GO09 runs on Hopper

e
i} NUmber ofco::s
Cluster Compatibility Mode on Hopper
Zhengji Zhao, Helen He and Katie Antypas
NERSC
CUG meeting, May 1, 2012
© ENERGY sio oo oy sench (R,

(I AN\ National Laboratory

Queue wait time for the last 3 months

on Carver and Hopper

Hopper - Cray XE6,
Two 12-core AMD

Average queue wait time comparison 'MagnyCours' 2.1 GHz
Hopper vs Carver processors
180 Peak flops: 1.28 Petaflops
160 6384 nodes, 153,216 cores
5 122 24 cores/node
= 100 - 32 GB memory per node
-E 80 | Gemini Interconnect
- - P -
= 4 - | N | Bl | B Carver — IBM iDataPlex
22 e b el BB B b Intel Nehalem 2.67 GHz
1 2 3 16 processors, 8 cores/node
Number of nodes requested Peak ﬂops: 106.5 Tﬂops

1202 nodes, 9984 cores
24GB memory per node
4X QDR InfiniBand

i Carver 12hour & Hopper-12hour « Carver-24hour

& Hopper-24hour & Carver-36hour “ Hopper-36hour

2 node jobs requesting 36 hours waited 4 times longer on Carver than on Hopper!

Data covers the period of 7/1/2011-10/1/2011 and obtained from
https://www.nersc.gov/users/job-information/usage-reports/jobs-summary-statistics/

Why these users prefer to stay on
Carver?

* Some applications don’t run on Hopper due to the lack of
TCP/IP support on compute nodes

— Gaussian code, NAMD replica simulations
— Wien2k

* Friendly environment for serial workload
* Faster processor
* Larger memory per core

 More queue and memory options
— Huge memory node (1TB)
— 3 weeks long queue
— Serial queue

e Data analysis tools not available on Hopper
— Matlab

Introduction to CCM

Applications that CCM enables
Performance of CCM

CCM utilization at NERSC
Benefits and issues
Conclusion

What is Cluster Compatibility Mode
(CCM)?

* CCM is a Cray software solution that provides
services needed to run most cluster-based
independent software vendor (ISV) applications on
the Cray XE6. CCM supports

— TCP/IP - MPI runs over it
— Standard services: ssh, rsh, nscd, ldap
— Complete root file system

e CCM is implemented as a queue, ccm-queue

— Dynamically allocates and configures compute nodes
when a CCM job starts

— ccmrun - launch jobs onto the head node
— ccmlogin — interactively login to compute nodes
— Nodes are released to compute nodes pool at job exit

In CCM, applications run in a generic Linux cluster environment

Programming environment of CCM on
Hopper

\J

|

 Compilers
— PGI, GNU, INTEL, PATHSCALE, CRAY
— Default - dynamic linking

* Libraries
— OpenMPI #built outside of the batch system
— ScalLAPACK

— ACML, FFTW and all serial/thread libraries for Hopper Extreme
Scalability Mode (ESM)

— MKL from Carver

 Debuggers and profilers
— IPM; DDT
e Applications
— GO9 (ssh+OpenMP), NAMD (MPI + socket operations), WIEN2k
(MPI+ssh)
— VASP (MPI), Quantum Espresso (MPI+OpenMP)
— Matlab, IDL

How to compile codes for CCM

* Compile somewhere else, any x86_64 platform

* Compile on Hopper login nodes or mom nodes
— PGI, GNU, Intel, pathscale, Cray compilers are available
— Use native compiler calls, eg., pgif90, pgcc, and pgCC

— Or Use parallel compiler wrappers from OpenMPI, mpif90,
mpicc and mpiCC

module load openmpi_ccm
mpicc xthi.c

How to run jobs under CCM -
submit jobs to the ccm_queue queue

nid00002:~/ccm> gsub -I -| mppwidth=48 -q ccm_queue -| walltime=30:00
gsub: waiting for job 8045.sdb to start
gsub: job 8045.sdb ready

In CCM JOB: 8045.sdb JID sdb USER zz217 GROUP zz217
Initializing CCM environment, Please Wait
CCM Start success, 2 of 2 responses

