initialization, including: 

• Validating that a specific batch job submission is 
requesting CCM.  As of 4.1UP03, CCM provides 
support for configuring CCM for all jobs submitted 
to specific batch queues, or alternately by using 
custom resource configuration  if supported by the 
WLM vendor 

• Creating a nodelist containing, on separate lines, one 
host entry for each PE in the job reservation 

• Providing correct and transparent  nodefile entries 
on the login node and all compute nodes in the job 

• Generating ssh key files for the user, if these do not 
exist 

• Populating .rhosts in the user $HOME directory 
when CCM_ENABLERSH has been set for the 
system 

• Transferring the files necessary to support and 
isolate the compute node CCM service 
configuration to a specific user/job instance 

• Fanning out to all compute nodes in the job using 
the xtxqtcmd binary provided with the nodehealth 
rpms to prepare the environment 

B. Environment Setup 

Environment setup performs the following actions: 
• preparation of all of the configuration files required 

by sshd and xinetd, staging these to a subdirectory 
of the compute node’s /var filesystem 

• creation of a temporary environment using bind  
mounts to provide a writeable /tmp, writeable 
/var/tmp, /dev/random, a CCM-specific /var/run 
directory, pseudo-terminal support, MPI DAPL 
configuration, dbus protocol support, POSIX shared  
memory support, sshd configuration and xinetd 
configuration.   

• providing the ability to extend CCM bind mounts to 
accommodate site specific configuration with a 
/etc/opt/cray/ccm/ccm_mounts.local configuration 
file 

The described configuration persists for the lifetime of 
the batch reservation.  At the end of the batch job execution, 
the workload manager calls a post-execution hook, or 
epilogue which is responsible for tearing down the CCM 
configuration, by: 

• validating that the specific batch reservation is 
targeted at CCM 

• creating a lock on the reservation to prevent 
multiple epilogue execution in the case that the 
script is resubmitted 

• fanning out to each compute node in the job using 
xtxqtcmd and attempting to umount any CCM 
mounted file systems 

• stopping all services started by CCM 
• removing all temporary files staged by CCM, if the 

virtualized environment was successfully removed 
• checking on the health of the node, marking it 

administratively down if the CCM environment was 
not properly removed 

C. Node Health Checker Interaction 

As of CLE 4.1UP03, CCM uses the node health checker to 
monitor for application exit, and after successful exit of all 
applications on the compute node, removes temporary data 
and bind mounts.  The post-execution hook calls the node 
health checker (NHC) directly and, after checking for a small 
amount of time, it marks the specific node SUSPECT, exits 
the post-execution script, and allows batch system to release 
the claim on the nodes.  NHC then can asynchronously 
monitor for node recovery and restore the nodes to service 
once CCM has been torn down. These extensions were made 
to provide greater resiliency to out of memory situations, file 
system cache flushing and application core dumps and to 
provide greater portability between WLM versions and 
vendors.  

CCM continues to evolve and adapt to the needs of ISV 
applications, and site implementation specifics, with the goal 
of supporting any ISV application and providing an 
increasingly turn-key environment for standard deployments. 

V. JOB EXECUTION 

A. Linux Cluster JobLaunch 

On a traditional Linux cluster, a user requests an 
allocation from a workload manager. The workload manager 



allocates node resources for the job, and then launches the 
job on one of the nodes. The MPI programming model 
provides a message passing interface to provide inter-process 
communication.  Consider the simple case of an MPI hello 
world, submitted on  two nodes, launched with: 

 
  mpirun –machinefile $NODEFILE –np 2 mpi_hello  

 
The mpirun command reads the file specified by  
--machinefile, processes a list of nodes, distributes the 
executable to -np nodes using ssh or rsh to provide this 
transport and executes program mpi_hello on each of these 
nodes. In traditional clusters, the batch system is responsible 
for job allocation and application placement. 

B. Cluster Compatibility Mode Job Launch 

On a XE/XK system, the batch system is responsible for 
resource scheduling, but ALPS provides application 
placement. Unlike the cluster model, application launch 
occurs on a login node that is not part of the compute cluster.  
The Cray CCM architecture implements a similar model to 
cluster job launch, adapting to ALPS placement model. This 
architecture is shown in Fig. 3. 

