
Shared library performance on Hopper

Zhengji Zhao1), Mike Davis2), Katie Antypas1), Yushu Yao1), Rei Lee1), Tina Butler1)
1) National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA

2) Cray, Inc

E-mail: zzhao@lbl.gov, u3186@cray.com, {kanytpas, yyao, rclee, tlbutler}@lbl.gov

Abstract—NERSC's petascale machine, Hopper, a Cray XE6,
supports dynamic shared libraries through the DVS projection
of the shared root file system onto compute nodes, while it uses
the static objects by default otherwise. The performance of the
dynamic shared libraries is crucial to some of the NERSC
workload, especially for those large scale applications that use
Python as the front end interfaces. The work we will present in
this paper was motivated by the report from NERSC users,
stating that the performance of dynamic shared libraries is
very poor at large scale, and hence it is not possible for them to
run large Python applications on Hopper. In this paper, we
will present our performance test results on the shared
libraries on Hopper, using the standard Python benchmark
code Pynamic and a NERSC user application code Warp
which has Python as the front end interface, and will also
present a few options which we have explored and developed to
improve the shared library performance at scale on Hopper.
Our effort has enabled Warp to start up in 7 minutes at 40K
core concurrency.

Keywords-component; shared library; Python; performance;
startup time; DLcache and FMcache;DLFM

I. INTRODUCTION
While it is often the case that shared libraries are not

supported on HPC computers for maximum scalability and
efficiency, NERSC’s peta-flop Cray XE6 machine, Hopper
[1], supports shared libraries on its compute nodes through
Cray’s Data Virtualization Service (DVS) [2]. DVS projects
the shared root file system to the compute nodes at user’s
choice. Therefore, applications that were built dynamically
can access the shared libraries at run time. This capability
has brought great benefit to NERSC users by
accommodating shared library workloads on Hopper. A
NERSC user survey conducted in 2011 identified nine major
applications that require shared library support on HPC
machines [3]. However, while most of the shared library
users enjoy this extended feature on Hopper, some users
have reported that the applications with shared libraries
perform poorly at scale, especially for Python applications.
For example, one of our Warp [4] users reported that “For
64 cores and up, the startup time scales linearly with the
number of cores. It is close to 400 seconds for 1,024 cores,
which means that a run with 8,000 cores will approach 1
hour of startup time and a run with 64,000 cores might take

as much as 8 hours to start.” Here the startup time is the
time spent on just importing the Python modules before
doing any computations. Although Warp users would like to
run Warp at 40K cores on Hopper, the huge startup time has
made it impossible for them to run the code at that large
scale. In the past, Warp users had to build a static binary to
run on our Cray XT4 (Franklin) machine where there was no
shared library support, and they were able to run the code
using up to 10K cores. However, building full-featured
Python applications statically requires tremendous effort
because there are a huge number of dependent libraries and
packages, and often requires modifying Python source codes.
This had made code maintenance a non-trivial task for users
whenever there were upgrades and bug fixes in user codes,
Python and other dependent software as well as the OS.

The poor performance of the Python application on
Hopper is not a Cray XE6 specific issue; the same problem
would exist on any machines, eg., generic Infiniband Linux
machines, if running Python applications at this scale. Cray’s
implementation of the shared library support on Cray XE6
through DVS introduces an extra layer of client-server
software between the application and the storage device, thus
may demonstrate an extra layer of overhead at lower scale
compared to the generic Linux clusters. However, it is the
huge capacity of the Cray machines which has encouraged
users to try their applications at a scale that they would never
be able to try on a generic Linux machine and has made the
problem more acute. Therefore, in order to allow NERSC
users to run Python applications at scale on Hopper, both
Cray and NERSC are engaged in an effort to reduce the huge
startup time of Python applications. In this paper, we will
present our work in improving the shared library
performance on Hopper. Similar effort has been made at
Sandia National Laboratories [5] to support their
visualization workload at large concurrency on Cielo, a Cray
XE6 at Sandia National Laboratories. By dedicating a file
system to store users’ shared libraries and by repurposing 50
compute nodes to the IO servers for this dedicated file
system, they were able to bring down the startup time of
Pynamic (with 495 shared objects in total), a standard
Python benchmark code [6], to 30 minutes at 32K core
concurrency. Instead of pursuing this user dedicated file
system approach, we have tested other options available,

which do not require static partitioning of the compute node
pool and converting some of them to the IO servers.

