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Abstract— Cluster Compatibility Mode (CCM) is a Cray 
software solution that provides services needed to run most 
cluster-based independent software vendor (ISV) applications 
on the Cray XE6. CCM is of importance to NERSC because it 
can enable user applications that require the TCP/IP support, 
which are important parts of NERSC workloads, on NERSC's 
Cray XE6 machine Hopper. Gaussian and NAMD replica 
exchange simulations are two important application examples 
that cannot run on Hopper without CCM. In this paper, we 
will present our CCM performance evaluation results on 
Hopper, and will present how CCM has been explored and 
utilized at NERSC. We will also discuss the benefits and issues 
of enabling CCM on the petascale production Hopper system. 
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I.  INTRODUCTION  
NERSC as a primary production computing facility of 

Department of Energy Offices of Science supports a diverse 
workload. More than 5,000 users from all major science 
fields utilize the computing resources at NERSC and more 
than 500 code instances run on NERSC machines regularly. 
NERSC’s Peta-flop Cray XE6 system, Hopper [1], is the 
main work horse to support these computational needs. 
While most of the NERSC users can conduct their day to day 
scientific computations on Hopper and get benefits from its 
extreme scalability and its large capacity (with 153,216 
compute cores, 217 TB of memory and 2PB of disk), some 
of our users can not use Hopper because their codes use the 
TCP/IP services that are not supported in the native Hopper 
computing environment. Eg., Gaussian [2], and NAMD [3] 
replica exchange simulations are two important examples of 
the codes that can not run on Hopper native environment. In 
addition, the Cray’s Application Level Placement Scheduler 
(ALPS) deployed on Hopper does not allow multiple 
processes to be launched on a single node, therefore some 
applications that need to launch multiple serial executables 
or multiple parallel executables (each running on a couple 
cores) on a single node can not run on Hopper without 
wasting most of the available cores on the node. WIEN2k 
[4], which is another widely used application at NERSC, is 
such an example, and has been excluded from running on 
Hopper due to this constraint. Currently these users who can 
not run their applications on Hopper have to run their jobs on 
NERSC’s other machine Carver [5], an IBM iDataPlex Intel 
Nehalem based InfiniBand Linux cluster, which has a much 
smaller computing capacity (9,984 cores) compared to 
Hopper. As a result, they have to wait a few times longer to 

get to run their jobs on Carver. Eg., for the three month time 
period from 7/1/2011-10/1/2011, the average queue wait 
time for jobs requesting 3 nodes and 36 hours on Carver, 
which is the scale that average Gaussian jobs run at, is 
around four times longer than that on Hopper [6]. Of course, 
some users may run their jobs on Carver for other reasons. 
Eg., Carver processor cores have a much faster clock speed, 
2.7GHz vs Hopper’s 2.1GHz, which is an important factor 
for small concurrency jobs. In addition, Carver has more 
memory and queue options for small concurrency long 
running jobs. However, if we can migrate the TCP/IP 
workload on Carver to Hopper, then both the migrated and 
remaining users will get benefit from a shorter queue 
turnaround which results in greater scientific productivity 
directly. 

The Cray Cluster Compatibility Mode (CCM) is a Cray 
software solution that provides the services needed to run 
most cluster-based independent software vendor (ISV) 
applications on the Cray XE6 [7-9]. It supports the standard 
Linux services, such as ssh, rsh, nscd, and ldap, and it 
provides complete root file systems on the compute nodes 
through the Dynamic Shared Library (DSL) environment 
using Data Virtualization Service (DVS). MPI runs over 
TCP/IP and the High Speed Network (HSN). CCM is 
implemented as a queue that coexists with other queues for 
the native environment on the system (hereafter we will use 
Extreme Scalability Mode (ESM) to refer to the native 
computing environment as contrast to CCM), meaning that 
CCM dynamically allocates and configures the compute 
nodes at job start, and releases those compute nodes to the 
main computing pool upon job exit to be ready for the next 
job, either an ESM or a CCM job. Therefore it does not 
require a static partition of the Hopper system, which is one 
of the most appealing features of CCM. The system can 
accommodate large CCM workloads up to the whole 
machine capacity and meanwhile avoid the resource waste 
when the CCM workload is low over the time.  

The Cray CCM is a new feature recently enabled on our 
production Hopper system on Jan 18, 2012 with the 
Compute Linux Environment (CLE) upgrade to CLE4.. We 
have been testing this feature on Hopper’s development 
machine Grace (288 cores) since it was made available on 
Grace last September. We have tested the CCM with 
TCP/IP support in CLE3 (CCM1) and the CCM with ISV 
Application Acceleration (IAA) in CLE4 (CCM2), which 
utilizes the OFED interconnect protocol over Gemini High 
Speed Network and therefore should improve performance 
over CCM1. The performance data we will present are 



mostly for CCM2, and we will use the word CCM in the 
place of CCM2 in our discussion unless CCM1 needs to be 
mentioned explicitly. In this paper, we will present our 
performance evaluation results of CCM and how CCM is 
utilized at NERSC. The paper is organized as follows. After 
the introduction, we will give an overview on the CCM, 
focusing on how to use it under NERSC customization in 
Section 2. In Section 3, we will discuss three applications 
that use the TCP/IP services and that CCM has enabled on 
Hopper.  We will compare the performance of the 
applications on Carver and Hopper with CCM an analayze 
whether performance is sufficient to encourage Carver 
TCP/IP users to migrate to Hopper CCM. To further 
evaluate the baseline CCM performance, we conducted the 
performance tests using a few selected NERSC application 
benchmarks.  This work will be covered in Section 4. In 
Section 5, we will discuss how CCM is utilized at NERSC, 
and benefits and issues we have been observing with CCM 
on Hopper, followed by the Conclusions at the end. 