3.1.61 from xe-image-3.1.61g39.iso

Directory: /global/homes/z/zz217

Thu Dec 8 02:25:00 PST 2011

nid00029:~> cd SPBS_O_WORKDIR

nid00029:~/ccm> module load ccm

nid00029:~/ccm> module load openmpi_ccm

nid00029:~/ccm> export CRAY _ROOTFS=DSL

nid00029:~/ccm> ccmrun mpirun —np 2 -bynode -hostfile SPBS_NODEFILE —prefix /usr/
common/usg/openmpi/default/pgi hostname

nid00029:~/ccm> aprun -n 2 -N1 hostname
nid00019

nid00018

Application 252074 resources: utime ~0s, stime ~0s

ccmlogin -interactive access to compute
nodes

NEF

3

Continued ...
nid00029:~/tests/coreid> ccmlogin -V

Last login: Thu Dec 8 02:54:37 2011 from nid00029

3.1.61 from xe-image-3.1.61g39.iso

nid00018:~> cat SPBS_NODEFILE | sort -u -V passes environment
nid00018 variables to head node
Nid00019

nid00018:~> ssh nid00019
Last login: Tue Dec 6 21:21:58 2011 from nid00010

3.1.61 from xe-image-3.1.61g39.iso
nid00019:~> cat SPBS_NODEFILE

nid00019:~> top

Now you can ssh to compute nodes under CCM!

CCM run time environment
management

* The mpirun from OpenMPI does not pass the
environment variables to the remote CCM nodes.
To pass environment to remote CCM nodes

— shell startup files, ~/.bashrc.ext, ~/.cshrc.ext
— Use mpirun with the --prefix and —x options
- env >~/.ssh/environment

* The file SPBS_NODEFILE contains the compute

node list allocated for a CCM job
— mpirun ... —hostfile SPBS_NODEFILE ...

Sample job script for MPI jobs

#!/bin/bash -

#PBS -N test_ccm

#PBS -g ccm_queue

#PBS -| mppwidth=48,walltime=00:30:00
#PBS -j oe

cd SPBS_O_WORKDIR
module load ccm
export CRAY_ROOTFS=DSL

#compile
Module load openmpi_ccm
mpicc xthi.c

H#run
ccmrun mpirun -np 48 -hostfile SPBS_NODEFILE —prefix /usr/common/
usg/openmpi/default/pgi a.out

How to run OpenMP+MPI jobs

#!/bin/bash -

#PBS -N test_ccm

#PBS -g ccm_queue

#PBS -l mppwidth=48,walltime=30:00

#PBS -j oe
cd SPBS_O_ WORKDIR Process affinity:
module load ccm -cpus-per-proc 6 -bind-to-core

export CRAY_ROOTFS=DSL
mpicc -mp xthi.c
export OMP_NUM_THREADS=6

ccmrun mpirun -np 8 -cpus-per-proc 6 -bind-to-core -hostfile SPBS_NODEFILE —x
OMP_NUM_THREADS —prefix /usr/common/usg/openmpi/1.4.3/pgi a.out

NEeF Gaussian 09 job script

#PBS -S /bin/csh

#PBS -N ccm_g09

#PBS -g ccm_queue

#PBS -| mppwidth=48,walltime=24:00:00
#PBS -j oe

module load ccm

setenv CRAY_ROOTFS DSL _
In ~/.cshrc.ext file, add

module load g09 module load g09

set input=input.L2524
set output=output.L2524.SPBS_JOBID

mkdir -p SSCRATCH/g09/SPBS_JOBID
cd $SCRATCH/g09/$PBS_JOBID
ccmrun g09l < SPBS_O_WORKDIR/Sinput > SPBS_O_WORKDIR/Soutput

% cat g09l

#!/bin/csh

setenv GAUSS_EXEDIR /usr/common/usg/g09/c1/g09/linda-exe:SGAUSS _EXEDIR

set nodelist="""""cat $PBS_NODEFILE | sort -u™"""”

setenv GAUSS_LFLAGS "-vv +getload +kaon -delay 500 -wait 1200 -workerwait 1800 —mp 24 -nodelist Snodelist"
setenv GAUSS SCRDIR "pwd"

g09 Sargv

#!/bin/bash -

#PBS -g ccm_queue
#PBS -| mppwidth=24
#PBS —| walltime=1:00:00

cd SPBS_O_WORKDIR

module load ccm

export CRAY_ROOTFS=DSL
ccmrun multiple_serial_jobs.sh

% cat multiple_serial_jobs.sh
Jal.out &
.Ja2.out &

Ja24.out &
wait

Sample job script to run multiple serial
Jobs on a single node

OR: Interactively run
% qsub —1 -V -q ccm_int -I

mppwidth=24 —| walltime=00:30:00

% cd $PBS_O_WORKDIR

% module load ccm
% export CRAY_ROOTFS=DSL
% ccmlogin =V

% cd $PBS_O_WORKDIR
% ./al.out &
% ./a2.out &

% .[a24.out &

NOTE: ccmrun wrappers the aprun command, so no multiple ccmrun
commands can be launched on a single node.