CCM job launch is initiated from an XE/XK login node.  
The application user submits a job through a workload 
manager, which then requests the resources associated with 
the job, allocates the nodes, and executes the script on a 
MOM / sbatchd node.  A job script includes any job and 
environment setup, and a ccmrun statement.  The ccmrun 
command is responsible for initiating cluster services and for 
placing a single copy of the application launch command 
onto the first node in the job claim.   

To set up a cluster environment, ccmrun launches a 
single copy of special program called ccmlaunch passing as 
argument the application binary or command, and all 
associated launch arguments.   

The ccmrun command bypasses binary transfer of the 
target executable, instead passing the application path to an 
apinit process on the compute nodes.  

Apinit sets up the job context and gemini context 
(including a PTAG and a cookie), which allows the placed 
job to access the HSN.  Apshepherd then executes a chroot 
into the DSL root, and executes ccmlaunch.  The ccmlaunch 
command starts a selected set of system services on the 
compute nodes. These services include nscd, rpcbind, an 
alternate sshd listening on port 203, and optionally xinetd to 
provide rsh, rlogin, and rexec services.   

All services are started specifically by running the 
/etc/init.d service scripts in the compute node CNRTE root. A 
full Linux init sequence is not performed on the compute 
node however; rather CCM anticipates any requisite services 
for the limited set of services it provides. System 
administrators may also enable NIS for CCM compute node 
jobs.  NIS must be configured globally in the ccm.conf 
configuration file as ypservices will fail and delay startup if 
not properly configured. 

 
 

Figure 3.  CCM Job Execution 

Once service initialization is complete, ccmlaunch sets 
up a sync barrier to ensure that daemons have completed 
initialization on all compute node jobs, and then queries 
ALPS for the local Programming Environment (PE) rank. If 
ccmlaunch determines itself to be executing on PE[0], it acts 
in the role of CCM head node.  The application launch 
command provided to ccmrun is then placed on the node for 
execution, and ccmlaunch monitors for job termination.  On 
all other PE ranks, ccmlaunch sleeps until the application job 
has terminated.  Without this sleep, aprun would detect the 
exit of the application on the ranks, and initiate a teardown of 
all job nodes.   

Figure 4 shows an MPI application launch in the CCM 
environment; the dashed line represents the synchronization 
barrier used for service initiation.  In this illustration, the 
application processes are direct children of the CCM-
provided sshd.  All processes are confined to the ALPS-
managed PAGG, allowing them access to the gemini 
network.  As the gemini context is unique to each job launch, 
all processes in the PAGG are torn down after every ccmrun 
command. 

VI.  REMOTE APPLICATION LAUNCH 

CCM provides password-less ssh and rsh setup to provide 
turn-key support for ISV application launch, and to prevent 
accidental interference with other user jobs. This section 
describes how CCM configures the environment for remote 
application launch. 

A. Secure Shell 

Standard MPI application launch requires password-less 
key exchange between the nodes. Traditional Beowulf-type 
clusters require the user to set up a password-less key pair on 
the system-level node. On a Linux-based distribution, this is 
done by running ssh-keygen. 

 
 



 
 

 

 
Figure 4.  Simplified CCM Job Launch

The resulting keys are stored in the $HOME/.ssh 
directory; additionally, $HOME/.ssh must have 0600 
permission.  CCM attempts to create password-less ssh key 
pairs on the login node, if such keypairs do not exist.  
Otherwise, the user is responsible for generating ssh key 
pairs.  On the compute side, the sshd is configured to allow 
key-based authentication.  In the CCM implementation, the 
CCM startup process transfers the public key of the user to 
the job compute nodes.  These compute nodes place the 
public key file in a path file location.  The CCM sshd is 
configured to accept the keypair through the sshd_config  
AuthorizedKeyFile in lieu of the authorized_keys in 
$HOME/.ssh.  This allows CCM to isolate itself from the 
user’s login environment. CCM derives its sshd_config from 
the /etc/ssh/sshd_config file in the cnos class view, and 
appends only a small set of options.  This allows the CCM 
ssh to more easily co-exist with site-built ssh alternatives. 
The sshd service is started with /etc/init.d/sshd, so it can 
support site-built packages.   

