
Cray Cluster Compatibility Mode on Hopper

Zhengji Zhao, Yun (Helen) He, and Katie Antypas
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, USA

e-mail: zzhao@lbl.gov; yhe@lbl.gov; kanytpas@lbl.gov

Abstract— Cluster Compatibility Mode (CCM) is a Cray
software solution that provides services needed to run most
cluster-based independent software vendor (ISV) applications
on the Cray XE6. CCM is of importance to NERSC because it
can enable user applications that require the TCP/IP support,
which are important parts of NERSC workloads, on NERSC's
Cray XE6 machine Hopper. Gaussian and NAMD replica
exchange simulations are two important application examples
that cannot run on Hopper without CCM. In this paper, we
will present our CCM performance evaluation results on
Hopper, and will present how CCM has been explored and
utilized at NERSC. We will also discuss the benefits and issues
of enabling CCM on the petascale production Hopper system.

Keywords-component; cluster compatibility mode; CCM;
TCP/IP; ssh; Cray XE6; performance; ISV; IAA;G09; ccmrun

I. INTRODUCTION
NERSC as a primary production computing facility of

Department of Energy Offices of Science supports a diverse
workload. More than 5,000 users from all major science
fields utilize the computing resources at NERSC and more
than 500 code instances run on NERSC machines regularly.
NERSC’s Peta-flop Cray XE6 system, Hopper [1], is the
main work horse to support these computational needs.
While most of the NERSC users can conduct their day to day
scientific computations on Hopper and get benefits from its
extreme scalability and its large capacity (with 153,216
compute cores, 217 TB of memory and 2PB of disk), some
of our users can not use Hopper because their codes use the
TCP/IP services that are not supported in the native Hopper
computing environment. Eg., Gaussian [2], and NAMD [3]
replica exchange simulations are two important examples of
the codes that can not run on Hopper native environment. In
addition, the Cray’s Application Level Placement Scheduler
(ALPS) deployed on Hopper does not allow multiple
processes to be launched on a single node, therefore some
applications that need to launch multiple serial executables
or multiple parallel executables (each running on a couple
cores) on a single node can not run on Hopper without
wasting most of the available cores on the node. WIEN2k
[4], which is another widely used application at NERSC, is
such an example, and has been excluded from running on
Hopper due to this constraint. Currently these users who can
not run their applications on Hopper have to run their jobs on
NERSC’s other machine Carver [5], an IBM iDataPlex Intel
Nehalem based InfiniBand Linux cluster, which has a much
smaller computing capacity (9,984 cores) compared to
Hopper. As a result, they have to wait a few times longer to

get to run their jobs on Carver. Eg., for the three month time
period from 7/1/2011-10/1/2011, the average queue wait
time for jobs requesting 3 nodes and 36 hours on Carver,
which is the scale that average Gaussian jobs run at, is
around four times longer than that on Hopper [6]. Of course,
some users may run their jobs on Carver for other reasons.
Eg., Carver processor cores have a much faster clock speed,
2.7GHz vs Hopper’s 2.1GHz, which is an important factor
for small concurrency jobs. In addition, Carver has more
memory and queue options for small concurrency long
running jobs. However, if we can migrate the TCP/IP
workload on Carver to Hopper, then both the migrated and
remaining users will get benefit from a shorter queue
turnaround which results in greater scientific productivity
directly.

The Cray Cluster Compatibility Mode (CCM) is a Cray
software solution that provides the services needed to run
most cluster-based independent software vendor (ISV)
applications on the Cray XE6 [7-9]. It supports the standard
Linux services, such as ssh, rsh, nscd, and ldap, and it
provides complete root file systems on the compute nodes
through the Dynamic Shared Library (DSL) environment
using Data Virtualization Service (DVS). MPI runs over
TCP/IP and the High Speed Network (HSN). CCM is
implemented as a queue that coexists with other queues for
the native environment on the system (hereafter we will use
Extreme Scalability Mode (ESM) to refer to the native
computing environment as contrast to CCM), meaning that
CCM dynamically allocates and configures the compute
nodes at job start, and releases those compute nodes to the
main computing pool upon job exit to be ready for the next
job, either an ESM or a CCM job. Therefore it does not
require a static partition of the Hopper system, which is one
of the most appealing features of CCM. The system can
accommodate large CCM workloads up to the whole
machine capacity and meanwhile avoid the resource waste
when the CCM workload is low over the time.

The Cray CCM is a new feature recently enabled on our
production Hopper system on Jan 18, 2012 with the
Compute Linux Environment (CLE) upgrade to CLE4.. We
have been testing this feature on Hopper’s development
machine Grace (288 cores) since it was made available on
Grace last September. We have tested the CCM with
TCP/IP support in CLE3 (CCM1) and the CCM with ISV
Application Acceleration (IAA) in CLE4 (CCM2), which
utilizes the OFED interconnect protocol over Gemini High
Speed Network and therefore should improve performance
over CCM1. The performance data we will present are

mostly for CCM2, and we will use the word CCM in the
place of CCM2 in our discussion unless CCM1 needs to be
mentioned explicitly. In this paper, we will present our
performance evaluation results of CCM and how CCM is
utilized at NERSC. The paper is organized as follows. After
the introduction, we will give an overview on the CCM,
focusing on how to use it under NERSC customization in
Section 2. In Section 3, we will discuss three applications
that use the TCP/IP services and that CCM has enabled on
Hopper. We will compare the performance of the
applications on Carver and Hopper with CCM an analayze
whether performance is sufficient to encourage Carver
TCP/IP users to migrate to Hopper CCM. To further
evaluate the baseline CCM performance, we conducted the
performance tests using a few selected NERSC application
benchmarks. This work will be covered in Section 4. In
Section 5, we will discuss how CCM is utilized at NERSC,
and benefits and issues we have been observing with CCM
on Hopper, followed by the Conclusions at the end.