CCM enables G09 jobs on Hopper

GO09 parallel implementation:
— Master/slave mode

— Intra node: OpenMP

— Inter node: ssh

A g09 job consists of Links - component executables

* Test case (user case):
— UHF calculation for a system with 61 atoms, NBasis=919
— Figure (next slide) shows the 3 most time consuming
components of the job, Link 502, Link 914 and Link 508.

GO09 were run under CCM1 on Hopper test machine,
Grace

CCM enables GO9 jobs o

G09 Performance on Grace CCM and Carver
, (per core basis)
Lower is better
18000 G
16000 L Grace-Link508
) 14000 Grace-Link914
:: 12000 Grace :
.E 10000 Carver 2 Grace-Link502
'g 8000 — i Carver-Linl508
v 05: 6000 - - Larver Carver-Link914
4000 7 - i Carver-Link502
2000 ——— |
0 -
24 48
NUmber of cores

1. GO9 runs around 2 times (runtime doubled) slower than that on Carver
when running on the same number of cores.
2. Most Carver g09 jobs will fit to run on 1-2 nodes on Hopper.

On a node basis GO9 performance is more
comparable, though memory affinity issues
lower performance on Grace

G09 Performance on Grace CCM and Carver

(per node basis)
Lower is better 25000

20000 Carver

3 Grace

°E’ 15000

.g 10000] - FYer .Grace

3 -

5000 - - - - ;
— . —
v . — — - - —
1 2 4 6 8

Number of nodes

i Carver-Link502 - Carver-Link914 & Carver-Link508
Grace-Link502 © Grace-Link914 Grace-Link508

1. All g09 jobs ran with 24 threads with a single task on the node.

2. There is no good way to control the process/memory affinity through
ssh, so the OpenMP threads don’t run at the optimal task/thread ratio
and placement on the Grace nodes.

Hopper

. NAMD replica job performance comparison
Lower is better

450
400
350 -
300
250
200
150
100 -
50
0 -

Run time (s)

¥ Hopper CCM
Carver

96 288

<

8 24

Total number of cores/cores per replica

..

CCM enables NAMD replica

NAMD replica job:

1. Runs multiple job
instances (replicas)
simultaneously

2. Message passing within
a replica uses MPI;

3. Communication
between replicas uses
socket operations

Test case (user case):

1. 12 replicas simulated at
the same time for a
system with 95K atoms

2. The runtime is for the
first 1,000 MD steps.

1. NAMD replica job under Hopper CCM runs around 14% slower than on Carver
when 8 cores used per replica; but 10% faster than Carver when 24 cores used

per replica

2. Slower file system on Carver may account for its slowdown at 288 cores

Pure MPlI NAMD pa

NAMD 2.8 ApoAl Benchmark (92K atoms, PME)

n

Lower is better

w

g
% s - ,
= |
L ‘
%4
§ |
o 3 E - > *
-2 P——=
x i
» |
¥ 1+
) !
o {
v .8 0 -;
o
= 24 48 72 144 288
Flatter is better Number of cores

~="Hopper ESM" —#&—Carver =>*"Hopper CCM"

Pure MPI NAMD (OpenMPI + fftw/2.1.5) scales well up to 144 cores (for this 92K
system) under Hopper CCM, but scaling drops significantly at 288 cores.

Wien2k runs on Hopp

WIEN2k Performance comparison

500
400

300 -

Time (s)

200
Carver

¥ Hopper CCM

Wien2k:

Parallel implementation:

 MPI for message passing
within a k-point

* ssh between k-points

e Shell scripts used to
combine a few binaries

CCM allows multiple
processes share a single
node

Test case (user case):

e 21 k-points

* For each k-point used 8
cores at 84 core run; 12
cores at 252 core run

WIEN2k runs slower under Hopper CCM than on Carver by ~30% at 252 core run;
At 84 core run, it runs slower under CCM than on Carver by around 90%.