B. Remote Shell 

The rsh protocol is provided by xinetd.  CCM enables rsh, 
rexec and rlogin and then starts rpcbind and xinetd services. 
CCM populates a local CCM file with correctly formatted 
.rhosts contents, and then mounts this file on top of 
$HOME/.rhosts.  For sites wanting to use rsh, the 
administrator must configure CCM_ENABLERSH in the 
ccm.conf file, and the site must allow a user to create a 
$HOME/.rhosts file with mode 0600 permissions, as well as 

allowing root execute on $HOME. As the rsh protocol does 
not encrypt its communications and has weaker password-
less authentication mechanisms, site administrators can 
choose to disable CCM rsh support entirely. 

VII.  CLUSTER COMPATIBILITY MODE JOB LAUNCH 

To support ssh and rsh, a user must be able to execute a 
login shell on the compute nodes. Compute Node Linux does 
not require either user accounts or home directories. 
Supporting users requires new configuration and planning for 
the system administrator. This section provides some 
examples of working configurations at sites. 

The most common implementations of providing /home to 
CCM are by sourcing /home on lustre and or hosting /home 
off of an external NFS file server.  The home directories on 
any XE/XK internal login / login gateway nodes are typically 
the same as the /home directories mounted on the compute 
nodes and any automated user environment configuration 
makes this assumption.  For external login nodes, the batch 
submission routes the request to an internal batch node 
manager, and all CCM configuration is initiated from within 
the XE/XK system.  In theory, home directories for internal 
and external login nodes should not need to be the same from 
a CCM perspective.  Separating /home on internal and 
external nodes may be an impractical configuration for other 
reasons and subsequent deployment use cases assume a 
transparent /home. 

An ssh connection will authenticate a user using Name 
Service Switch (NSS), specifying that CCM use static 



password, NIS, or compat semantics. Node specialization 
will first look for /etc/nsswitch.conf in the cnos class view, 
then the node specialized view of the DVS server, the class 
view of the DVS server and finally the default view.  Sites 
using a login class view will need to separately administer 
any password management files. As a tradeoff, sites gain 
greater configurability to manage CCM user authentication to 
meet scalability and security requirements.   

Fig. 5 depicts a site with external login nodes, and using 
LDAP for user authentication.  Transparent /home is 
provided from an external NFS volume throughout the 
system.  A common, external LDAP server provides name 
service resolution. 

Here, the DVS server mounts an external NFS /home 
directory, and then projects that directory to the compute 
node. The same directory is also mounted on the XE/XK 
Login node and the esLogin node.  The compute node here is 
configured to talk to an RSIP server, which, in turn, can 
speak to an external LDAP server.  The login gateway and 
esLogin can talk to the LDAP server directly.  RSIP on the 
compute nodes is required in this configuration to 
authenticate the user. 

Fig. 6 illustrates a compute node talking to an NIS slave 
server running on an I/O gateway node.  The gateway node 
has the necessary IP connectivity to talk to the NIS master. 
This configuration eliminates the need for an RSIP server to 
support name services on the compute node. Instead, it 
distributes the load to the NIS server. On an XE/XK system, 
the NIS server must be located on the high-speed network 
(HSN), due to a RSIP and sunrpc compatibility limitation.  
The same configuration can be used to support LDAP to limit 
LDAP server load. 

 
 

 
 

Figure 5.  Transparent home directories with external LDAP server 

 
 

Figure 6.  Compute nodes talking to internal NIS slave 

CCM attempts to limit name service activity by starting 
up a name service caching daemon for each job instance.  
Since nscd starts on every job launch, each new job launch 
may make a single request to the name server.  Since job 
launch is simultaneous, initial job launch can potentially put 
a heavy simultaneous load on the name servers.  Site policy 
should consider this load and their system size when 
choosing the name service authentication method and 
determining the number and placement of name servers. 
Some configurations are only appropriate for smaller 
systems.  Static password authentication will provide the 
maximal scaling and performance.   

