
Shared library performance on Hopper 
 

Zhengji Zhao1), Mike Davis2), Katie Antypas1), Yushu Yao1), Rei Lee1), Tina Butler1) 
1) National Energy Research Scientific Computing Center 

Lawrence Berkeley National Laboratory 
Berkeley, CA 

2) Cray, Inc 
 

E-mail: zzhao@lbl.gov, u3186@cray.com, {kanytpas, yyao, rclee, tlbutler}@lbl.gov  
 
 

Abstract—NERSC's petascale machine, Hopper, a Cray XE6, 
supports dynamic shared libraries through the DVS projection 
of the shared root file system onto compute nodes, while it uses 
the static objects by default otherwise. The performance of the 
dynamic shared libraries is crucial to some of the NERSC 
workload, especially for those large scale applications that use 
Python as the front end interfaces. The work we will present in 
this paper was motivated by the report from NERSC users, 
stating that the performance of dynamic shared libraries is 
very poor at large scale, and hence it is not possible for them to 
run large Python applications on Hopper. In this paper, we 
will present our performance test results on the shared 
libraries on Hopper, using the standard Python benchmark 
code Pynamic and a NERSC user application code Warp 
which has Python as the front end interface, and will also 
present a few options which we have explored and developed to 
improve the shared library performance at scale on Hopper. 
Our effort has enabled Warp to start up in 7 minutes at 40K 
core concurrency. 
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I.  INTRODUCTION 
While it is often the case that shared libraries are not 

supported on HPC computers for maximum scalability and 
efficiency, NERSC’s peta-flop Cray XE6 machine, Hopper 
[1], supports shared libraries on its compute nodes through 
Cray’s Data Virtualization Service (DVS) [2]. DVS projects 
the shared root file system to the compute nodes at user’s 
choice. Therefore, applications that were built dynamically 
can access the shared libraries at run time. This capability 
has brought great benefit to NERSC users by 
accommodating shared library workloads on Hopper. A 
NERSC user survey conducted in 2011 identified nine major 
applications that require shared library support on HPC 
machines [3].  However, while most of the shared library 
users enjoy this extended feature on Hopper, some users 
have reported that the applications with shared libraries 
perform poorly at scale, especially for Python applications. 
For example, one of our Warp [4] users reported that “For 
64 cores and up, the startup time scales linearly with the 
number of cores. It is close to 400 seconds for 1,024 cores, 
which means that a run with 8,000 cores will approach 1 
hour of startup time and a run with 64,000 cores might take 

as much as 8 hours to start.” Here the startup time is the 
time spent on just importing the Python modules before 
doing any computations. Although Warp users would like to 
run Warp at 40K cores on Hopper, the huge startup time has 
made it impossible for them to run the code at that large 
scale. In the past, Warp users had to build a static binary to 
run on our Cray XT4 (Franklin) machine where there was no 
shared library support, and they were able to run the code 
using up to 10K cores. However, building full-featured 
Python applications statically requires tremendous effort 
because there are a huge number of dependent libraries and 
packages, and often requires modifying Python source codes. 
This had made code maintenance a non-trivial task for users 
whenever there were upgrades and bug fixes in user codes, 
Python and other dependent software as well as the OS. 

The poor performance of the Python application on 
Hopper is not a Cray XE6 specific issue; the same problem 
would exist on any machines, eg., generic Infiniband Linux 
machines, if running Python applications at this scale. Cray’s 
implementation of the shared library support on Cray XE6 
through DVS introduces an extra layer of client-server 
software between the application and the storage device, thus 
may demonstrate an extra layer of overhead at lower scale 
compared to the generic Linux clusters. However, it is the 
huge capacity of the Cray machines which has encouraged 
users to try their applications at a scale that they would never 
be able to try on a generic Linux machine and has made the 
problem more acute. Therefore, in order to allow NERSC 
users to run Python applications at scale on Hopper, both 
Cray and NERSC are engaged in an effort to reduce the huge 
startup time of Python applications. In this paper, we will 
present our work in improving the shared library 
performance on Hopper. Similar effort has been made at 
Sandia National Laboratories [5] to support their 
visualization workload at large concurrency on Cielo, a Cray 
XE6 at Sandia National Laboratories. By dedicating a file 
system to store users’ shared libraries and by repurposing 50 
compute nodes to the IO servers for this dedicated file 
system, they were able to bring down the startup time of 
Pynamic (with 495 shared objects in total), a standard 
Python benchmark code [6], to 30 minutes at 32K core  
concurrency. Instead of pursuing this user dedicated file 
system approach, we have tested other options available, 



which do not require static partitioning of the compute node 
pool and converting some of them to the IO servers.  