N6 Application

Benchmark | Science Algorithm Compiler | Concurrency | Libraries
Area Used Tested
MILC Lattice Conjugate GNU 64, 256, 512,
Gauge Gradient, 1024
Physics sparse matrix,
FFT
ImpactT Accelerator PIC, FFT PGl 64, 256 FFTW
Physics
Paratec Material DFT, FFT, BLAS3 PGl/Intel 64, 256 Scalapack
Science FFTW
GTC Fusion PIC, Finite PGI 64, 256, 512,
Difference 1024

* Cray MPICH2 over Gemini network is used for ESM.

* OpenMPI runs over TCP/IP and utilizes OFED interconnect protocol over Gemini
High Speed Network (HSN).

N6 Benchmarks Run
between CCM (with

M 256 cores

o
92}
|

2.5
Lower is better
2 Grace CCM
c 2
[
()]
&
= 15 -
5 o
= 64 cores
1 .
Vv g
LLJ
~
=
Q
)

MILC ImpactT Paratec GTC

1. CCM slows down more with 256 cores than with 64 cores.
2. CCM/ESM run time ratio is between 1.02 times with GTC 64 cores to 2.4
times with MILC 256 cores.

N6 Benchmarks Run Tim
between CCM and

2.5
Lower is better o Hopper CCM
.FU 2
o
]
.
c
E ¥ 64 cores
E 1 M 256 cores
A 4 <
E .
8 0.5
-

MILC ImpactT Paratec GTC

1. CCM slows down more with 256 cores than with 64 cores.
2. CCM/ESM run time ratio is between 1.1 times with GTC 64 cores to 1.9 times
with MILC 256 cores.

* Paratec 256 CCM run used Intel compiler. Other Paratec runs used PGl compiler.
* ImpactT failed to run at 256 cores with CCM, so Grace data was used for this data point
* Hopper CCM utilizes IAA the OFED interconnect protocol over Gemini HSN

ESM and CCM (wit

Compa
4.5
Higher is better |, ¢ Grace CCM
A :O; 3.5
R 3 |
e
g 2.5 I
E | HESM
= bccm
g— 1.5 I
i B

o
n

o

MILC ImpactT Paratec GTC

1. ESM speedup from 64 to 256 cores ranges from 1.82 to 3.83.
2. CCM speedup from 64 to 256 cores ranges from 1.38 to 3.47.
3. ESM has better speedup than CCM. CCM is not a lot worse.

ESM and CCM Scalin

4.5
Higher is better § 4
S 35 Hopper CCM
L e
o 3 —
L
3 2.5 —
= ESM
5 2 -
= ccm
o 15 - -
=
: 1 1 3
" 0.5 - —
0 .

MILC ImpactT Paratec

1. ESM speedup from 64 to 256 cores ranges from 1.88 to 3.85.
2. CCM speedup from 64 to 256 cores ranges from 1.77 to 3.73.
3. ESM has better speedup than CCM. CCM is not a lot worse.

* Paratec 256 CCM runs used intel compiler, while other Paratec runs used PGl compiler
* ImpactT failed to run at 256 cores with CCM, Grace data was used for this data point

ESM and CCM Run

with Large
B ’ Hopper CCM
Lower is better & 2.5
()]
E 2
f—
‘§ 15 -
® MILC
s |
\/ Q W GTC
2 05 -
J
(&
O _

64 256 512 1024

Number of Cores

1. MILC CCM/ESM run time ratio ranges from 1.8 (64 cores) to 2.6 (1024 cores).
2. GTC CCM/ESM run time ratio ranges from 1.2 (64 cores) to 1.27 (1024 cores).
* A larger data set for MILC is used

* GTC uses weak scaling.

ESM and CCM Scaling Co
Larger Runs

14
Hopper CCM
Higher is better 12 /)(,
(<))
N S 10

3
E 8 - ~~MILC ESM
o /
2 6 ~#-MILC CCM
T 4 GTC ESM
()]
& —<GTC CCM

2

0 T T T l

64 256 512 1024

Number of cores

1. MILC speedup from 64 to 1024 cores: ESM 11.6, CCM 8.2. Ideal is 16.
2. GTCspeedup from 64 to 256: ESM 13, CCM 12.5. Ideal is 16.

* A larger data set for MILC is used.

* GTC uses weak scaling.