II. CLUSTER COMPATIBILITY MODE ON HOPPER
Cray intends to provide CCM as an execution

environment rather than a development environment.
Therefore there is no programming environment support for
CCM as there is with ESM from Cray. One can compile
codes on any other x86_64 platforms, and then run them
“out-of-the-box” under Hopper CCM. However, one can
compile codes for CCM on Hopper as well without needing
to depend on other platforms to compile codes. CCM can be
an environment where the users can compile, run, debug,
and profile, and also do data analysis by running
visualization tools. Since CCM is open to client site
customization, what we describe here is our deployment of
CCM on Hopper. For more general and complete
information about CCM, we refer to Ref. [9].

A. CCM Programming Environment
All compilers available to Hopper ESM environment can

be used to compile codes to run under CCM, namely, the
PGI, GNU, Intel, Pathscale and Cray compilers. To compile
MPI codes, users have to link the codes to the third party
MPI libraries because the Cray custom MPICH2 libraries for
ESM (xt-mpich2 modules) don't work under CCM. We have
installed the OpenMPI libraries for CCM (as modules). Users
compile codes using either the native compiler calls, eg.,
pgif90, pgcc, pgCC, or the parallel compiler wrappers from
OpenMPI, ie., mpif90, mpicc and mpiCC for Fortran, C, and
C++ codes, respectively. In contrast to ESM where all
binaries are linked statically by default, the executables built
for CCM is linked dynamically by default as one would
normally expect on a generic Linux cluster. In fact, the
OpenMPI runs over ISV Application Acceleration software
layer which utilizes the OFED software stack that is
available only as shared libraries on Hopper, so MPI codes
indeed have to be built dynamically to get the performance

boost offered by the IAA. Currently we have provided the
OpenMPI library builds using the PGI, GNU, Intel and
Pathscale compilers on Hopper, but have not been successful
building them with the Cray compiler even with fair amount
of staff effort. Cray compiler appears to be difficult to use
under CCM. Since there is no programming modules defined
specifically for CCM, to switch programming environment
from one to another, we still use the PrgEnv modules of
ESM, eg., do module swap PrgEnv-pgi PrgEnv-gnu to switch
to the GNU programming environment. We used the
environment variable PE_ENV defined in the ESM PrgEnv
modules in our OpenMPI modulefiles to avoid a separate
openmpi module for each compiler. However, most of the
software contained in the ESM PrgEnv modules are not
relevant to the CCM environment, users can unload them by
choice. Users can compile codes either on Hopper login
nodes or MOM nodes.

We have provided the most commonly used libraries for
CCM. Eg., LAPACK, ScaLAPACK, and FFT libraries. It
should be emphasized that all parallel tools and libraries that
use the Cray custom MPICH2 libraries for ESM do not work
under CCM. However, all serial and threaded libraries built
for ESM can still be used under CCM with caution. Eg., we
have found that the ACML libraries built for ESM work fine
under CCM, and so do the serial FFTW libraries. In addition
to borrowing the libraries from ESM, we have also installed
ScaLAPACK, and have made MKL available under CCM.
To allow debugging and profiling under CCM, we have also
provided DDT and the profiling tool IPM. Lastly we have
also made MATLAB available under CCM in order to allow
interactive data analysis under CCM. Since CCM allows
“out-of-the-box” execution, some of the modules mentioned
above, eg., MKL, DDT, and MATLAB, are simply pointers
to the Carver (Intel Nehalem) builds which reside in a
common file system which can be accessed from Hopper.
This has saved the support staff’s effort significantly from
building all the commonly used libraries and tools for CCM
separately. In principle, all the libraries, tools and
applications built on Carver should run “out-of-the-box”
under Hopper CCM (with a slight performance decrease at
worst).

B. Running jobs under CCM and CCM runtime
environment management
As mentioned earlier, CCM is implemented as a queue

on Hopper. Therefore, users need to submit jobs to the
ccm_queue to access CCM. Instead of using the ALPS job
launcher aprun, CCM jobs are launched using the “ccmrun”
[10] command. The ccmrun command places a single
instance of the execution commands to the head node of the
allocated compute nodes (hereafter, we will call the nodes
allocated and configured for CCM jobs as CCM nodes), and
then the head node is responsible for launching the
executables to the rest of the CCM nodes (remote CCM
nodes hereafter) through whatever mechanisms used by the
execution commands, eg., mpirun (ssh). There is another

command “ccmlogin” [10] which allows the interactive
access to the CCM nodes.

