Shared Library Performance on
Hopper

Zhengji Zhaol), Mike Davis?), Katie Antypas?),
Yushu Yao, Rei Lee!) and Tina Butler?

1) National Energy Scientific Computing center
2) Cray, Inc.
CUG 2012, 5/3/2012, Stuttgart, German

W, U.S. DEPARTMENT OF i
\/ EN ERGY Oﬁ_lce of National Energy Research
Science Scientific Computing Center

Lawrence Berkeley
SN (SIA AW National Laboratory

Shared libraries are suppo

Hopper compute nodes thre
Cray XE6, 6,384 nodes, 153,216 cores, 1.28 Petaflop/s peak

NEF

16 ™ DvsNGF
32 B Dpvs/psL
56 D LNET B ,NSD Server

- pNSD Server
—— .__PNSD Server

24 B mowm =
mm-—PNSD Server
— pNSD Server
Il pNSD Server

NERSC
10GbE LAN
to HPSS

~‘~:"l‘ SO K
RAID PSRN 2SS IR
—‘ o 1/ SRS\

QDR Switch Fabric

]

52 0SS

FC Switch Fabric 6 OSTs/0SS

EEEEEEEEEEEEEEEEEEEREREREE

This has enabled shared library applications on Hopper which is one
of the important workloads at NERSC.

-
o

Startup time (s)

10 i T T T T L | T r T L |
2 3 456 2 3 456
10 100 1000
, . # cores
Figure was provided by user jlvay, Jean-Luc Vay

*) Starup time shown here is the module import
Time only

*) User stored the shared libraries and python
modules on /home file systems.

Applications using shared libraries on
Hopper have huge startup time

User Jean-Luc Vay:

“For 64 cores and up, the
startup time scales linearly with
the number of cores. It is close
to 400 seconds for 1,024 cores,
which means that a run with
8,000 cores will approach 1
hour of startup time and a run
with 64,000 cores might take as
much as 8 hours to start.”

User David Grote:
“We would like to be able to run
with up to 40,000 cores. “

Outline

e Motivation

— Analyze the shared library performance on Hopper and find a
workaround to the huge library startup time, so users can run python
applications at scale on Hopper.

 Benchmark codes: Pynamic and Warp
* Options and methods explored

— Test on 5 different file systems with/without the using shared root file
system

— Compare the RPATH and /opt/cray/lib64

— Shorter LD _LIBRARY_PATH and fewer user shared lib files
— Custom python import function

— DLcache and FMcache

e NERSC recommendation to users
e Conclusion

Benchmark code: Pynamic

Pynamic is a python benchmark

— Designed to test a system's ability to handle the Dynamic Linking and
Loading requirements of Python-based scientific applications.

— https://computation.lInl.gov/casc/Pynamic/pynamic.htm
Pynamic configured with
— 495 total shared objects
— 280 python import statement
— 215 utility libraries
PyMPI integrates MPI into python interpreter
— pynamic-pyMPI: links all shard objects to pyMPI binary at link time
— pyMPI: vanila pyMPI, imports modules dynamically
Total startup time for Pynamic:
— Launch time (startup time) + module import time + module visit time

Five file systems on Hopper

/scratch1/2- for production runs, especially data intensive runs

— Lustre, 1.1PB, 35GB/s each. Local to Hopper

— Hopper—28 LNETs—IB—52 OSS’s—FC—13 LSI 7900
/project - users store source code, binaries, data files to be shared
between groups of users

— GPFS, 1.4PB, 15Gb/s. Shared by all NERSC systems

— Hopper—14 DVS—IB—8 pNSDs—FC—5 DDN 9900

/global/scratch — for production runs
— GPFS, 1.1PB, 15Gb/s. Shared by most NERSC systems
— Hopper—14 DVS—IB—8 pNSDs—FC—5 DDN 9900

/home - users store source code, binaries, data files ...
— GPFS, 40TB, 1.5GB/s. Shared by most NERSC systems
— Hopper—DVS—2 NET servers—10GE—4 NSDs—FC—2 HDS AMS 2300

Jusr/common — store NERSC provided software
— GPFS, 2.3TB. Shared by most NERSC systems
— Hopper—DVS—2 NET servers—10GE—4 NSDs—FC—2 HDS AMS 2300

e

28

Hopper With Genimi Network

26

13

_

Infiniband

Fiber Channel

=
O ———

] LSI
7900 7900 ot ot

Each LSI 7900 has 2 controllers, and 120 1TB Disks, Raid6 (8+2)
In Total Giving 13*120*(8/10)*1TB~=1.1PB

SCRATCH1/2

J

Note: There are two sets of identical configuration for SCRATCH1 and SCRATCH?2

Comparison of Pynamic perfor
without using shared root file sy

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

startup time(seconds)

Lower is 0 -

better

L 2
O L 2
$e
O g * 8
" L IS
1 10 100 1000 10000

Number of cores

M home

©® home+dsl

/home: all shared libs
reside in the global
/home file system
/home+dsl: user
shared libs reside in
/home, system
provided shared libs in
shared root file

system
(CRAY_ROOTFS=DSL)