A final consideration when using LDAP or NIS with 
CCM is that the configuration files are shared between CLE 
ESM jobs running on the DSL root and CCM jobs, as these 
files will share the same /etc/nsswitch.conf.  As this poses 
distributed denial of service potential in a large site, the 
following alternative was devised. As mentioned previously, 
an administrator can add additional CCM mount points. 
These mount points are specified in a configuration file: 
/etc/opt/cray/ccm/ccm_mounts.local.  An administrator can 
specify a separate configuration file to be used only for CCM 
jobs, without modifying the configuration seen when running 
ESM jobs with a simple entry like: 

 
 /etc/nsswitch.conf.ccm   /etc/nsswitch.conf  bind  0 
 

VIII.  CSA ACCOUNTING INTERACTIONS 

Experience has shown that improper CSA accounting 
can break CCM jobs using MPI with the InfiniBand Verbs 
API.  When a job is initiated on a Cray XE/XK system, the 
PAGG job ID is first obtained by the batch system that 
launches the job. For interactive jobs, the PAGG job ID is 
obtained at login time by the pam_job module. ALPS uses 



the PAGG job ID to uniquely identify the job for accounting 
purposes.  CSA provides an ioctl interface to pass job 
accounting data to the CSA kernel software, which then 
stores the data in pacct. The sshd configuration on an XE/XK 
login node is configured to use pluggable authentication 
modules (PAM), and to include pam_job during session 
management, triggering the creation of a new PAGG job ID 
on every login.  The PAGG is a nearly inescapable job 
container that contains all user processes. The only time a 
new PAGG would be assigned is when a new login session is 
created by sshd, which is one of the mechanisms that third-
party mpirun and mpiexec uses to distribute work to other 
nodes in a cluster.  If mpirun is configured to use ssh and the 
pam_job is loaded, the new ssh session and all children of 
that ssh session will be placed in a new process aggregate 
group.   

As previously described, during application launch, 
ALPS associates the PAGG job ID with a unique gemini 
PTag, which is used to establish the gemini protection 
domain. Only jobs within the specific PAGG can access the 
high-speed network. If an application escapes the job 
container, it will get errors when attempting to use the 
InfiniBand Verbs API. 

IX.  THE NFS ROOT SQUASHED ENVIRONMENT 

In many sites, administrators choose to serve home 
directories with NFS root_squash enabled.  In an NFS root 
squashed environment, the NFS server assigns the 
anonymous user id nobody to all root user access initiated by 
an NFS client.  DVS preserves all attributes when projecting 
an NFS volume to clients running on a compute node, so 
client accesses from compute nodes respect root squashed 
home directories.  The initial CCM implementation created 
temporary user key files for each CCM session, mounted on 
top of the existing keys in the user $HOME/.ssh directory. 
Since password-less ssh requires 600 permissions on .ssh, the 
contents of this directory cannot be viewed on the CLE 
compute node, and this initial implementation was discarded.  
Today, the user public key from the login node is transferred 
to the compute node, and an alternate authorized_keys file is 
specified to avoid this limitation. Longer term, prototyping is 
being done on shifting to a host-based authentication in the 
CCM context only, with a return to dynamic key generation. 

A final implication of root squashed home directories is 
the impact on sites using rsh for MPI job launch. Due to the 
previously discussed interaction of pam_rhosts and the 
shared-root, CCM relies on a correct .rhosts file in the user 
home directory. For CCM to provide temporary and 
transparent rsh services, root must be able to execute within 
the user home directory. If home directory permissions are 
correct, CCM will bind a correct rhost file on top of .rhosts in 
the home directory.  The CCM rhosts file also restricts 
password-less rsh to the nodes assigned to the job, preventing 
accidental interference with other jobs on the system. If 
security policy does not allow these permissions, users will 

need to stage their own .rhosts file with the correct contents 
or use ssh launch as the alternative. 