 

II. CLUSTER COMPATIBILITY MODE ON HOPPER 
Cray intends to provide CCM as an execution 

environment rather than a development environment. 
Therefore there is no programming environment support for 
CCM as there is with ESM from Cray. One can compile 
codes on any other x86_64 platforms, and then run them 
“out-of-the-box” under Hopper CCM. However, one can 
compile codes for CCM on Hopper as well without needing 
to depend on other platforms to compile codes. CCM can be 
an environment where the users can compile, run, debug, 
and profile, and also do data analysis by running 
visualization tools. Since CCM is open to client site 
customization, what we describe here is our deployment of 
CCM on Hopper. For more general and complete 
information about CCM, we refer to Ref. [9].  

A. CCM Programming Environment  
All compilers available to Hopper ESM environment can 

be used to compile codes to run under CCM, namely, the 
PGI, GNU, Intel, Pathscale and Cray compilers. To compile 
MPI codes, users have to link the codes to the third party 
MPI libraries because the Cray custom MPICH2 libraries for 
ESM (xt-mpich2 modules) don't work under CCM. We have 
installed the OpenMPI libraries for CCM (as modules). Users 
compile codes using either the native compiler calls, eg., 
pgif90, pgcc, pgCC, or the parallel compiler wrappers from 
OpenMPI, ie., mpif90, mpicc and mpiCC for Fortran, C, and 
C++ codes, respectively. In contrast to ESM where all 
binaries are linked statically by default, the executables built 
for CCM is linked dynamically by default as one would 
normally expect on a generic Linux cluster. In fact, the 
OpenMPI runs over ISV Application Acceleration software 
layer which utilizes the OFED software stack that is 
available only as shared libraries on Hopper, so MPI codes 
indeed have to be built dynamically to get the performance 

boost offered by the IAA.  Currently we have provided the 
OpenMPI library builds using the PGI, GNU, Intel and 
Pathscale compilers on Hopper, but have not been successful 
building them with the Cray compiler even with fair amount 
of staff effort. Cray compiler appears to be difficult to use 
under CCM. Since there is no programming modules defined 
specifically for CCM, to switch programming environment 
from one to another, we still use the PrgEnv modules of 
ESM, eg., do module swap PrgEnv-pgi PrgEnv-gnu to switch 
to the GNU programming environment. We used the 
environment variable PE_ENV defined in the ESM PrgEnv 
modules in our OpenMPI modulefiles to avoid a separate 
openmpi module for each compiler. However, most of the 
software contained in the ESM PrgEnv modules are not 
relevant to the CCM environment, users can unload them by 
choice. Users can compile codes either on Hopper login 
nodes or MOM nodes.  

We have provided the most commonly used libraries for 
CCM. Eg., LAPACK, ScaLAPACK, and FFT libraries. It 
should be emphasized that all parallel tools and libraries that 
use the Cray custom MPICH2 libraries for ESM do not work 
under CCM. However, all serial and threaded libraries built 
for ESM can still be used under CCM with caution. Eg., we 
have found that the ACML libraries built for ESM work fine 
under CCM, and so do the serial FFTW libraries. In addition 
to borrowing the libraries from ESM, we have also installed 
ScaLAPACK, and have made MKL available under CCM. 
To allow debugging and profiling under CCM, we have also 
provided DDT and the profiling tool IPM. Lastly we have 
also made MATLAB available under CCM in order to allow 
interactive data analysis under CCM. Since CCM allows 
“out-of-the-box” execution, some of the modules mentioned 
above, eg., MKL, DDT, and MATLAB, are simply pointers 
to the Carver (Intel Nehalem) builds which reside in a 
common file system which can be accessed from Hopper. 
This has saved the support staff’s effort significantly from 
building all the commonly used libraries and tools for CCM 
separately. In principle, all the libraries, tools and 
applications built on Carver should run “out-of-the-box” 
under Hopper CCM (with a slight performance decrease at 
worst). 

B. Running jobs under CCM and CCM runtime 
environment management 
As mentioned earlier, CCM is implemented as a queue 

on Hopper. Therefore, users need to submit jobs to the 
ccm_queue to access CCM. Instead of using the ALPS job 
launcher aprun, CCM jobs are launched using the “ccmrun” 
[10] command. The ccmrun command places a single 
instance of the execution commands to the head node of the 
allocated compute nodes (hereafter, we will call the nodes 
allocated and configured for CCM jobs as CCM nodes), and 
then the head node is responsible for launching the 
executables to the rest of the CCM nodes (remote CCM 
nodes hereafter) through whatever mechanisms used by the 
execution commands, eg., mpirun (ssh). There is another 



command “ccmlogin” [10] which allows the interactive 
access to the CCM nodes.  