The paper is organized as follows.  After this 
introduction, we will introduce two benchmark codes we 
used to test the performance of shared libraries on Hopper in 
Section II. And in Section III, we will present our tests with 
the five different file systems available on Hopper to find out 
the optimal file system to store users’ shared libraries. In 
Sections IV and V, we discuss the methods we have tested 
and developed to reduce the startup time of Python 
applications. And we conclude the paper with the 
recommendations to NERSC shared library users with the 
best practice and the method to improve the shared library 
performance on Hopper. We note that through out the paper, 
we will use the term “shared library” to encompass both 
shared-object libraries (.so files) and Python modules (.py 
and .pyc) for convenience unless we explicitly separate out 
the two items. In addition, the term 'core' is taken to be 
synonymous with 'PE' and 'rank' as all work done in this 
study is on applications that run MPI-only, versus hybrid 
mode. 

 

II. TWO BENCHMARK CODES: PYNAMIC AND WARP 
We selected two benchmark codes, Pynamic and Warp, 

to test the shared library performance on Hopper. Pynamic is 
a Python benchmark that is designed to test a system's ability 
to handle the dynamic linking and loading requirements of 
Python-based scientific applications [6]. Pynamic integrates 
MPI into the Python interpreter, pyMPI, to run parallel 
Python applications. The pyMPI can be built with all shared 
objects being linked in at link time to the pyMPI binary 
(pynamic-pyMPI) or built as vanilla pyMPI which loads and 
imports the shared objects and modules at run time. The total 
startup time (before doing any computation) for Pynamic is 
defined as the sum of launch time (startup time), module 
import time and module visit time.  The launch time is the 
time to start up the pyMPI on all the cores, and the module 
import time is defined as the time to execute the Python 
import commands, and the module visit time is the time 
spent on visiting all the modules once. Pynamic can be 
configured to use any desired number of shared libraries and 
modules to mimic real Python applications. In our tests, 
Pynamic was configured with 495 total shared objects, 280 
Python import statements and 215 utility libraries (the same 
configuration used in Ref [5]). 

Warp is a multidimensional intense beam simulation 
program being developed and used by the heavy ion fusion 
researchers from the three main national laboratories, LBNL, 
LLNL, and PPPL and other sites. The discrete-particle 
models in WARP combine the particle-in-cell (PIC) 
technique commonly used for plasma modeling with a 
description of the "lattice" of accelerator elements. The code 
is written primarily in Fortran90 and is parallelized using 
domain decomposition and MPI. It has a flexible and 
powerful Python user interface. The parallel Warp code is 
launched using the parallel Python interpreter, pyMPI.  At 
job start, it loads 48 shared-object libraries and imports 260 
Warp modules before any computation starts. Warp users 

desire to run the code at up to 40K cores; unfortunately, the 
huge startup time (launch time + module import time) has 
been preventing them from running Warp at large 
concurrency.    

 

III. TESTS WITH FIVE FILE SYSTEMS ON HOPPER 
Since the performance of the shared libraries depends on 

the performance of the file system where the shared libraries 
are stored, we first tested the performance of the shared 
libraries on each file system in order to find the optimal file 
system for users to store the shared libraries on Hopper.   

There are five file systems available on Hopper which 
serve different purposes; they are /home, /scratch, /project, 
/gscratch (global scratch) and /usr/common file systems. The 
/scratch file system consists of two identically configured 
Lustre file systems each with 35GB/s of bandwidth and 1.1 
PB of capacity. The /scratch file system is local to Hopper 
and is subject to purge periodically. NERSC advises users to 
run their data-intensive applications on the /scratch file 
system. The /home is a GPFS file system that can be 
accessed from multiple platforms at NERSC. It has 1.5GB/s 
of bandwidth and 40TB total storage space that is shared by 
more than 5000 users. NERSC advises users to use /home to 
store source codes, binaries, libraries and other data files that 
users want to save permanently. The /project directory is a 
GPFS file system with 15GB/s bandwidth and 1.4PB of total 
disk space. NERSC advises users to use /project to store 
source codes, binaries, libraries and other data files to be 
shared among project members. The /gscratch is a GPFS file 
system with 15GB/s of bandwidth and 1.1PB of total space 
and shared by most of the platforms at NERSC. Users are 
advised to run their production runs on /gscratch, which 
allows sharing of data between different platforms.  Lastly, 
the /usr/common is the place where the software supported 
by NERSC staff is installed on (users do not have write 
permission on this file system). It has 2.3 TB of disk space 
and shared by most of the NERSC systems. Eg., the 
Python/2.7.1 module is installed on this file system.  