GTC hybrid MPI/

GTC Hybrid MPI/OpenMP (192 total cores)

Lower is better 700 Hopper CCM
600
— 500
9
3
~ 400
(]
£
pu 300 “ESM
v é ECCM
200
100
.

1 2 3 6 12 24

Number of threads per MPI task

1. Both ESM and CCM have a sweet spot at 3 OpenMP threads per MPI task.

CCM results are almost identical with ESM results.

3. Actual run time with CCM ranges from 1.01 times (24 threads) to 1.11 times
(1 thread) as of ESM.

N

Quantum Espresso MPI+O

Quantum Espresso MPI+OpenMP Performance
1200

1000

- 800
‘g’ 600 Test case AUSURF112:
B 100 - o 112 Au atoms

200 - = ESM 2 k-points.

0

288 144 ‘ 96 ’ 48 24 ’ 12

Number of threads/MPI tasks

Hybrid QE runs fastest at thread=3 under CCM (among the successful runs)
while it runs fastest at threads=2 under ESM.

* Hybrid QE runs 6 % slower under CCM than on ESM at thread 24 90% slower
at threads 1.

Hybrid QE fails at threads=2 and threads=12 (seg fault, hang)

How is CCM utilized at NERSC

* Announced GO09 to users on 2/15/2012, contacted
individual users to try out CCM.

— 60 non-staff users have tried g09 on Hopper, only a few users
stayed (5-8 users)

— Performance was the main concern
— 48 hours of wall limit was not long enough

* From 2/15to 4/11/2012, 13,508 CCM jobs were run, and
used 1.36 million MPP hours.

* A few use cases other than g09

— Complicated workload management (1 user, user code +
multiple g09 +script)

— NAMD replica jobs (3 users up to 720 cores)

— Serial workload (3 users) - running serial jobs over multiple
nodes using ssh- filed bug for OOM and job hang at exit

How is CCM utilized at NERSC
--continued

* Queue policy changes to promote the CCM usage

— Increased wall limit and raised queue priority to compensate the
slower performance and to allow shorter queue wait time

— Created the ccm_int queue with the same debug/interactive
gueue priority for interactive CCM workloads

* Announced CCM availability to all NERSC users 4/10/2012

* Expected usage
— More g09 users (due to the queue configuration changes)
— More NAMD replica and WIEN2k users

— Matlab and IDL usage- interactive data analysis (local data,
exclusive memory access (more license seats purchased due to
the increasing user demand)

— Serial workloads
— MPMD that requires sharing a single node between job instances

— Other TCP/IP workload

Current issues with CCM

* Performance issues

* |AA improves performance, but not to the extent of user
satisfaction

* Process/memory binding issue impacts performance (g09).
* Cray shared root file system is slow, extra delay at job start and
exit
* Jobs often run into various errors or hang
* Cray provides execution environment rather than
development environment
— Optimized ESM features don’t work under CCM

— Users need to deal with the runtime environment manually due
to the job launching mechanism of Torque is not supported by
Cray.

— CCM environment is not as friendly and complete as ESM
environment

Conclusion

 CCM extends the capability of Hopper, enables
applications that couldn’t run otherwise due to the
lack of TCP/IP support in Hopper native environment,
and enables serial workloads.

 CCM helps the scientific productivity of our g09 users
and other users who need TCP/IP services in their
workflow by utilizing a shorter queue turnaround on
Hopper.

 CCM dynamic queue configuration fits in hopper
existing workload seamlessly, while it can
accommodate as large as possible CCM workload, it
also avoids resource waste when CCM demand is low

Conclusion --continued

 Hopper N6 application benchmark suite run 10% -90%
slower in CCM than in ESM at 256 cores.

* Additional work needed to make CCM a more pleasant
user environment with better performance.
— Better scaling, Cray’s goal is to scale up to 2048 PE’s per job
— Performance improvement for a fixed core job
— Provide modules for CCM environment, eg., PrgEnv-pgi-ccm

— Resolve various runtime issues, job hang, libibgni error,
OOM, segmentation fault

— More robust X11 support

Users are encouraged to try out CCM on Hopper

Acknowledgement

* Gary Lowell, Randell Palmer, and Tara Fly for their
technical support and help.

* Tina Butler, Nick Wright, Jay Srinivasan, Jack Deslippe
and other NERSC staff for their support and useful
discussions

 NERSC users who provided the test cases, Guoping
Zhang, Guoxiong Su and Jun-Wei Luo.