Fig. 1 illustrates how to run a CCM job on Hopper. The 
job lands on a MOM node as an ESM job would do. Notice a 
binary built for ESM can still run via aprun under the 
ccm_queue, but may incur a slight performance loss due to 
the system overhead from additional environment set for 
CCM.  (However, for small concurrency jobs up to 288 
cores, we haven’t observe any obvious performance 
slowdown).  In Fig. 1, the ccmrun command places the 
execution command  

“/usr/common/usg/openmpi/1.4.5/pgi/bin/mpirun –np 2 –
bynode –hostfile $PBS_NODEFILE hostname” on to the 
CCM head node, and then the mpirun command is invoked 
on the head node launching the executable “hostname” on 
the rest of the CCM nodes using ssh. The second part in Fig. 
1 shows how to use the ccmlogin command to login to the 
CCM head node and then ssh to another CCM node that was 
allocated to the same job.  Where the –V option passes 
environment on the mom node to the CCM nodes. 

Please note the lengthy mpirun command line. Because 
Cray does not support the native torque launch mechanisms, 
the OpenMPI library has to be compiled without the batch 
system awareness (configured with --tm=disable). Therefore 
the mpirun command from OpenMPI cannot make use of the 

torque job launch mechanisms, users need to pass the 
runtime environment to the remote CCM nodes using other 
options available. Note for CCM jobs, the file 
$PBS_NODEFILE contains the CCM nodes allocated to the 
job instead of the MOM node as for an ESM job. 

There are a few ways to pass the environment to the 
CCM nodes. The most reliable method is to add the 
environment variables to the shell start up files, eg., 
.bashrc.ext and .cshrc.ext (.ext is a NERSC convention, the  
.bashrc and .cshrc files are reserved for the system wide 
settings). These are the files that get sourced by the remote 
ssh execution. For jobs launching through mpirun, the 
runtime environment variables can be stored in the 
~/.ssh/environment file which the mpirun command sources.  
Another way of passing environment variables is to use the 
mpirun’s command line option –x and use the absolute path 
to the OpenMPI installation (or equivalently use the –prefix 
option). It should be emphasized that one should use the 
~/.ssh/environment file with caution when running multiple 
jobs at the same time, because different jobs may overwrite 
the ~/.ssh/environment file by each other, and may cause 
unexpected results. In addition, the leftover 
~/.ssh/environment file from a previous job may interfere 
with next job which does not intend to use 
~/.ssh/environment file to pass environment.  

 
Figure 1. This figure illustrates the use of the command “ccmrun” to launch CCM jobs to compute nodes and the use of the command  “ccmlogin” to login into 

compute nodes.  

 



 
Managing CCM runtime can be tricky and inconvenient, 
especially when users need to run several executables 
simultaneously, which require the conflicting runtime 
environments. 

The following are a few sample job scripts to run 
various jobs under CCM on Hopper. The job scripts 1) and 
2) assume the openmpi_ccm module has been loaded in the 
user’s shell start up file .bashrc.ext, otherwise the mpirun 
command should be replaced with, eg.,  mpirun –prefix 
/usr/common/usg/openmpi/default/pgi. 

 
1) Sample job script to run an MPI job 

#!/bin/bash -l 
#PBS -N test_ccm 
#PBS -q ccm_queue 
#PBS -l mppwidth=48,walltime=00:45:00 
#PBS -j oe 
 
cd $PBS_O_WORKDIR 
module load ccm 
 
export CRAY_ROOTFS=DSL  
mpicc xthi.c 
ccmrun mpirun -np 48 -hostfile $PBS_NODEFILE 
./a.out 

 
2) Sample job script to run an MPI+OpenMP  job 

#!/bin/bash -l 
#PBS -N test_ccm 
#PBS -q ccm_queue 
#PBS -l mppwidth=48,walltime=45:00 
#PBS -j oe 
 
cd $PBS_O_WORKDIR 
 
module load ccm 
export CRAY_ROOTFS=DSL 
 
mpicc -mp xthi.c 
export OMP_NUM_THREADS=6 
 
ccmrun mpirun -np 8 -cpus-per-proc 6 -bind-to-core 
-hostfile $PBS_NODEFILE –x 
OMP_NUM_THREADS ./a.out 

 
3) Sample job script to run an Gaussian  job 

#PBS -S /bin/tcsh 
#PBS -N ccm_g09 
#PBS -q ccm_queue  
#PBS -l mppwidth=48,walltime=24:00:00 
#PBS -j oe 
 
module load ccm 
setenv CRAY_ROOTFS DSL 
 

set input=myinput 
set output=myoutput.$PBS_JOBID 
module load g09 
 
mkdir -p $SCRATCH/g09/$PBS_JOBID 
cd $SCRATCH/g09/$PBS_JOBID 
ccmrun g09l < $PBS_O_WORKDIR/$input > 
$PBS_O_WORKDIR/$output 
 

where the script g09l is as follows: 
% cat g09l 
#!/bin/csh 
setenv GAUSS_EXEDIR 
/usr/common/usg/g09/c1/g09/linda-
exe:$GAUSS_EXEDIR 
set nodelist="'""`cat $PBS_NODEFILE | sort -u`""'" 
setenv GAUSS_LFLAGS "-vv +getload +kaon -
delay 500 -wait 1200 -workerwait 1800 -mp 24 -
nodelist $nodelist" 
setenv GAUSS_SCRDIR `pwd` 
g09 $argv 