The paper is organized as follows. After this
introduction, we will introduce two benchmark codes we
used to test the performance of shared libraries on Hopper in
Section II. And in Section III, we will present our tests with
the five different file systems available on Hopper to find out
the optimal file system to store users’ shared libraries. In
Sections IV and V, we discuss the methods we have tested
and developed to reduce the startup time of Python
applications. And we conclude the paper with the
recommendations to NERSC shared library users with the
best practice and the method to improve the shared library
performance on Hopper. We note that through out the paper,
we will use the term “shared library” to encompass both
shared-object libraries (.so files) and Python modules (.py
and .pyc) for convenience unless we explicitly separate out
the two items. In addition, the term 'core' is taken to be
synonymous with 'PE' and 'rank' as all work done in this
study is on applications that run MPI-only, versus hybrid
mode.

II. TWO BENCHMARK CODES: PYNAMIC AND WARP
We selected two benchmark codes, Pynamic and Warp,

to test the shared library performance on Hopper. Pynamic is
a Python benchmark that is designed to test a system's ability
to handle the dynamic linking and loading requirements of
Python-based scientific applications [6]. Pynamic integrates
MPI into the Python interpreter, pyMPI, to run parallel
Python applications. The pyMPI can be built with all shared
objects being linked in at link time to the pyMPI binary
(pynamic-pyMPI) or built as vanilla pyMPI which loads and
imports the shared objects and modules at run time. The total
startup time (before doing any computation) for Pynamic is
defined as the sum of launch time (startup time), module
import time and module visit time. The launch time is the
time to start up the pyMPI on all the cores, and the module
import time is defined as the time to execute the Python
import commands, and the module visit time is the time
spent on visiting all the modules once. Pynamic can be
configured to use any desired number of shared libraries and
modules to mimic real Python applications. In our tests,
Pynamic was configured with 495 total shared objects, 280
Python import statements and 215 utility libraries (the same
configuration used in Ref [5]).

Warp is a multidimensional intense beam simulation
program being developed and used by the heavy ion fusion
researchers from the three main national laboratories, LBNL,
LLNL, and PPPL and other sites. The discrete-particle
models in WARP combine the particle-in-cell (PIC)
technique commonly used for plasma modeling with a
description of the "lattice" of accelerator elements. The code
is written primarily in Fortran90 and is parallelized using
domain decomposition and MPI. It has a flexible and
powerful Python user interface. The parallel Warp code is
launched using the parallel Python interpreter, pyMPI. At
job start, it loads 48 shared-object libraries and imports 260
Warp modules before any computation starts. Warp users

desire to run the code at up to 40K cores; unfortunately, the
huge startup time (launch time + module import time) has
been preventing them from running Warp at large
concurrency.

III. TESTS WITH FIVE FILE SYSTEMS ON HOPPER
Since the performance of the shared libraries depends on

the performance of the file system where the shared libraries
are stored, we first tested the performance of the shared
libraries on each file system in order to find the optimal file
system for users to store the shared libraries on Hopper.