Fig. 1 illustrates how to run a CCM job on Hopper. The
job lands on a MOM node as an ESM job would do. Notice a
binary built for ESM can still run via aprun under the
ccm_queue, but may incur a slight performance loss due to
the system overhead from additional environment set for
CCM. (However, for small concurrency jobs up to 288
cores, we haven’t observe any obvious performance
slowdown). In Fig. 1, the ccmrun command places the
execution command

“/usr/common/usg/openmpi/1.4.5/pgi/bin/mpirun –np 2 –
bynode –hostfile $PBS_NODEFILE hostname” on to the
CCM head node, and then the mpirun command is invoked
on the head node launching the executable “hostname” on
the rest of the CCM nodes using ssh. The second part in Fig.
1 shows how to use the ccmlogin command to login to the
CCM head node and then ssh to another CCM node that was
allocated to the same job. Where the –V option passes
environment on the mom node to the CCM nodes.

Please note the lengthy mpirun command line. Because
Cray does not support the native torque launch mechanisms,
the OpenMPI library has to be compiled without the batch
system awareness (configured with --tm=disable). Therefore
the mpirun command from OpenMPI cannot make use of the

torque job launch mechanisms, users need to pass the
runtime environment to the remote CCM nodes using other
options available. Note for CCM jobs, the file
$PBS_NODEFILE contains the CCM nodes allocated to the
job instead of the MOM node as for an ESM job.

There are a few ways to pass the environment to the
CCM nodes. The most reliable method is to add the
environment variables to the shell start up files, eg.,
.bashrc.ext and .cshrc.ext (.ext is a NERSC convention, the
.bashrc and .cshrc files are reserved for the system wide
settings). These are the files that get sourced by the remote
ssh execution. For jobs launching through mpirun, the
runtime environment variables can be stored in the
~/.ssh/environment file which the mpirun command sources.
Another way of passing environment variables is to use the
mpirun’s command line option –x and use the absolute path
to the OpenMPI installation (or equivalently use the –prefix
option). It should be emphasized that one should use the
~/.ssh/environment file with caution when running multiple
jobs at the same time, because different jobs may overwrite
the ~/.ssh/environment file by each other, and may cause
unexpected results. In addition, the leftover
~/.ssh/environment file from a previous job may interfere
with next job which does not intend to use
~/.ssh/environment file to pass environment.

Figure 1. This figure illustrates the use of the command “ccmrun” to launch CCM jobs to compute nodes and the use of the command “ccmlogin” to login into

compute nodes.

Managing CCM runtime can be tricky and inconvenient,
especially when users need to run several executables
simultaneously, which require the conflicting runtime
environments.

The following are a few sample job scripts to run
various jobs under CCM on Hopper. The job scripts 1) and
2) assume the openmpi_ccm module has been loaded in the
user’s shell start up file .bashrc.ext, otherwise the mpirun
command should be replaced with, eg., mpirun –prefix
/usr/common/usg/openmpi/default/pgi.

1) Sample job script to run an MPI job

#!/bin/bash -l
#PBS -N test_ccm
#PBS -q ccm_queue
#PBS -l mppwidth=48,walltime=00:45:00
#PBS -j oe

cd $PBS_O_WORKDIR
module load ccm

export CRAY_ROOTFS=DSL
mpicc xthi.c
ccmrun mpirun -np 48 -hostfile $PBS_NODEFILE
./a.out

2) Sample job script to run an MPI+OpenMP job

#!/bin/bash -l
#PBS -N test_ccm
#PBS -q ccm_queue
#PBS -l mppwidth=48,walltime=45:00
#PBS -j oe

cd $PBS_O_WORKDIR

module load ccm
export CRAY_ROOTFS=DSL

mpicc -mp xthi.c
export OMP_NUM_THREADS=6

ccmrun mpirun -np 8 -cpus-per-proc 6 -bind-to-core
-hostfile $PBS_NODEFILE –x
OMP_NUM_THREADS ./a.out

3) Sample job script to run an Gaussian job

#PBS -S /bin/tcsh
#PBS -N ccm_g09
#PBS -q ccm_queue
#PBS -l mppwidth=48,walltime=24:00:00
#PBS -j oe

module load ccm
setenv CRAY_ROOTFS DSL

set input=myinput
set output=myoutput.$PBS_JOBID
module load g09

mkdir -p $SCRATCH/g09/$PBS_JOBID
cd $SCRATCH/g09/$PBS_JOBID
ccmrun g09l < $PBS_O_WORKDIR/$input >
$PBS_O_WORKDIR/$output

where the script g09l is as follows:
% cat g09l
#!/bin/csh
setenv GAUSS_EXEDIR
/usr/common/usg/g09/c1/g09/linda-
exe:$GAUSS_EXEDIR
set nodelist="'""`cat $PBS_NODEFILE | sort -u`""'"
setenv GAUSS_LFLAGS "-vv +getload +kaon -
delay 500 -wait 1200 -workerwait 1800 -mp 24 -
nodelist $nodelist"
setenv GAUSS_SCRDIR `pwd`
g09 $argv

4) Sample job script to run multiple serial jobs on a

single node
#!/bin/bash -l
#PBS -q ccm_queue
#PBS -l mppwidth=24
#PBS –l walltime=1:00:00

cd $PBS_O_WORKDIR
module load ccm
export CRAY_ROOTFS=DSL

ccmrun multiple_serial_jobs.sh

Where the script, multiple_serial_jobs.sh, looks like this:

% cat multiple_serial_jobs.sh
./a1.out &
./a2.out &
…
./a24.out &
wait

Note: The ccmrun wraps the aprun command. One can not
launch multiple ccmrun commands on to the same CCM
node, therefore the multiple serial binaries have to be
launched inside the script multiple_serial_jobs.sh

III. APPLICATIONS THAT CCM EANBLES ON HOPPER

CCM enables applications on Hopper that could only
run on Carver previously. In this section, we will compare
the performance of three application codes under Hopper
CCM with that on Carver. In fact, it is difficult to do any

fair comparison between Carver and Hopper, as two systems
are different in every aspect that account for the code
performance. However, our focus is to see if the
performance of CCM is sufficient to give our users the
incentive to migrate to Hopper, so we tried to choose the
common practice of our users on two systems and compared
the runtime of the codes between two systems. Eg., Carver
users run jobs under a GPFS global scratch file system,
while Hopper users run their jobs on the local scratch Luster
file system which has a much better performance over the
Carver global scratch file system. More detailed
descriptions about the two machines are as follows.

Hopper, a Cray XE6, has a peak performance of 1.28
Petaflops/sec. Hopper consists of 6,384 compute nodes
made up of two twelve-core AMD 'MagnyCours' 2.1 GHz
processors. Each node has 24 cores, and two sockets. Each
socket contains a Multichip Module with two six-core
processors. Thus each node essentially is a four-chip node,
and there are large NUMA penalties for crossing the chip
boundaries. The majority (6,008) of the nodes have 32 GB
DDR3 1.33 GHz memory per node, which is 1.33 GB per
core. Hopper compute nodes are connected via the Gemini
interconnect via a 3D-torus.

Carver, a liquid-cooled IBM iDataPlex system, has
1,202 compute nodes (9,984 processor cores). This
represents a theoretical peak performance of 106.5
Teraflops/sec. All nodes are interconnected by 4X QDR
InfiniBand technology, providing 32 Gb/s of point-to-point
bandwidth for high-performance message passing and I/O.
Note that the above node count includes hardware that is
dedicated to various strategic projects and experimental
testbeds (e.g., Hadoop). As such, not all 1,202 nodes will
be available to all users at all times.

A. Gausssian 2009
Gaussian code (G09) [2] is a computational chemistry

code that is one of the most widely used codes at NERSC
(rank #23 in 2011). In 2011, it used 1% of total computing
cycles [11] at NERSC even though it is usually run at an
extremely small scale. We have 314 registered users, and
132 active users who run G09 jobs regularly. G09 consists of
many component executables called Links, and the code is
parallelized in the master/slave mode. G09 Links are
parallelized with OpenMP threads intra-node and with ssh
between nodes through the Linda [2] parallel library. While
the most of the Links run on multiple nodes, some of them
do not, therefore the code does not scale well to the number
of processor cores. Most of the G09 jobs run at NERSC are
long running jobs using a few nodes. Since Hopper does not
support ssh between the compute nodes, G09 could not run
on Hopper in the past. Now with CCM, G09 can run on
Hopper.

Fig. 2 shows the performance comparison of G09 under
CCM on Grace (the Hopper development machine) and on
Carver. CCM was made available on Grace last September,
and the results shown here are the G09 performance numbers

under CCM on Grace. As we have mentioned, G09 consists
of many component Links. Fig. 2 shows the sum of the
runtime of 3 main component Links in a UHF calculation at
two different core counts, 24 and 48, at which our G09 users
most like to run their jobs. One can see that G09 runs at
around half of the speed (100% slowdown) under CCM on
Grace than that on Carver. The performance slowdown is
more than what the slower processor speed can account for,
which is around 30%. The lack of the process/memory
affinity control over ssh could be an important cause of this
performance slowdown. This is not CCM specific issue. The
same problem exists for Carver as well, however we expect a
lower performance hit by this on Carver as it has fewer
number of NUMA domains (2 vs Hopper’s 4). We ran 24
OpenMP threads per task on each node, instead of the
optimal thread/task ratio (6/1) to mitigate the NUMA effects
on Hopper (Grace).

Figure 2. G09 performance comparison (per core basis) between Grace
(Hopper’s development machine) CCM and Carver. In the figure, the
stacked bars show the sum of the runtime spent on the three most time
consuming component executables (Links) in a UHF calculation in G09
that run on mulitple nodes (Linda parallelized). G09 were run with 24 and
8 threads per node on Grace and Carver, repectively. The test case (a
NERSC user case) contains 61 atoms and 919 number of basis functions.

Figure 3. The same as in Fig. 2, but the comparison was done per node
basis.

Fig. 3 shows the performance comparison on a per node
basis. When 1 node is used, G09 is ~24% faster under Grace
CCM than Carver. However, when the number of nodes
increases, G09 slows down, and eventually becomes slower
than that on Carver, even with 3 times more cores than
Carver.

B. NAMD Replica Simulations
NAMD is a classical molecular dynamics code, and it is

one of the most widely used codes at NERSC as well. It was
ranked the #8 code at NERSC in 2011, and consumed 2.4%
of total computing cycles in 2011. We have around 70 active
users at NERSC. While the main code works on Hopper, its
replica exchange jobs don’t run on Hopper. The replica
exchange simulation runs many similar job instances
(replica) independently at the same time, and occasionally
communicates between replicas through the socket
operations. Since the socket operations are not supported on
Hopper compute nodes, this job type could not run on
Hopper in the past. Now CCM enables this simulation on
Hopper as well.