Note the NERSC recommendations regarding how to use 
these available file systems were for the Hopper native 
environment (running static binaries), which does not require 
the shared library support on the compute nodes. When our 
Warp users reported the poor performance of the shared 
libraries on Hopper, they stored their shared libraries on their 
/home directory which is a common user practice. 

In these file system tests, we used the Pynamic code with 
its default configuration (495 total shared objects). Fig. 1 
shows the Pynamic startup time on the four file systems that 
users can store their own shared libraries and Python 
modules on. Fig. 2 shows the same timing for the  
/usr/common file system where the NERSC supported 
software is installed on. User applications may access this 
directory at runtime (users have read and execution 
permissions only to this file system).  In each file system 
test, we compared the startup time of Pynamic for two use 
scenarios: enabling the shared root file system by setting 



 

 

 

 
 

Figure 1.  Pynamic startup time with (blue) and without (red) using shared 
root file system when the shared libraries and Python modules of Pynamic 
reside on the /home, /project, /scratch and /gscratch file systems 
respectively.   

 
 
Figure 2.  Pynamic startup time with (blue) and without (red) using shared 
root file system when the shared libraries and Python modules of Pynamic 
reside on the /usr/common file system.  

CRAY_ROOTFS=DSL at runtime (blue in Fig. 1 and Fig. 2) 
and running Pynamic in the unsupported way (as we had to 
do on our Cray XT4 machine where the shared library 
feature was not supported by Cray) by storing all the shared 
libraries that Pynamic needs completely in the users’ own 
directories. In the latter case, we need to provide a local copy 
of the /usr/lib64 and /usr/lib etc. in the users’ own directories 
to make sure all the dependent shared libraries can be 
accessed at runtime. This is to see how much the shared 
library support Cray provides on Hopper through the 
scalable shared root file system has helped the shared library 
applications. Our tests show that on each file system, the 
Pynamic startup time is lowered significantly by using the 
shared root file system compared to not using the shared root 
file system on Hopper (the unsupported way of running 
shared applications on Hopper). And without the shared root, 
Pynamic could not run beyond 2048 cores on all the five file 
systems. Jobs beyond this concurrency hung or ran into 
errors. We believe this is some scalability issue with the 
current DVS implementation (which Cray is actively workin 
on) that all file systems, exept the Lustre /scratch file system, 
depend on on Hopper. Among the five file systems, the 
shortest startup time at large scale was observed when the 
shared libraries and Python modules were stored in the 
/scratch file system and the shared root file system was 
enabled.  

With this knowledge, we ran the user code Warp by 
storing its shared libraries and Python modules in the 
/scratch file system. Fig. 3 shows the startup time of Warp. 
Compared to the original user prediction (they stored the 
shared libraries on the /home directory), the Warp code can 
start up around four times faster at 36K cores when  storing 
shared libraries in /scratch versus /home.    

One problem with using /scratch is that the startup time 
may be subject to a large fluctuation due to the heavy 
contention from other users. 

 



 

Figure 3.  WARP startup time when the shared libraries and Python 
modules were stored in the /scratch file system and with the shared root 
enabled. 

IV. TESTS WITH EXECUTION PATHS  
Cray has been actively working on improving the shared 

library performance on their HPC machines. In addition to 
being engaged in improving the DVS performance that the 
shared libraries rely on, they have also changed the default 
search paths to the shared libraries in the programming 
environment in order to improve the shared library 
performance. In the past, RPATH was included in the 
dynamic executables with a path to the libraries to use at 
execution time. Now, at execution time, symbolic links to 
these libraries will be found in the single directory 
/opt/cray/lib64 using ld.so.cache which has the effect of 
cutting short the number of the search paths for the dynamic 
libraries they support. This should improve startup 
performance of dynamically-linked applications by reducing 
the time spent on traversing multiple paths to search for the 
needed shared libraries.  