X. GRAPHICAL USER INTERFACE SUPPORT 

The CLE Linux distribution includes the X Window 
System (X11) for GUI support. As the goal of CCM is to 
provide the capability to run any pre-compiled binary, it also 
provides a mechanism for graphical user interface support 
through ssh forwarding and ccmlogin.  To get end-to-end 
X11 tunneling back to a desktop, a user connects to the 
XE/XK login node in an ssh session with X-forwarding 
enabled. Next, the user requests an interactive session from 
the batch system, indicating to the WLM that it should 
propagate environment to a CCM job. Finally, the user 
connects to the head node of the CCM job, requesting 
ccmlogin to propagate the environment to the compute node. 
Like ccmrun, ccmlogin will start up services for the session, 
and then will initiate an ssh session to the numerically first 
node of the job reservation. The user logs into the node, 
completing the X-tunnel. Fig. 7 illustrates the X-forwarding 
process. 

Providing interactive user shell on the compute node 
does pose challenges to a cluster administrator. The batch 
system needs to be configured to place the batch interactive 
shell on the same node, or must be capable of propagating the 
DISPLAY environment variable to the new shell. Users can 
inadvertently forget to exit the shell, and leave system 
resources consumed. Administrators may want to consider 
enabling ssh keepalive, or advising interactive users to do so, 
to prevent sshd from closing the connection. Batch wall clock 
timers can be used to terminate interactive users after a 
specified duration of time. 

XI.  WORKLOAD MANAGER INTEGRATION 

The CCM package includes batch prologue and epilogue 
scripts that need to be called by the WLM. These script 
callouts can be integrated with existing batch hooks. Both 
CLE and WLM documentation provide information about 
configuring scripts with the batch system. To enable on an 
XE/XK system, the administrator must configure the batch 
system to call these scripts and must designate to CCM 
specific target batch queues or a specific set of batch 
resources as allocated to CCM jobs.  In addition, the 
resources or queues must be configured in the WLM.   

Each supported WLM has the capability of restricting 
the number of nodes to a given queue, or the number of total 
batch resources of a particular type that can be requested. 

 

 
 

Figure 7.  X11 Forwarding through batch system 



Administrators can use these options to apply any 
number of restrictions when deploying CCM on site: e.g. the 
maximum size of a CCM job, the number of simultaneous 
CCM jobs allowed at a given time, the time of day jobs can 
be submitted to CCM, restricting CCM to a certain subset of 
the system, the total number of nodes that can run CCM at 
any given time.  Administrators can set aside a smaller set of 
resources for interactive CCM users, and put aggressive 
timeouts to prevent users from accidentally tying up machine 
resources.   

CCM provides a few additions to help support end user 
application launch scripts.  One such feature is transparent 
node lists through the cluster. Without CCM, the workload 
manager nodes file on the login node is incorrect, containing 
the hostname of the mom node rather than the lists of hosts in 
the job.  During initialization, CCM corrects the nodes file to 
reflect all of the PEs in the reservation, as would be seen on a 
standard Linux cluster. Additionally, CCM makes sure that 
the correct nodes file is present on the compute nodes. 

Cray XE/XK systems do not provide batch node 
managers on the compute nodes. Where industry workload 
managers scale to tens of thousands of nodes, the ALPS 
architecture is designed to scale to hundreds of thousands of 

nodes. There are a few customer visible side effects; 
customer scripts can run qstat commands on the master mom 
node, but not individual job nodes, and MPI applications that 
were compiled to support Moab/Torque native launchers 
need to explicitly disable native launch through MPI 
command options:  “--mca plm ^tm --mca ras ^tm –x”.  

XII.  CONCLUSION 

Cluster Compatibility Mode allows customers to run 
their existing applications on an XE/XK system, while not 
compromising traditional extreme scalability mode 
workloads. Cray continues to work actively with ISVs to 
provide Cray native ports where appropriate, and encourages 
Customers should use Cray Native applications when 
available, as these always provide the optimal performance 
and scalability.  ESM provides optimal performance and 
scalability when customers have access to application source 
code. CCM addresses the need to run applications that have 
been built for standard Linux x86 clusters. Looking to the 
future, CCM will continue to work to optimize performance, 
and adapt to customer needs. 

 