Fig. 4 shows the performance comparison of NAMD
replica exchange simulations on Hopper CCM and Carver at
two different core counts, using a test case provided by a
NERSC user. 12 replicas were calculated simultaneously,
using 8 and 24 cores per replica, respectively. We run each
case 3 times both on Hopper and Carver, and used the
shortest run time in the figure.

Figure 4. NAMD replica performance comparision between Hopper CCM
and Carver. The figure shows that at two different core counts, the time
used in the first 1000 MD step in this test case with a 95K atom system (a
user case). In both cases, 12 replica jobs run at the same time, at 96 cores, 8
cores per replica (job instance) were used; while at 288 cores, 24 cores per
replica were used.

The NAMD replica jobs run around 14% slower on
Hopper CCM than on Carver when 8 cores are used per
replica, but they run around 10% faster than on Carver when
24 cores used per replica. This could be the result of the
slower file system on Carver, as the code writes many small
files during the runs. Since the performance depends on how
many cores used per replica, we tested the parallel scaling of

the pure NAMD code under Hopper CCM and on Carver
using a standard benchmark ApoA1 (92K atoms, PME), and
showed the results in Fig. 5 and 6 with two different formats.
And for reference we also provided the performance
numbers for Hopper ESM. In Fig. 6, in the standard
benchmark format of NAMD, the flatter the line is the better
in parallel scaling.

One can see that NAMD scales fine up to 144 cores
under CCM and has a significant scaling drop at 288 cores
while Carver and Hopper ESM continue to scale up.
Although CCM does not scale as well as Hopper ESM and
Carver, it scales sufficiently to allow each replica to use up
to 144 cores (for this ~92K atom system). Given the large
capacity of Hopper, many more NAMD replicas can run
simultaneously, with many more cores per replica, which
will bring greater productivity for users.

Figure 5. NAMD 2.8 parallel scaling comparison between Hopper CCM,
and Carver (Hopper ESM results are also included for reference). The
standard ApoA1benchmark (92K atoms, PME) was used.

Figure 6. NAMD 2.8 parallel scaling comparison between Hopper CCM,
and Carver (Hopper ESM results are also included for reference). The
standard ApoA1benchmark (92K atoms, PME) was used.

C. WIEN2k
WIEN2k [4] is an ab-initio electronic structure

calculation code based on Density Functional Theory. It
consists of many component executables connected by shell
scripts. It has two layers of the parallel implementation, the
k-point and the fine grid parallelization. The former is
realized by using ssh and file IO, and the latter is
implemented with MPI. WIEN2k is often used for small
systems with many k-points, which requires launching
multiple job instances (serial or small concurrency parallel
executables) on to the same remote node simultaneously
using ssh. Since the Cray job placement scheduler, ALPS,
does not allow multiple processes to share a single node,
WIEN2k could not run on Hopper previously. Even if one
can, in principle, replace the ssh command in the WIEN2k
scripts with the “aprun –n 1 … &” command to make the k-
point parallel execution work on Hopper, it would have to
waste most of the 24 available cores. Cray task farmers [12]
could be helpful in some cases, but in this specific case the
task farmer may not be applicable easily, as the code uses
scripts for its complex workflow management including
launching parallel binaries from time to time. With the CCM,
now WIEN2k runs fine on Hopper as it does on any generic
Linux Cluster.

Fig. 7 shows the run time comparison between CCM on
Hopper and Carver with a user provided test case. In this
case 12 cores were used for each k-point calculation, and 7
k-points were simulated at the same time at the 84 core run,
while at 252 core run, all 21 k-points simulated at the same
time. The WIEN2k code shows a nice parallel scaling over
k-point parallel under both Hopper CCM and Carver (there
are very limited communications between different k-points).
We can see that at 84 core counts, Hopper CCM is around
90% slower than Carver, however at 252 core counts,
Hopper CCM is slower by ~30%. This encourages users to
use more cores to shorten the time to solution. Again, we see

Figure 7. WIEN2k performance comparison between Hopper CCM and
Carver. The figure shows that at two different core counts, the time spent
in the first cyle of the self consistent electronic step for a mixed k-point
(uses ssh) and fine grained parallel (uses MPI) execution. The test system
(a user case) has 25 atoms (GaN) and 21 kpoints. Each k-point calculation
used 12 cores, therefore 7 kpoints were calucated simultaneously at 84
cores, and at 252 cores, 21 kpoints were calculated at the same time.

that if Carver WIEN2k users migrate to Hopper, then they
can get benefit from Hopper’s larger capacity. On Carver
252 core jobs have to wait much longer time to get started.

IV. PERFORMANCE OF CCM

A. NERSC Benchmark Applications
In order to obtain some baseline performance numbers of

CCM, we selected four application benchmarks (Table 1)
used for the NERSC-6 (Hopper) procurement and run them
under both CCM and ESM. The input files were adjusted to
fit into the size of the Hopper test machine Grace.