 The shared root file system reduces Pynamic startup time
 Without shared root, Pynamic doesn’t run above 1000 cores

Comparison of Pynamic perfo
and without using shared roo

5000
4500 . m—
7 4000 /.prOJec.t.a. share
c libs reside in the
o 3500 ®)]
® 3000 /project file system
(7]
T e ¢ /project+dsl: user
'E 2000 ¢ M /project shared libs reside in
Q. . q
2 1500 . ¢ /project+ds| /prqject, system- |
£ 1000 I provided sha.red libs in
500 l . Veso shared root file
N I S oo ’ o system
Lower is 1 10 100 1000 10000 (CRAY_ROOTFS=DSL)
better
Number of cores

* Shared root file system reduces the Pynamic startup time
 Without shared root file system, Pynamic can not run
above 4000 cores

Comparison of Pynamic perfo
without using shared root in

5000
4500

= 4000 /scratch: all shared

S 3500 libs reside in the

@ 3000 /scratch file system

£ 2500 = .) /scratch+dsl: user

. t . . .

= 2000 .Scra ‘ shared libs reside in

£ 1500 scratch+ds| /scratch, system

m . . .

% 1000 — provided shared libs in

i 00 ;
Lower is > oW 3 .4!' . shared root file
better o system
Number of cores

* Shared root file system reduces the Pynamic startup time.
e /scratch is the fastest by far

Lower
is
better

Pynamic performance when s
reside in /global/scratch and /

5000

Number of cores

L g
4500
g 4000 O
S 3500
3 m N
2 3000
£ 2500
‘B B /gscratch
o 2000
=1 Py @ /gscratch+dsl
£ 1500 ‘
©
% 1000
500 r X
1 10 100 1000 10000
Number of cores
5000
4500
m
3 4000 - O
© 3500
(8]
Y 3000
Q
2500
'.g L M /common
o 2000
S [| @ /common-+dsl
£ 1500 n ®
© *e
+ 1000 @
500 *
0 ! T l’l T
1 10 100 1000 10000

Shared root file system
reduces the Pynamic
startup time when the
shared libraries reside in /
global/scratch and /usr/
common.

Without shared root file
system, Pynamic doesn’t
run above 2000 cores

Across all five file systemes,
scratch performs the b

Lower is

better

5000
= 0 without CRAY_ROOTFS=DSL
© 4000
c X X
9 3500
]
3000 @ /scratch
)
g 2500 X * M /global/homes
£ 2000 *
o /global/scratch
2 1500 o
o X [project
= 1000
@ ¢ X Jusr/common
500 5 & é—.‘—
O 1 LI L AL | LB R AL | LI L R AL | LI R R ALL) | LI]
1 10 100 1000 10000
Number of cores
5000 O
4500
g 4000
g 3500 CRAY_ROOTFS=DSL
]
3000
.:’T @ /scratch
£ 2500
i 2000 M /global/homes
g 1500 s ; (X /global/scratch
..g 1000 ¥ x;l X [project
W X
500 X Jusr/common
o] T LR,
1 10 100 1000 10000

Number of cores

The shared root file
system helps the shared
library performance on
all 5 file systems.
/scratch has the shortest
total startup time for
Pynamic. Thus /scratch is
a candidate to store user
shared libraries.

All our following tests
were done on /scratch
file system with the
shared root file system
enabled.

User application benchmark: Warp

 Warp: modeling high intensity ion beams,
— heavy ion fusion accelerator physics studies

— Discrete particle model= particle-in-cell (PIC) + “lattice” of accelerator
elements

— Written primarily in Fortran90 + MPI, python user interface
— http://hif.lbl.gov/theory/WARP_summary.html

* Has 48 shared libs, 260 imports
* Warp modules and shared libs reside in /scratch
« CRAY_ROOTFS=DSL

* Total startup time for Warp
— launch time + module import time

Warp total startup time o
with shared root ena

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0 ———rrm——

1 10 100 1000 10000

Startup time (seconds)

Number of cores

By adopting the “best” file system /scratch to store user shared libraries and
python modules, Warp could startup 4 times faster than the original user

prediction of 4.5 hours at 36K (user stored their files on /home).
Issues with /scratch:
— heavy contention for IO resources -large fluctuation in runtime
— the file system is subject to purge — not ideal for saving permanent files

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Startup time (seconds)

Lower is
better

Comparison of Warp startup time when
shared library search default changes

10 100 1000

Number of cores

10000

CRAY_ROOTFS=DSL

with rpath
Jopt/cray/lib64

Cray approach:

In the past, RPATH
was included in the
dynamic executable
with a path to the
libraries to use at
execution time.
Now, at execution
time, dynamic shared
objects for these
libraries will be
found in /opt/cray/
lib64 using
|d.so.cache.

*) Mpich libraries were found from /opt/cray/lib64 in the new approach in Warp code

e Changing execution time dynamic shared library default to /
opt/cray/lib64 does not seem to help this specific user

application.