 
4) Sample job script to run multiple serial jobs on a 

single node 
#!/bin/bash -l 
#PBS -q ccm_queue 
#PBS -l mppwidth=24 
#PBS –l walltime=1:00:00 
 
cd $PBS_O_WORKDIR 
module load ccm 
export CRAY_ROOTFS=DSL 
 
ccmrun multiple_serial_jobs.sh 
 

Where the script, multiple_serial_jobs.sh, looks like this: 
 
% cat multiple_serial_jobs.sh 
./a1.out & 
./a2.out & 
… 
./a24.out & 
wait 
 

Note: The ccmrun wraps the aprun command.  One can not 
launch multiple ccmrun commands on to the same CCM 
node, therefore the multiple serial binaries have to be 
launched inside the script multiple_serial_jobs.sh 
 

III. APPLICATIONS THAT CCM EANBLES ON HOPPER 
 

CCM enables applications on Hopper that could only 
run on Carver previously. In this section, we will compare 
the performance of three application codes under Hopper 
CCM with that on Carver. In fact, it is difficult to do any 



fair comparison between Carver and Hopper, as two systems 
are different in every aspect that account for the code 
performance. However, our focus is to see if the 
performance of CCM is sufficient to give our users the 
incentive to migrate to Hopper, so we tried to choose the 
common practice of our users on two systems and compared 
the runtime of the codes between two systems. Eg., Carver 
users run jobs under a GPFS global scratch file system, 
while Hopper users run their jobs on the local scratch Luster 
file system which has a much better performance over the 
Carver global scratch file system. More detailed 
descriptions about the two machines are as follows. 

Hopper, a Cray XE6, has a peak performance of 1.28 
Petaflops/sec. Hopper consists of 6,384 compute nodes 
made up of two twelve-core AMD 'MagnyCours' 2.1 GHz 
processors. Each node has 24 cores, and two sockets. Each 
socket contains a Multichip Module with two six-core 
processors. Thus each node essentially is a four-chip node, 
and there are large NUMA penalties for crossing the chip 
boundaries. The majority (6,008) of the nodes have 32 GB 
DDR3 1.33 GHz memory per node, which is 1.33 GB per 
core. Hopper compute nodes are connected via the Gemini 
interconnect via a 3D-torus. 

Carver, a liquid-cooled IBM iDataPlex system, has 
1,202 compute nodes (9,984 processor cores).  This 
represents a theoretical peak performance of 106.5 
Teraflops/sec. All nodes are interconnected by 4X QDR 
InfiniBand technology, providing 32 Gb/s of point-to-point 
bandwidth for high-performance message passing and I/O. 
Note that the above node count includes hardware that is 
dedicated to various strategic projects and experimental 
testbeds (e.g., Hadoop).  As such, not all 1,202 nodes will 
be available to all users at all times. 
 

A. Gausssian 2009 
Gaussian code (G09) [2] is a computational chemistry 

code that is one of the most widely used codes at NERSC 
(rank #23 in 2011). In 2011, it used 1% of total computing 
cycles [11] at NERSC even though it is usually run at an 
extremely small scale. We have 314 registered users, and 
132 active users who run G09 jobs regularly. G09 consists of 
many component executables called Links, and the code is 
parallelized in the master/slave mode. G09 Links are 
parallelized with OpenMP threads intra-node and with ssh 
between nodes through the Linda [2] parallel library. While 
the most of the Links run on multiple nodes, some of them 
do not, therefore the code does not scale well to the number 
of processor cores. Most of the G09 jobs run at NERSC are 
long running jobs using a few nodes. Since Hopper does not 
support ssh between the compute nodes, G09 could not run 
on Hopper in the past. Now with CCM, G09 can run on 
Hopper.  

Fig. 2 shows the performance comparison of G09 under 
CCM on Grace (the Hopper development machine) and on 
Carver.  CCM was made available on Grace last September, 
and the results shown here are the G09 performance numbers 

under CCM on Grace. As we have mentioned, G09 consists 
of many component Links.  Fig. 2 shows the sum of the 
runtime of 3 main component Links in a UHF calculation at 
two different core counts, 24 and 48, at which our G09 users 
most like to run their jobs. One can see that G09 runs at 
around half of the speed (100% slowdown) under CCM on 
Grace than that on Carver. The performance slowdown is 
more than what the slower processor speed can account for, 
which is around 30%. The lack of the process/memory 
affinity control over ssh could be an important cause of this 
performance slowdown. This is not CCM specific issue. The 
same problem exists for Carver as well, however we expect a 
lower performance hit by this on Carver as it has fewer 
number of NUMA domains (2 vs Hopper’s 4). We ran 24 
OpenMP threads per task on each node, instead of the 
optimal thread/task ratio (6/1) to mitigate the NUMA effects 
on Hopper (Grace).  

 
 

 
 

Figure 2.  G09 performance comparison (per core basis) between Grace 
(Hopper’s development machine) CCM and Carver. In the figure, the 
stacked bars show the sum of the runtime spent on the three most time 
consuming component executables (Links) in a UHF calculation in G09 
that run on mulitple nodes (Linda parallelized). G09 were run with 24 and 
8 threads per node on Grace and Carver, repectively. The test case (a 
NERSC user case) contains 61 atoms and 919 number of basis functions.   

 

Figure 3.  The same as in Fig. 2, but the comparison was done per node 
basis. 