The benchmark code MILC represents part of a set of
codes written by the MIMD Lattice Computation (MILC)
[12] collaboration used to study Quantum Chromodynamics
(QCD), the theory of the strong interactions of subatomic
physics. IMPACT-T (Integrated Map and Particle
Accelerator Tracking-Time) [13] is a parallel, three-

TABLE I. NERSC-6 BENCHMARK APPLICATIONS

Benchmark Science
Area

Algorithm Compiler
Used

Concurrency
Tested

Libraries

MILC Lattice
Gauge

Conjugate
Gradient,

Sparse
Matrix,

FFT

GNU 64, 256, 512,
1024

ImpactT Accelerator
Physics

PIC, FFT PGI 64, 256 FFTW

Paratec Material
Science

DFT, FFT,
BLAS3

PGI/Intel 64, 256 Scalapack,
FFTW

GTC* Fusion PIC, Finite
Difference

PGI 64, 256, 512,
1024

* GTC uses weak scaling.

dimensional, quasi-static beam dynamics code used to study
dynamics in photoinjectors and RF linear accelerators. The
benchmark code PARATEC (PARAllel Total Energy Code)
[14] performs ab-initio quantum-mechanical total energy
calculations using pseudopotentials and a plane wave basis
set. And GTC [15] is a 3-dimensional code used to study
microturbulence in magnetically confined toroidal fusion
plasmas via the Particle-In-Cell (PIC) method.

Most applications were run with pure MPI. (GTC also
has some hybrid test results). Cray MPICH2 over Gemini
network is used for ESM and OpenMPI over TCP/IP is used
for CCM (with and without IAA).

B. Performance Comparison between CCM and ESM

Each of the four applications was run using pure MPI on
Hopper and the Hopper test system Grace where the CCM
without IAA was made available for the earlier tests. In this
section all Grace runs were done under CCM without IAA.

NERSC-6 benchmarks run time comparison with CCM
and ESM using 64 and 256 cores are shown for both Grace

(Fig. 8) and Hopper (Fig. 9). Among these four applications,
CCM/ESM run time ratio on Grace ranges between 1.02
times with GTC 64 cores to 2.32 times with MILC 256
cores. And CCM/ESM run time ratio on Hopper ranges
between 1.11 times with GTC 64 cores to 1.93 times with
MILC 256. The more MPI communications (MILC) an
application has, the more slow down of the CCM run time
compared to ESM. Also CCM slows down more with 256
cores than with 64 cores.

PGI compiler was used for ESM runs, and Intel compiler
was used for CCM runs due to segmentation fault with PGI
built executable. ImpactT failed to run at 256 cores with
CCM, using both PGI and Intel compilers, with an
“Unidentified node: Error detected by IBGNI” error
message, so Grace data was used for this data point. A
CrayPort bug 783658 has been filed.

NERSC-6 benchmarks scaling comparison between
CCM and ESM running with 64 and 256 cores are shown for
both Grace (Fig. 10) and Hopper (Fig. 11). N6 benchmarks
with 64 to 256 cores ranges from 1.38 to 3.47 with CCM on
Grace; and ranges from 1.77 to 3.73 with CCM on Hopper.

Figure 8. NERSC-6 benchmarks run time comparison between CCM and
ESM on Grace.

Figure 9. NERSC-6 benchmarks run time comparison between CCM and
ESM on Hopper. Paratec: PGI compiler was used for ESM runs, and Intel
compiler was used for CCM runs due to segmentation fault with PGI built
executable. ImpactT: it failed to run at 256 cores with CCM, so Grace data
was used for this data point.

ESM has better speedup than CCM, but CCM is not a lot
worse.

Some larger run results were also obtained for MILC
and GTC to see the run time performance and scalability of
CCM up to 1024 cores (Fig. 12 and 13). CCM runs for
these applications using 2048 cores hung (no progress, after
printing out “libibgni version RB-4.0UP02-4130-2011-11-
16-07:27”, then exit until walltime exceeded), although a
simple test of “MPI Hello World” completed within 1
minute.

MILC speedup from 64 to 1024 cores is 8.2 under CCM
while it is 11.6 under ESM (the ideal speed-up is 16). Here a
larger input size for MILC was used compared to the results
shown in Fig. 8 to Fig. 11. With the larger input size, a
greater speedup from 64 to 256 cores on Hopper CCM, 3.39,
is observed compared to the speed-up with the smaller input
size (1.77) due to the larger computation vs communication
ratio (the ideal speed-up is 4). However, the run time ratio of
CCM vs. ESM is still about the same, ranging from 1.83
with 64 cores to 2.6 with 1024 cores.

Figure 10. NERSC-6 benchmarks scaling comparison between CCM and
ESM on Grace.

Figure 11. NERSC-6 benchmarks scaling comparison between CCM and
ESM on Hopper. Paratec: PGI compiler was used for ESM runs, and Intel
compiler was used for CCM runs due to segmentation fault with PGI built
executable. ImpactT: it failed to run at 256 cores with CCM, so Grace data
was used for this data point.

Figure 12. NERSC-6 benchmarks run time comparison between CCM and
ESM on Hopper with larger core counts.

Figure 13. NERSC-6 benchmarks scaling comparison between CCM and
ESM on Hopper with larger core counts.

GTC speedup from 64 to 256 cores with ESM is 13, and
with CCM is 12.5. And the GTC CCM/ESM run time ratio
ranges from 1.16 with 64 cores to 1.27 with 1024 cores.
When the application has less communication need, its
scaling and run time of CCM better matches to those of
ESM.