There are five file systems available on Hopper which
serve different purposes; they are /home, /scratch, /project,
/gscratch (global scratch) and /usr/common file systems. The
/scratch file system consists of two identically configured
Lustre file systems each with 35GB/s of bandwidth and 1.1
PB of capacity. The /scratch file system is local to Hopper
and is subject to purge periodically. NERSC advises users to
run their data-intensive applications on the /scratch file
system. The /home is a GPFS file system that can be
accessed from multiple platforms at NERSC. It has 1.5GB/s
of bandwidth and 40TB total storage space that is shared by
more than 5000 users. NERSC advises users to use /home to
store source codes, binaries, libraries and other data files that
users want to save permanently. The /project directory is a
GPFS file system with 15GB/s bandwidth and 1.4PB of total
disk space. NERSC advises users to use /project to store
source codes, binaries, libraries and other data files to be
shared among project members. The /gscratch is a GPFS file
system with 15GB/s of bandwidth and 1.1PB of total space
and shared by most of the platforms at NERSC. Users are
advised to run their production runs on /gscratch, which
allows sharing of data between different platforms. Lastly,
the /usr/common is the place where the software supported
by NERSC staff is installed on (users do not have write
permission on this file system). It has 2.3 TB of disk space
and shared by most of the NERSC systems. Eg., the
Python/2.7.1 module is installed on this file system.

Note the NERSC recommendations regarding how to use
these available file systems were for the Hopper native
environment (running static binaries), which does not require
the shared library support on the compute nodes. When our
Warp users reported the poor performance of the shared
libraries on Hopper, they stored their shared libraries on their
/home directory which is a common user practice.

In these file system tests, we used the Pynamic code with
its default configuration (495 total shared objects). Fig. 1
shows the Pynamic startup time on the four file systems that
users can store their own shared libraries and Python
modules on. Fig. 2 shows the same timing for the
/usr/common file system where the NERSC supported
software is installed on. User applications may access this
directory at runtime (users have read and execution
permissions only to this file system). In each file system
test, we compared the startup time of Pynamic for two use
scenarios: enabling the shared root file system by setting

Figure 1. Pynamic startup time with (blue) and without (red) using shared
root file system when the shared libraries and Python modules of Pynamic
reside on the /home, /project, /scratch and /gscratch file systems
respectively.

Figure 2. Pynamic startup time with (blue) and without (red) using shared
root file system when the shared libraries and Python modules of Pynamic
reside on the /usr/common file system.

CRAY_ROOTFS=DSL at runtime (blue in Fig. 1 and Fig. 2)
and running Pynamic in the unsupported way (as we had to
do on our Cray XT4 machine where the shared library
feature was not supported by Cray) by storing all the shared
libraries that Pynamic needs completely in the users’ own
directories. In the latter case, we need to provide a local copy
of the /usr/lib64 and /usr/lib etc. in the users’ own directories
to make sure all the dependent shared libraries can be
accessed at runtime. This is to see how much the shared
library support Cray provides on Hopper through the
scalable shared root file system has helped the shared library
applications. Our tests show that on each file system, the
Pynamic startup time is lowered significantly by using the
shared root file system compared to not using the shared root
file system on Hopper (the unsupported way of running
shared applications on Hopper). And without the shared root,
Pynamic could not run beyond 2048 cores on all the five file
systems. Jobs beyond this concurrency hung or ran into
errors. We believe this is some scalability issue with the
current DVS implementation (which Cray is actively workin
on) that all file systems, exept the Lustre /scratch file system,
depend on on Hopper. Among the five file systems, the
shortest startup time at large scale was observed when the
shared libraries and Python modules were stored in the
/scratch file system and the shared root file system was
enabled.

With this knowledge, we ran the user code Warp by
storing its shared libraries and Python modules in the
/scratch file system. Fig. 3 shows the startup time of Warp.
Compared to the original user prediction (they stored the
shared libraries on the /home directory), the Warp code can
start up around four times faster at 36K cores when storing
shared libraries in /scratch versus /home.

One problem with using /scratch is that the startup time
may be subject to a large fluctuation due to the heavy
contention from other users.

Figure 3. WARP startup time when the shared libraries and Python
modules were stored in the /scratch file system and with the shared root
enabled.