Fig. 3 shows the performance comparison on a per node 
basis. When 1 node is used, G09 is ~24% faster under Grace 
CCM than Carver. However, when the number of nodes 
increases, G09 slows down, and eventually becomes slower 
than that on Carver, even with 3 times more cores than 
Carver. 

B. NAMD Replica Simulations 
NAMD is a classical molecular dynamics code, and it is 

one of the most widely used codes at NERSC as well.  It was 
ranked the #8 code at NERSC in 2011, and consumed 2.4% 
of total computing cycles in 2011. We have around 70 active 
users at NERSC. While the main code works on Hopper, its 
replica exchange jobs don’t run on Hopper. The replica 
exchange simulation runs many similar job instances 
(replica) independently at the same time, and occasionally 
communicates between replicas through the socket 
operations.  Since the socket operations are not supported on 
Hopper compute nodes, this job type could not run on 
Hopper in the past. Now CCM enables this simulation on 
Hopper as well.  

Fig. 4 shows the performance comparison of NAMD 
replica exchange simulations on Hopper CCM and Carver at 
two different core counts, using a test case provided by a 
NERSC user. 12 replicas were calculated simultaneously, 
using 8 and 24 cores per replica, respectively. We run each 
case 3 times both on Hopper and Carver, and used the 
shortest run time in the figure.   

 
 

 
 

Figure 4.  NAMD replica performance comparision between Hopper CCM 
and Carver. The figure shows that at two different core counts, the time 
used in the first 1000 MD step in this test case with a 95K atom system (a 
user case). In both cases, 12 replica jobs run at the same time, at 96 cores, 8 
cores per replica (job instance) were used; while at 288 cores, 24 cores per 
replica were used.  

The NAMD replica jobs run around 14% slower on 
Hopper CCM than on Carver when 8 cores are used per 
replica, but they run around 10% faster than on Carver when 
24 cores used per replica. This could be the result of the 
slower file system on Carver, as the code writes many small 
files during the runs. Since the performance depends on how 
many cores used per replica, we tested the parallel scaling of 

the pure NAMD code under Hopper CCM and on Carver 
using a standard benchmark ApoA1 (92K atoms, PME), and 
showed the results in Fig. 5 and 6 with two different formats. 
And for reference we also provided the performance 
numbers for Hopper ESM. In Fig. 6, in the standard 
benchmark format of NAMD, the flatter the line is the better 
in parallel scaling.  

One can see that NAMD scales fine up to 144 cores 
under CCM and has a significant scaling drop at 288 cores 
while Carver and Hopper ESM continue to scale up. 
Although CCM does not scale as well as Hopper ESM and 
Carver, it scales sufficiently to allow each replica to use up 
to 144 cores (for this ~92K atom system). Given the large 
capacity of Hopper, many more NAMD replicas can run 
simultaneously, with many more cores per replica, which 
will bring greater productivity for users.   
 

 

 
 

Figure 5.  NAMD 2.8 parallel scaling comparison between Hopper CCM,  
and Carver (Hopper ESM results are also included for reference). The 
standard ApoA1benchmark (92K atoms, PME) was used.   

 

Figure 6.  NAMD 2.8 parallel scaling comparison between Hopper CCM,  
and Carver (Hopper ESM results are also included for reference). The 
standard ApoA1benchmark (92K atoms, PME) was used.   



C. WIEN2k 
WIEN2k [4] is an ab-initio electronic structure 

calculation code based on Density Functional Theory. It 
consists of many component executables connected by shell 
scripts. It has two layers of the parallel implementation, the 
k-point and the fine grid parallelization. The former is 
realized by using ssh and file IO, and the latter is 
implemented with MPI. WIEN2k is often used for small 
systems with many k-points, which requires launching 
multiple job instances (serial or small concurrency parallel 
executables) on to the same remote node simultaneously 
using ssh. Since the Cray job placement scheduler, ALPS, 
does not allow multiple processes to share a single node, 
WIEN2k could not run on Hopper previously. Even if one 
can, in principle, replace the ssh command in the WIEN2k 
scripts with the “aprun –n 1 … &” command to make the k-
point parallel execution work on Hopper, it would have to 
waste most of the 24 available cores. Cray task farmers [12 ] 
could be helpful in some cases, but in this specific case the 
task farmer may not be applicable easily, as the code uses 
scripts for its complex workflow management including 
launching parallel binaries from time to time. With the CCM, 
now WIEN2k runs fine on Hopper as it does on any generic 
Linux Cluster.  

Fig. 7 shows the run time comparison between CCM on 
Hopper and Carver with a user provided test case. In this 
case 12 cores were used for each k-point calculation, and 7 
k-points were simulated at the same time at the 84 core run, 
while at 252 core run, all 21 k-points simulated at the same 
time.  The WIEN2k code shows a nice parallel scaling over 
k-point parallel under both Hopper CCM and Carver (there 
are very limited communications between different k-points). 
We can see that at 84 core counts, Hopper CCM is around 
90% slower than Carver, however at 252 core counts, 
Hopper CCM is slower by ~30%. This encourages users to 
use more cores to shorten the time to solution. Again, we see  

 
 

 
 

Figure 7.  WIEN2k performance comparison between Hopper CCM and 
Carver. The figure shows that at two different core counts, the  time spent 
in the first cyle of the self consistent electronic step for a mixed k-point 
(uses ssh) and fine grained parallel (uses MPI) execution. The test system 
(a user case) has  25 atoms (GaN) and 21 kpoints. Each k-point calculation 
used 12 cores, therefore 7 kpoints were calucated simultaneously at 84 
cores, and at 252 cores, 21 kpoints were calculated at the same time.    

that if Carver WIEN2k users migrate to Hopper, then they 
can get benefit from Hopper’s larger capacity.  On Carver 
252 core jobs have to wait much longer time to get started. 