Fig. 4 shows the Warp startup time using Cray’s new 
approach of using /opt/cray/lib64 as the path to the shared 
libraries (blue) and using the RPATH approach (green). Note 
the startup times at 36K cores from two methods are 
overlapped. One can see that with this new approach, the 
startup time of Warp does not show an observable 
improvement. 

 

 
 
Figure 4.  Comparison of Warp startup time when shared library search 
defaults changes. 

Cray’s default search path changes only affect the 
libraries Cray provided, so we tested the same idea for the 
Warp’s own shared libraries. Warp uses 48 shared-object 
libraries distributed among the directories, so instead of 
allowing the code traverse a number of directories to search 
for  these libraries, we stored as many shared libraries as 
possible in a single directory (hence the 
LD_LIBRARY_PATH is shorter) and tested its startup 
time. Fig. 5 shows the results. Compared to the use of the 
/opt/cray/lib64 (red), using a shorter LD_LIBRARY_PATH 
does not seem to bring an observable improvement in the 
Warp startup time.  It should be noted that the optimizations 
discussed in this section, while possibly impacting the time 
spent loading the 48 shared-object libraries, do not address 
the cost of importing the 260 warp modules. 

 
 

Figure 5.  Warp startup time with a shorter LD_LIBRARY_PATH. Tests 
were done on top of the Cray default search paths change.  

These tests suggest that without addressing the 
underlying mechanisms that Python applications rely on, it 
is difficult to address the slow startup time for Warp, 
especially on a production environment where there is 
heavy contention for the IO resouces from other users on the 
system. When a parallel Python application starts up 
(loading .so files and importing Python modules), all cores 
perform the same amount of IO operations, such as open(), 
stat(), read(), etc. During Warp code startup,  each core 
performs 3388 opens (495 successful), 1632 stats (848 
successful), and  500 reads which pound the metadata server 
of the /scratch file system heavily as shown in Fig. 6. Fig. 6 
shows the high metadata server IO activities (only the 
open() operations shown in the Figure) while an 18K core 
Warp job was running. Without reducing the number of IO 
operations associated with Python applications, the startup 
time would not be easily addressed. 

 



 
Figure 6.  Lustre metadata server activities are high during large 
concurrency Warp job run.  This figure was generated by Andrew 
Uselton’s LMT tools [7]. 

 

V. DLCACHE AND FMCACHE (DLFM) 
As part of the effort to optimize the shared-library 

operations being performed by the WARP application, two 
separate software packages were developed [8].  The first, 
DLcache, optimizes the importing of shared-object libraries 
(.so files).  The second, FMcache, optimizes the importing of 
Python modules (.py and .pyc files).  As mentioned in the 
Introduction, the term "shared library" is used to encompass 
both shared-object libraries and Python modules in the 
discussion.  A Python-based application can be built to use 
either of these packages alone, or both together.  An 
application that uses dynamic linking and dlopen, but does 
not use Python, can benefit from using DLcache alone.  For 
this optimization effort, the WARP application was built to 
use the two packages together. 

It was deemed best to use two separate packages to 
handle these two types of shared-library use.  The Python 
library uses two separate mechanisms to perform imports.  
The import of a shared-object library uses a libdl function 
called dlopen, whereas the import of a Python byte-code 
module uses an internal libpython function called 
find_module.  The find_module mechanism is specific to 
Python, and can benefit from FMcache, whereas the dlopen 
mechanism is used in many kinds of applications besides 
Python, and can benefit from DLcache. Both packages use a 
similar strategy to optimize the I/O operations associated 
with shared-library use.  This strategy involves executing the 
application in a "trial mode" on a small number of cores (or 
PEs or MPI ranks) to produce a single file that contains a 
consolidation of all of the shared objects loaded by the 
application.  The application can then be executed again "for 
real" on a large number of cores, and can be directed to read 
from the consolidated file instead of searching for and 
accessing the numerous shared-library files.  Thus, a part of 
the optimization comes from reducing the number of 

metadata operations involved in searching for, opening, and 
closing many files on each of many cores. 

Another part of the optimization comes from caching the 
consolidated file so that the number of cores actually doing 
I/O to external storage is greatly reduced.  In the case of 
DLcache, the consolidated file is cached in the RAM-
resident /tmp file system on each compute node hosting the 
application.  In the case of FMcache, the consolidated file is 
read from external storage by the application's rank-0 
process, and broadcast to the other cores via MPI.  The two 
optimization packages do not use the same caching strategy 
because, in the case of FMcache, the MPI strategy is cleaner 
and more optimal than the /tmp strategy, and in the case of 
DLcache, the optimization is called into play during 
application startup, before MPI is initialized. 