IV. TESTS WITH EXECUTION PATHS
Cray has been actively working on improving the shared

library performance on their HPC machines. In addition to
being engaged in improving the DVS performance that the
shared libraries rely on, they have also changed the default
search paths to the shared libraries in the programming
environment in order to improve the shared library
performance. In the past, RPATH was included in the
dynamic executables with a path to the libraries to use at
execution time. Now, at execution time, symbolic links to
these libraries will be found in the single directory
/opt/cray/lib64 using ld.so.cache which has the effect of
cutting short the number of the search paths for the dynamic
libraries they support. This should improve startup
performance of dynamically-linked applications by reducing
the time spent on traversing multiple paths to search for the
needed shared libraries.

Fig. 4 shows the Warp startup time using Cray’s new
approach of using /opt/cray/lib64 as the path to the shared
libraries (blue) and using the RPATH approach (green). Note
the startup times at 36K cores from two methods are
overlapped. One can see that with this new approach, the
startup time of Warp does not show an observable
improvement.

Figure 4. Comparison of Warp startup time when shared library search
defaults changes.

Cray’s default search path changes only affect the
libraries Cray provided, so we tested the same idea for the
Warp’s own shared libraries. Warp uses 48 shared-object
libraries distributed among the directories, so instead of
allowing the code traverse a number of directories to search
for these libraries, we stored as many shared libraries as
possible in a single directory (hence the
LD_LIBRARY_PATH is shorter) and tested its startup
time. Fig. 5 shows the results. Compared to the use of the
/opt/cray/lib64 (red), using a shorter LD_LIBRARY_PATH
does not seem to bring an observable improvement in the
Warp startup time. It should be noted that the optimizations
discussed in this section, while possibly impacting the time
spent loading the 48 shared-object libraries, do not address
the cost of importing the 260 warp modules.

Figure 5. Warp startup time with a shorter LD_LIBRARY_PATH. Tests
were done on top of the Cray default search paths change.

These tests suggest that without addressing the
underlying mechanisms that Python applications rely on, it
is difficult to address the slow startup time for Warp,
especially on a production environment where there is
heavy contention for the IO resouces from other users on the
system. When a parallel Python application starts up
(loading .so files and importing Python modules), all cores
perform the same amount of IO operations, such as open(),
stat(), read(), etc. During Warp code startup, each core
performs 3388 opens (495 successful), 1632 stats (848
successful), and 500 reads which pound the metadata server
of the /scratch file system heavily as shown in Fig. 6. Fig. 6
shows the high metadata server IO activities (only the
open() operations shown in the Figure) while an 18K core
Warp job was running. Without reducing the number of IO
operations associated with Python applications, the startup
time would not be easily addressed.

Figure 6. Lustre metadata server activities are high during large
concurrency Warp job run. This figure was generated by Andrew
Uselton’s LMT tools [7].

V. DLCACHE AND FMCACHE (DLFM)
As part of the effort to optimize the shared-library

operations being performed by the WARP application, two
separate software packages were developed [8]. The first,
DLcache, optimizes the importing of shared-object libraries
(.so files). The second, FMcache, optimizes the importing of
Python modules (.py and .pyc files). As mentioned in the
Introduction, the term "shared library" is used to encompass
both shared-object libraries and Python modules in the
discussion. A Python-based application can be built to use
either of these packages alone, or both together. An
application that uses dynamic linking and dlopen, but does
not use Python, can benefit from using DLcache alone. For
this optimization effort, the WARP application was built to
use the two packages together.