C. Performance comemnts on MPI+OpenMP hybrid runs
 We also examined performance of hybrid MPI and
OpenMP runs with CCM using one of the NERSC-6
application benchmarks on Hopper. Fig. 14 shows the GTC
hybrid run using 192 total cores with various numbers of
OpenMP threads per MPI task.
 Both ESM and CCM have a sweet spot at 3 OpenMP
threads per MPI task. CCM results are almost identical with
ESM results due to minimal MPI communication needs of
GTC. Actual CCM/ESM run time ratio ranges from 1.01
times (24 threads) to 1.11 times (1 thread). The CCM
performance of hybrid MPI/OpenMP compared to ESM
does not have much difference with pure MPI.

Figure 14. NERSC-6 benchmarks scaling comparison between CCM and
ESM on Hopper with larger core counts.

To see more general hybrid code performance under
CCM, we did the performance tests under CCM using
Quauntum Espresso (QE) code [16], another DFT code, and
compared its results to ESM. Compared to GTC, the QE
code has a non-trivial MPI + OpenMP implementation. Fig.
15 shows the runtime when the number of threads per task
changes for a given number of total cores, 288. The test
system contains 112 atoms with two kpoints.

For the hybrid runs that were successful, CCM is around
6% (at threads 24) to 90% (at threads 1) slower than ESM.
The code runs fastest at threads=3 as we have seen from the
GTC hybrid runs.

Figure 15. Quantum Espresso MPI+OpenMPI hybrid Performance
comparison between CCM and ESM. The figure shows the time spent on
the first two self consitent elelctronic iterations when the number of threads
changes for the fixed total core counts 288. The test system (standard
bechmark AUSRUF112) conaining 112 Au atoms. The code failed under
CCM for the number of threads per task 2 and 12. The former failed with
segmentation fault, and the latter hung.

Figure 16. The same as Figure 13, but for a larger test system (standard
benchmark, CNT10POR8) containing 1532 atoms using 68 nodes/1632
cores in total. The code failed under CCM for the number of threads per
task 1, 2 and 12 with segmentation fault, hang or other errors (eg., libigni
error).

On the other hand, QE consistently failed at threads=2
(segmentation fault) and threads=12 (job hang).

We ran QE code with a larger benchmark test case, and
with more cores to see if the hybrid code runs at this scale or
not under CCM. Fig. 16 shows the results. From the hybrid
runs that were successful, the code runs fastest at threads=6
consistenly over the 3 repreated runs. Again, the code failed
or hang at threads number 1, 2 and 12.

V. CCM UTILIZATION AT NERSC
As mentioned in the introduction, CCM is of importance

to NERSC because it allows Hopper to accommodate our
diverse workload and resolve the long queue wait time on
Carver.

We started to test CCM on our Hopper test machine since
last September, and enabled it on Hopper in production on
Jan 18, 2012. We enabled G09, NAMD replica simulation
and WIEN2k codes on Hopper under CCM at the same time.
On 2/15/2012, we announced the G09 availability on Hopper
to our users. And we also contacted a NAMD replica user to
try out CCM. Since then there were 60 users (non-NERSC-
staff) have tried out the G09 on Hopper so far (4/11/2012).
Unfortunately, the users were discouraged by the
performance of CCM, most of them didn’t stay on running
g09 on Hopper after testing its performance. A couple of
users requested to increase the max wall limit in order to
make CCM to be useful for them. Nonetheless we
discovered that more than 13,500 jobs have been run under
the ccm_queue and more than 1.3 millions machine hours
spent on this queue so far, which is a strong indication of the
user need for CCM.

We noticed 3 users have been running NAMD replica
jobs regularly with up to 720 cores under CCM, using 12
cores per replica in the most cases. We also identified a few
users who need to run serial workloads on Hopper, and
recommended CCM to them. One of the use case was that

the user needed to run hundreds of serial jobs at the same
time, and in each serial job a few short running serial
binaries are executed in sequence thousands of times.
Unfortunately this job consistently made Hopper nodes
OOM, or hang depending on either regular or larger memory
nodes the jobs landed on. We opened 2 bugs with Cray.
Another use case was that a user code calls multiple
instances of G09 (16 instances of G09) at each iteration step,
and iterates hundreds of time. This user is still happily using
G09 on Hopper.

CCM helped to resolve one of our user reported bug on
Hopper. Intel Cilk Plus is a C/C++ extension for improving
performance on multi-core processors by spawning multiple
workers. XE6 compute nodes do not have the necessary
environment for creating Intel Cilk threads. CCM enables it
and shows good scaling results using recursive algorithm
(Fig. 17).

Figure 17. Scaling of matrix multiply with Cilk Plus on Hopper compute
nodes.

To promote the CCM usage, we raised the queue priority
of the ccm_queue, and also increased the wall time to 96
hours from Hopper native max wall time 48 hours. And to
accommodate the interactive workload, we created a new
queue ccm_int which has the same priority as the
debug/interactive queue. And meanwhile we made the
profiling tool IPM and the debugger DDT available under
CCM, and also made the Matlab available through CCM.
On 4/10/2012, we announced the CCM availability to all
NERSC users along with applications and tools available
through CCM.