The optimization strategy depends on three central 
assumptions: (1) the application can be executed at either 
small or large width; (2) the number of shared libraries to be 
loaded, and their order, does not change from small- width to 
large-width runs; and (3) the number of shared libraries to be 
loaded, and their order, is identical across cores.  In the case 
of WARP, these central assumptions are valid. 

We applied the DLMF methods to Warp, and showed the 
startup time in Fig. 7 (blue). And for comparison, the 
original Warp startup time using /opt/cray/lib64 (blue dots 
shown in Fig. 4) was also included in the same figure (red). 
One can see that with the DLFM methods, Warp can start up 
in around 7 minutes at 40K concurrency! This is about a ten-
fold speedup compared to the original startup time (shown in 
Fig. 4) at 36K concurrency (we don’t have the startup time 
for 40K core runs for original method). If we compare the 
results of the DLFM methods to the original user prediction 
based on the startup time they observed (when the shared 
libraries were stored in the /home file system), the speedup is 
about 42 times! Now Warp users should be able to run the 
code at their desired concurrency (40K) on Hopper. 

 

 
 

Figure 7.  Warp startup time compariosn between the DLFM methods 
(blue) and the original method (after Cray exeution path change) (red). 

In Fig. 9, the startup time breakdown between the load 
and the module import time of the DLFM methods is shown 



with a stacked bar graph (the blue bars show the load time, 
and the purple bars show the module import time). And for 
comparison, we also showed the same data for the original 
method (the results shown in Fig. 4) in Fig. 9 as well.  One 
can see that total speedup of DLFM methods are the effects 
from both the DLcache and FMcache methods. The load 
time is comprised entirely of DLcache operations.  The 
import time is comprised of both DLcache and FMcache 
operations, since Warp imports both shared-object libraries 
and Python modules.  The steeper increase in import time 
with increasing core count is likely due to the FMcache read-
broadcast strategy, which comes into play on every import, 
whether the object being imported is large or small.  There 
are definitely opportunities for further optimization here, 
though they may involve a cost in compute-node memory. 

 

 
 

Figure 8.  Warp startup time breakdown between the load and module 
import time when the DLFM methods were used. Where the blue bars 
show the load time and the purple bars show the import time.  

 

Figure 9.  Warp startup time breakdown between the load and module 
import time when the /opt/cray/lib64 was used as the default search parth 
for the shared libraries. Where the blue bars show the load time and the 
purple bars show the import time 

We note that due to the limited /tmp space (500MB) 
configured on Hopper, we were not able to test the DLFM 
methods with the default configuration of Pynamic (495 
total shared objects), for which the total size of shared 
objects is 1.39GB.   

VI. CONCLUSION 
To provide a workaround for the huge startup time for 

Python applications on Hopper, we tested shared library 
performance on Hopper using two selected benchmark 
codes, a standard Python benchmark code, Pynamic and a 
NERSC user provided code called Warp. Through the 
Pynamic performance tests on each of the five file systems 
available on Hopper, we have identified the Lustre scratch 
file system as the optimal file system for users to store 
shared object files (.so files) and Python modules (the.py 
and .pyc files). This has brought a four-fold speedup 
compared to the original user prediction when storing Warp 
libraries and Python modules on the /home file system. We 
tested Cray’s new shared library default path 
(/opt/cray/lib64) compared to the original RPATH approach 
deployed on Hopper, and we also tested a shorter 
LD_LIBRARY_PATH, and found no observable startup 
time reduction for this specific application code (Warp) 
which has a relatively small number of shared object files 
(48) to load compared to the number of python modules 
(260) to import. The DLcache and FMcache methods 
developed by one of the authors [Davis] are able to reduce 
both the shared object file loading time and the Python 
module import time effectively by reducing the number of 
the metadata IO operations and their contention, as well as 
reducing the number of cores doing IO operations. Our 
effort has brought a ten-fold speedup for Warp startup time 
at 36K core concurrency compared to the /opt/cray/lib64 
directory as the shared library default search path, and has 
allowed Warp to start up in 7 minutes at 40K core 
concurrency.    

Our tests suggest that when users run shared applications 
at scale on Hopper, they should store their shared libraries 
and/or Python modules on the /scratch file system, and adopt 
the DLcache and FMcache methods in their large scale runs 
where applicable to achieve a tractable startup time on 
Hopper.   
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