IV. PERFORMANCE OF CCM  

A. NERSC Benchmark Applications 
In order to obtain some baseline performance numbers of 

CCM, we selected four application benchmarks  (Table 1) 
used for the NERSC-6 (Hopper) procurement and run them 
under both CCM and ESM. The input files were adjusted to 
fit into the size of the Hopper test machine Grace.  

The benchmark code MILC represents part of a set of 
codes written by the MIMD Lattice Computation (MILC) 
[12] collaboration used to study Quantum Chromodynamics 
(QCD), the theory of the strong interactions of subatomic 
physics. IMPACT-T (Integrated Map and Particle 
Accelerator Tracking-Time) [13] is a parallel, three-  

 
 

TABLE I.  NERSC-6 BENCHMARK APPLICATIONS 

Benchmark Science 
Area 

Algorithm Compiler 
Used 

Concurrency 
Tested 

Libraries 

MILC Lattice 
Gauge 

Conjugate 
Gradient, 

Sparse 
Matrix, 

FFT 

GNU 64, 256, 512, 
1024 

 

ImpactT Accelerator 
Physics 

PIC, FFT PGI 64, 256 FFTW 

Paratec Material 
Science  

DFT, FFT, 
BLAS3 

PGI/Intel 64, 256 Scalapack, 
FFTW 

GTC* Fusion  PIC, Finite 
Difference 

PGI 64, 256, 512, 
1024 

 

* GTC uses weak scaling. 

dimensional, quasi-static beam dynamics code used to study 
dynamics in photoinjectors and RF linear accelerators. The 
benchmark code PARATEC (PARAllel Total Energy Code) 
[14] performs ab-initio quantum-mechanical total energy 
calculations using pseudopotentials and a plane wave basis 
set.  And GTC [15] is a 3-dimensional code used to study 
microturbulence in magnetically confined toroidal fusion 
plasmas via the Particle-In-Cell (PIC) method. 

Most applications were run with pure MPI. (GTC also 
has some hybrid test results). Cray MPICH2 over Gemini 
network is used for ESM and OpenMPI over TCP/IP is used 
for CCM (with and without IAA).  

 

B. Performance Comparison between CCM and ESM 
 

Each of the four applications was run using pure MPI on 
Hopper and the Hopper test system Grace where the CCM 
without IAA was made available for the earlier tests. In this 
section all Grace runs were done under CCM without IAA. 

NERSC-6 benchmarks run time comparison with CCM 
and ESM using 64 and 256 cores are shown for both Grace 



(Fig. 8) and Hopper (Fig. 9). Among these four applications, 
CCM/ESM run time ratio on Grace ranges between 1.02 
times with GTC 64 cores to 2.32 times with MILC 256 
cores. And CCM/ESM run time ratio on Hopper ranges 
between 1.11 times with GTC 64 cores to 1.93 times with 
MILC 256.  The more MPI communications (MILC) an 
application has, the more slow down of the CCM run time 
compared to ESM.  Also CCM slows down more with 256 
cores than with 64 cores. 

PGI compiler was used for ESM runs, and Intel compiler 
was used for CCM runs due to segmentation fault with PGI 
built executable. ImpactT failed to run at 256 cores with 
CCM, using both PGI and Intel compilers, with an 
“Unidentified node: Error detected by IBGNI” error 
message, so Grace data was used for this data point.  A 
CrayPort bug 783658 has been filed.  

NERSC-6 benchmarks scaling comparison between 
CCM and ESM running with 64 and 256 cores are shown for 
both Grace (Fig. 10) and Hopper (Fig. 11). N6 benchmarks 
with 64 to 256 cores ranges from 1.38 to 3.47 with CCM on 
Grace; and ranges from 1.77 to 3.73 with CCM on Hopper. 

 
   
 

       
Figure 8.  NERSC-6 benchmarks run time comparison between CCM and 
ESM on Grace. 

          

Figure 9.  NERSC-6 benchmarks run time comparison between CCM and 
ESM on Hopper.  Paratec: PGI compiler was used for ESM runs, and Intel 
compiler was used for CCM runs due to segmentation fault with PGI built 
executable. ImpactT: it failed to run at 256 cores with CCM, so Grace data 
was used for this data point.  

ESM has better speedup than CCM, but CCM is not a lot 
worse. 

Some larger run results were also obtained for MILC 
and GTC to see the run time performance and scalability of 
CCM up to 1024 cores (Fig. 12 and 13).  CCM runs for 
these applications using 2048 cores hung (no progress, after 
printing out “libibgni version RB-4.0UP02-4130-2011-11-
16-07:27”, then exit until walltime exceeded), although a 
simple test of “MPI Hello World” completed within 1 
minute. 