We anticipate more CCM usage from g09 users due to
the queue configuration changes. Also we expect more
NAMD replica simulation jobs and WIEN2k jobs on
Hopper as we haven’t announced their availalbility before.
We have noticed increasing demands for MATLAB and
IDL, and we have recently doubled their license seats at
NERSC. Running MATLAB and IDL under CCM gives an
advantage of accessing and analyzing data locally without
needing to move files from Hopper to Carver/Euclid
(NERSC visualization machine), and will allow exclusive
access to the compute node memory. We also expect more
serial workloads including both cases of a signle user

running on multiple nodes and the multiple users running on
a single node, as NERSC has implemented the node sharing
between multiple userse under CCM [17]. We expect to
have MPMD jobs to run on Hopper without wasting any
cores due to aprun doesn’t allow node sharing between
processes. Probably we will attract some other TCP/IP users
who need more flexible workload control over their jobs.

The benefit of having CCM on Hopper is evident,
meanwhile we have also observing some issues with CCM
on Hopper. As we have discussed in some of the previous
secions, the slow performance of CCM is the main concern.
We understand that some performance issue is not specific
to CCM, eg., the slower process speed, also the lack of
process/memory affinity control over ssh and hence G09
jobs might suffer from NUMA penalty greatly, but some
performance issues we hope to be still addressable through
further imporvement of IAA and DSL. eg., NERSC-6
application benchmark run 10%-90% slower in CCM than
in ESM at 256 cores, depending on how heavy the MPI
communication is involved. We hope to see a close to ESM
performance for CCM jobs running at this scale. In addition,
we noticed the CCM jobs often run into various erros, eg.,
segmentation fault, OOM, libibgni error, and hang, and
more. Recently we also discovered that G09 performance
degredation when running over multiple nodes (Bug
783803), and also noticed X11 application only run on a
signle node (X11 applications do not launch if using the –V
options to get on to the head node, Bug 783903) Users need
a more reliable CCM to use it in their day to day production
computations. We have also seen the extra delays at job start
and exit, this is more apprarent when users try to run jobs
under CCM interactievely. In addtion, the run time
management could be nontrivial and inconvenient some
times, especially when one needs to run a few binaries that
require conflict runtime environment at the same time.

VI. CONCLUSIONS

CCM enables the applications that couldn’t run on

Hopper previously, which greatly extends the capability of
Hopper being able to accommodate more diverse workloads.
The G09, NAMD replica simulation and WIEN2k codes
have been enabled to run on Hopper with CCM. In addition,
CCM allows serial workloads to run on Hopper as well. This
helps NERSC users who have been limited by the lack of
TCP/IP services on Hopper compute nodes in the past to get
benefit from the larger capacity and the shorter queue wait
time of Hopper, which leads to greater scientific
productivity. The dynamic queue implementation of CCM
not only allows the system to accommodate as large as the
whole machine capacity of CCM workloads, but also to

assure no computing resource waste when the CCM demand
is low at times.

However, the slow performance of CCM has been
discouraging users from using it currently. In addition, CCM
jobs often hang or run into errors, this is another limiting
factor of its utilization in production runs. Since CCM is still
in its early developmental stage, we expect that more
performing and reliable CCM that will be embraced by
NERSC TCP/IP users will be on its way. Our vision is that
CCM will be a fantastic feature on a HPC computer with
faster processor cores and fewer NUMA domains so that it
will not only help accommodate diverse workloads, but also
bring higher user satisfaction with improved CCM
performance.

ACKNOWLEDGMENT
The authors would like to thank NERSC users who

provided the test cases for G09, NAMD, and WIEN2K. The
authors also thank Gary Lowell, Randell Palmer and Tara
Fly at Cray, Inc for their technical support and help, and
also Tina Butler, Nick Wright, Jay Srinivasan, Jack
Deslippe and other NERSC staff for their support and useful
discussions. This work was supported by the ASCR Office
in the DOE, Office of Science, under contract number DE-
AC02-05CH11231. It used the resources of National Energy
Research Scientific Computing Center (NERSC).

REFERENCES
[1] http://www.nersc.gov/users/computational-systems/hopper
[2] http://www.gaussian.com
[3] http://www.ks.uiuc.edu/Research/namd
[4] http://www.wien2k.at
[5] http://www.nersc.gov/users/computational-systems/carver
[6] https://www.nersc.gov/users/job-information/usage-reports/jobs-

summary-statistics/
[7] CLE4.0 release overview: (June 2011)
[8] http://www.slideshare.net/jefflarkin/hpcmpug2011-cray-tutorial,

P173-P189.
[9] Tara Fly, David Henseler and John Navitsky, Case Studies Deploying

Cluster Compatibility Mode, CUG 2012, 4/29-5/3/2012, Stuttgart
Germany.

[10] Man pages of ccmrun and ccmlogin commands
[11] Francesca Verdier, 2011 AY code ananlysis, NERSC interanal

communication
[12] MILC: http://www.physics.indiana.edu/~sg/milc.html
[13] ImpactT: http://amac.lbl.gov/~jiqiang/IMPACT-T/
[14] Paratec: http://www.nersc.gov/projects/paratec/
[15] GTC: http://w3.pppl.gov/theory/proj_gksim.html/
[16] http://www.quantum-espresso.org
[17] Richard S. Canon, Jay Srinivasan and Lavanya Ramakrishnan, My

Cray can do that? Supporting Diverse workloads on the Cray XE-6,
CUG 2012, 4/29-5/3/2012, Stuttgart Germany.