Lower
better

Warp startup time with
LD LIBRARY_ PA

Total startup time (s)

3000

2500

2000

1500

1000

500

¢ N
B

Number of cores

@ shorter_LD_LIBRARY_PATH M /opt/cray/lib64

Shorter
LD_LIBRARY_PATH:
Put all the user shared
libraries in one
directory, so to reduce
the number of search
directories for shared
libraries. The paths to
the system provided
libraries stayed the
same.

Shorter LD_LIBRARY_PATH does not seem to improve the
startup time for large scale runs significantly for Warp.

Lustre metadata server activities ar
during large concurrency Python job

80000
— open

70000

T

60000

T

50000

40000 §

open/sec

30000 § .

20000 §

10000 |

Host JobID User Nodes Cores Stért Complete Wall hrs MPP hrs
Hopper 906357 22217 768 18,432 10/17/11 16:47 10/17/1117:10 0.382 5,276.16

When a Warp job at 18,342 cores was running, a huge |0 metadata server activity was observed.

*) Figure is generated by Andrew Uselton’s LMT tools

Custom import function sig
reduces total startup time o

- Modified Python/
B 0 = import.c and
E 2000 Python/
S 100 ° marshal.c :Only
5 u o import rank O calls open(),
4_; o ¢ M Nolmort Stat() and read(),
° 500 - and all other ranks
0 me—lmr!—_ﬁ:m—mm get the results of
Lower|is T, .
better 1 10 100 1000 10000 100000 the calls without
Number of cores actually making the
calls (ranks 1-N-1).

IO operations each core does during pyMPI startup (.so loading + module import time)

No. of opens No. of stats No. of reads
3388/495 1632/848 500

Looks promising ...

Warp startup time with
+ statically linked in

3000
= 2500 u
()
€ 2000
B
Q. & .
g 1500 = @ import
s i B Nolmort
2 1000 .
g - 6 Import+static
. -
Lower ik 500 . * B Nolmport
better u] !
0 rmrrrrmm mrrrrmm T
1 10 100 1000 10000 100000

Number of cores

Statically linking MPI libraries to the pyMPI binary
seems to help the total startup time of Warp.

DLcache and FMcache*

DLcache

— Optimizes the importing of shared-object libraries (.so files)
— Similar in effect to static linking, but more flexible

FMcache
— Optimizes the importing of python modules (.py, .pyc files)
— Same thing as “custom import” above (just repackaged)

How to use them

— Run app once in “trial mode” on small PE-count to write cache files
* dlcache.dat, fmcache.dat

— Run app again “for real” on large PE-count, reading cache files
Operational Assumptions

— Small-PE and large-PE runs read same .so, .py, .pyc files in same order

— Each PE reads same .so, .py, .pyc files in same order

* DLcache and FMcache packages are developed by Mike Davis at Cray, Inc

DLcache and FMcache

* How do they optimize?

— Reduce the number of metadata operations (stat, open, close)
* (Npg * Nog, * Npjr) becomes (N,) for DLcache
* Becomes (1) for FMcache

— Reduce the number of PEs doing I/O operations (read)
* (Npg) becomes (1) for FMcache

— Reduce the cost/contention of metadata, I/O operations

 dlcache.dat accessed from compute-node /tmp
* fmcache.dat accessed from rank-0 memory (via MPI_Bcast)

— Why two caching methods?
* DLcache executes before MPI is initialized, so cannot use MPI

DLcache and FMcach
startup in 7 minutes

500

450

400
350
300
250
B Import
200
B Load
150
100
50
0 f— T T _ T - T T T T

2 24 192 1152 9216 18432 36864 40080

Statup time (s)

Number of cores

Warp users can run at their desired concurrency 40K
within less than 7 minutes of startup time |

DLcache and FMcache reduce
startup time 10 times at 36k cc

4000

3500 /.
///’

o e
2000 / 10x
/ speedup

1500

Startup time(s)

1000

500
—— 36K cores
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of cores
=&-DLcache+FMcache =#—=RPATH

Warp startup time comparison to where we started with /scratch file system
- Stored user shared libraries and python modules in /scratch (Lustre) and used shared root.

If compared to the original user prediction, the speedup would be 42 times!
- Stored user shared libraries and python modules in /home (GPFS), and used shared root

NERSC Recommendations to shared
library application users

* Shared root file system helps the share lib performance.

» /scratch + shared root file system is a candidate to store user
shared libraries, but it is subject to unpredictable run time
fluctuation due to heavy |0 from other user jobs.

* DLcache and FMcache are most promising methods; custom
import has a significant reduction on the startup time; using
shorter LD_LIBRARAY_PATH and using /opt/cray/lib64 instead
of RPATH seem not have an observable improvement under a
production environment.

e Recommendations to shared lib users:
— Use of DLcache and FMcache
— Use /scratch system to store user shared libs

Acknowledgement

* Sue Kelly, Sandia National Laboratories
e Sean Zhu, NERSC summer student 2011
* David Grote, Jean-Luc Vay, WARP developers and NERSC users.

* Andrew Uselton, Nick Wright, Thomas Davis, David Skinner as
well as NERSC staff in User Services Group