MILC speedup from 64 to 1024 cores is 8.2 under CCM 
while it is 11.6 under ESM (the ideal speed-up is 16).  Here a 
larger input size for MILC was used compared to the results 
shown in Fig. 8 to Fig. 11. With the larger input size, a 
greater speedup from 64 to 256 cores on Hopper CCM, 3.39, 
is observed compared to the speed-up with the smaller input 
size (1.77) due to the larger computation vs communication 
ratio (the ideal speed-up is 4). However, the run time ratio of 
CCM vs. ESM is still about the same, ranging from 1.83 
with 64 cores to 2.6 with 1024 cores.   

 

 
 

Figure 10.  NERSC-6 benchmarks scaling comparison between CCM and 
ESM on Grace.  

        

Figure 11.  NERSC-6 benchmarks scaling comparison between CCM and 
ESM on Hopper. Paratec: PGI compiler was used for ESM runs, and Intel 
compiler was used for CCM runs due to segmentation fault with PGI built 
executable. ImpactT: it failed to run at 256 cores with CCM, so Grace data 
was used for this data point.  



 

Figure 12.  NERSC-6 benchmarks run time comparison between CCM and 
ESM on Hopper with larger core counts. 

 

Figure 13.  NERSC-6 benchmarks scaling comparison between CCM and 
ESM on Hopper with larger core counts. 

GTC speedup from 64 to 256 cores with ESM is 13, and 
with CCM is 12.5. And the GTC CCM/ESM run time ratio 
ranges from 1.16 with 64 cores to 1.27 with 1024 cores. 
When the application has less communication need, its 
scaling and run time of CCM better matches to those of 
ESM.  
 

C. Performance comemnts on MPI+OpenMP hybrid runs 
    We also examined performance of hybrid MPI and 
OpenMP runs with CCM using one of the NERSC-6 
application benchmarks on Hopper. Fig. 14 shows the GTC 
hybrid run using 192 total cores with various numbers of 
OpenMP threads per MPI task.  
    Both ESM and CCM have a sweet spot at 3 OpenMP 
threads per MPI task. CCM results are almost identical with 
ESM results due to minimal MPI communication needs of 
GTC. Actual CCM/ESM run time ratio ranges from 1.01 
times (24 threads) to 1.11 times (1 thread). The CCM 
performance of hybrid MPI/OpenMP compared to ESM 
does not have much difference with pure MPI.  

 

 
 
Figure 14.  NERSC-6 benchmarks scaling comparison between CCM and 
ESM on Hopper with larger core counts. 

To see more general hybrid code performance under 
CCM, we did the performance tests under CCM using 
Quauntum Espresso (QE) code [16], another DFT code, and 
compared its results to ESM. Compared to GTC, the QE 
code has a non-trivial MPI + OpenMP implementation.  Fig. 
15 shows the runtime when the number of threads per task 
changes for a given number of total cores, 288. The test 
system contains 112 atoms with two kpoints.  

For the hybrid runs that were successful, CCM is around 
6% (at threads 24) to 90% (at threads 1) slower than ESM. 
The code runs fastest at threads=3 as we have seen from the 
GTC hybrid runs.  

 

 

Figure 15.  Quantum Espresso MPI+OpenMPI hybrid Performance 
comparison between CCM and ESM. The figure shows the time spent on 
the first two self consitent elelctronic iterations when the number of threads 
changes for the fixed total core counts 288. The test system (standard 
bechmark AUSRUF112) conaining 112 Au atoms. The code failed under 
CCM for the number of threads per task 2 and 12. The former failed with 
segmentation fault, and the latter hung.  



 

Figure 16.  The same as Figure 13, but for a larger test system (standard 
benchmark, CNT10POR8) containing 1532 atoms using 68 nodes/1632 
cores in total. The code failed under CCM for the number of threads per 
task 1, 2 and 12 with segmentation fault, hang or other errors (eg., libigni 
error). 

On the other hand, QE consistently failed at threads=2 
(segmentation fault) and threads=12 (job hang). 

We ran QE code with a larger benchmark test case, and 
with more cores to see if the hybrid code runs at this scale or 
not under CCM. Fig. 16 shows the results. From the hybrid 
runs that were successful, the code runs fastest at threads=6 
consistenly over the 3 repreated runs. Again, the code failed 
or hang at threads number 1, 2 and 12. 

V. CCM UTILIZATION AT NERSC 
As mentioned in the introduction, CCM is of importance 

to NERSC because it allows Hopper to accommodate our 
diverse workload and resolve the long queue wait time on 
Carver.  

We started to test CCM on our Hopper test machine since 
last September, and enabled it on Hopper in production on 
Jan 18, 2012. We enabled G09, NAMD replica simulation 
and WIEN2k codes on Hopper under CCM at the same time. 
On 2/15/2012, we announced the G09 availability on Hopper 
to our users. And we also contacted a NAMD replica user to 
try out CCM. Since then there were 60 users (non-NERSC-
staff) have tried out the G09 on Hopper so far (4/11/2012). 
Unfortunately, the users were discouraged by the 
performance of CCM, most of them didn’t stay on running 
g09 on Hopper after testing its performance.  A couple of 
users requested to increase the max wall limit in order to 
make CCM to be useful for them. Nonetheless we 
discovered that more than 13,500 jobs have been run under 
the ccm_queue and more than 1.3 millions machine hours 
spent on this queue so far, which is a strong indication of the 
user need for CCM.  

We noticed 3 users have been running NAMD replica 
jobs regularly with up to 720 cores under CCM, using 12 
cores per replica in the most cases. We also identified a few 
users who need to run serial workloads on Hopper, and 
recommended CCM to them. One of the use case was that 

the user needed to run hundreds of serial jobs at the same 
time, and in each serial job a few short running serial 
binaries are executed in sequence thousands of times.   
Unfortunately this job consistently made Hopper nodes 
OOM, or hang depending on either regular or larger memory 
nodes the jobs landed on. We opened 2 bugs with Cray. 
Another use case was that a user code calls multiple 
instances of G09 (16 instances of G09) at each iteration step, 
and iterates hundreds of time. This user is still happily using 
G09 on Hopper.     

CCM helped to resolve one of our user reported bug on 
Hopper. Intel Cilk Plus is a C/C++ extension for improving 
performance on multi-core processors by spawning multiple 
workers. XE6 compute nodes do not have the necessary 
environment for creating Intel Cilk threads.  CCM enables it 
and shows good scaling results using recursive algorithm 
(Fig. 17). 

 

 
 

Figure 17.  Scaling of matrix multiply with Cilk Plus on Hopper compute 
nodes.  

To promote the CCM usage, we raised the queue priority 
of the ccm_queue, and also increased the wall time to 96 
hours from Hopper native max wall time 48 hours. And to 
accommodate the interactive workload, we created a new 
queue ccm_int which has the same priority as the 
debug/interactive queue. And meanwhile we made the 
profiling tool IPM and the debugger DDT available under 
CCM, and also made the Matlab available through CCM. 
On 4/10/2012, we announced the CCM availability to all 
NERSC users along with applications and tools available 
through CCM.   

We anticipate more CCM usage from g09 users due to 
the queue configuration changes. Also we expect more 
NAMD replica simulation jobs and WIEN2k jobs on 
Hopper as we haven’t announced their availalbility before. 
We have noticed increasing demands for MATLAB and 
IDL, and we have recently doubled their license seats at 
NERSC. Running MATLAB and IDL under CCM gives an 
advantage of accessing and analyzing data locally without 
needing to move files from Hopper to Carver/Euclid 
(NERSC visualization machine), and will allow exclusive 
access to the compute node memory. We also expect more 
serial workloads including both cases of a signle user 



running on multiple nodes and the multiple users running on 
a single node, as NERSC has implemented the node sharing 
between multiple userse under CCM [17]. We expect to 
have MPMD jobs to run on Hopper without wasting any 
cores due to aprun doesn’t allow node sharing between 
processes. Probably we will attract some other TCP/IP users 
who need more flexible workload control over their jobs.  

The benefit of having CCM on Hopper is evident, 
meanwhile we have also observing some issues with CCM 
on Hopper. As we have discussed in some of the previous 
secions, the slow performance of CCM is the main concern. 
We understand that some performance issue is not specific 
to CCM, eg., the slower process speed, also the lack of 
process/memory affinity control over ssh and hence G09 
jobs might suffer from NUMA penalty greatly, but some 
performance issues we hope to be still addressable through 
further imporvement of IAA and DSL. eg., NERSC-6 
application benchmark run 10%-90% slower in CCM than 
in ESM at 256 cores, depending on how heavy the MPI 
communication is involved. We hope to see a close to ESM 
performance for CCM jobs running at this scale. In addition, 
we noticed the CCM jobs often run into various erros, eg., 
segmentation fault, OOM, libibgni error, and hang, and 
more. Recently we also discovered that G09 performance 
degredation when running over multiple nodes (Bug 
783803), and also noticed X11 application only run on a 
signle node (X11 applications do not launch if using the –V 
options to get on to the head node, Bug 783903) Users need 
a more reliable CCM to use it in their day to day production 
computations. We have also seen the extra delays at job start 
and exit, this is more apprarent when users try to run jobs 
under CCM interactievely. In addtion, the run time 
management could be nontrivial and inconvenient some 
times, especially when one needs to run a few binaries that 
require conflict runtime environment at the same time.  

VI. CONCLUSIONS 
 
CCM enables the applications that couldn’t run on 

Hopper previously, which greatly extends the capability of 
Hopper being able to accommodate more diverse workloads. 
The G09, NAMD replica simulation and WIEN2k codes 
have been enabled to run on Hopper with CCM. In addition, 
CCM allows serial workloads to run on Hopper as well. This 
helps NERSC users who have been limited by the lack of 
TCP/IP services on Hopper compute nodes in the past to get 
benefit from the larger capacity and the shorter queue wait 
time of Hopper, which leads to greater scientific 
productivity. The dynamic queue implementation of CCM 
not only allows the system to accommodate as large as the 
whole machine capacity of CCM workloads, but also to 

assure no computing resource waste when the CCM demand 
is low at times.  

However, the slow performance of CCM has been 
discouraging users from using it currently. In addition, CCM 
jobs often hang or run into errors, this is another limiting 
factor of its utilization in production runs. Since CCM is still 
in its early developmental stage, we expect that more 
performing and reliable CCM that will be embraced by 
NERSC TCP/IP users will be on its way. Our vision is that 
CCM will be a fantastic feature on a HPC computer with 
faster processor cores and fewer NUMA domains so that it 
will not only help accommodate diverse workloads, but also 
bring higher user satisfaction with improved CCM 
performance.  
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