It was deemed best to use two separate packages to
handle these two types of shared-library use. The Python
library uses two separate mechanisms to perform imports.
The import of a shared-object library uses a libdl function
called dlopen, whereas the import of a Python byte-code
module uses an internal libpython function called
find_module. The find_module mechanism is specific to
Python, and can benefit from FMcache, whereas the dlopen
mechanism is used in many kinds of applications besides
Python, and can benefit from DLcache. Both packages use a
similar strategy to optimize the I/O operations associated
with shared-library use. This strategy involves executing the
application in a "trial mode" on a small number of cores (or
PEs or MPI ranks) to produce a single file that contains a
consolidation of all of the shared objects loaded by the
application. The application can then be executed again "for
real" on a large number of cores, and can be directed to read
from the consolidated file instead of searching for and
accessing the numerous shared-library files. Thus, a part of
the optimization comes from reducing the number of

metadata operations involved in searching for, opening, and
closing many files on each of many cores.

Another part of the optimization comes from caching the
consolidated file so that the number of cores actually doing
I/O to external storage is greatly reduced. In the case of
DLcache, the consolidated file is cached in the RAM-
resident /tmp file system on each compute node hosting the
application. In the case of FMcache, the consolidated file is
read from external storage by the application's rank-0
process, and broadcast to the other cores via MPI. The two
optimization packages do not use the same caching strategy
because, in the case of FMcache, the MPI strategy is cleaner
and more optimal than the /tmp strategy, and in the case of
DLcache, the optimization is called into play during
application startup, before MPI is initialized.

The optimization strategy depends on three central
assumptions: (1) the application can be executed at either
small or large width; (2) the number of shared libraries to be
loaded, and their order, does not change from small- width to
large-width runs; and (3) the number of shared libraries to be
loaded, and their order, is identical across cores. In the case
of WARP, these central assumptions are valid.

We applied the DLMF methods to Warp, and showed the
startup time in Fig. 7 (blue). And for comparison, the
original Warp startup time using /opt/cray/lib64 (blue dots
shown in Fig. 4) was also included in the same figure (red).
One can see that with the DLFM methods, Warp can start up
in around 7 minutes at 40K concurrency! This is about a ten-
fold speedup compared to the original startup time (shown in
Fig. 4) at 36K concurrency (we don’t have the startup time
for 40K core runs for original method). If we compare the
results of the DLFM methods to the original user prediction
based on the startup time they observed (when the shared
libraries were stored in the /home file system), the speedup is
about 42 times! Now Warp users should be able to run the
code at their desired concurrency (40K) on Hopper.

Figure 7. Warp startup time compariosn between the DLFM methods
(blue) and the original method (after Cray exeution path change) (red).

In Fig. 9, the startup time breakdown between the load
and the module import time of the DLFM methods is shown

with a stacked bar graph (the blue bars show the load time,
and the purple bars show the module import time). And for
comparison, we also showed the same data for the original
method (the results shown in Fig. 4) in Fig. 9 as well. One
can see that total speedup of DLFM methods are the effects
from both the DLcache and FMcache methods. The load
time is comprised entirely of DLcache operations. The
import time is comprised of both DLcache and FMcache
operations, since Warp imports both shared-object libraries
and Python modules. The steeper increase in import time
with increasing core count is likely due to the FMcache read-
broadcast strategy, which comes into play on every import,
whether the object being imported is large or small. There
are definitely opportunities for further optimization here,
though they may involve a cost in compute-node memory.

Figure 8. Warp startup time breakdown between the load and module
import time when the DLFM methods were used. Where the blue bars
show the load time and the purple bars show the import time.

Figure 9. Warp startup time breakdown between the load and module
import time when the /opt/cray/lib64 was used as the default search parth
for the shared libraries. Where the blue bars show the load time and the
purple bars show the import time

We note that due to the limited /tmp space (500MB)
configured on Hopper, we were not able to test the DLFM
methods with the default configuration of Pynamic (495
total shared objects), for which the total size of shared
objects is 1.39GB.

VI. CONCLUSION
To provide a workaround for the huge startup time for

Python applications on Hopper, we tested shared library
performance on Hopper using two selected benchmark
codes, a standard Python benchmark code, Pynamic and a
NERSC user provided code called Warp. Through the
Pynamic performance tests on each of the five file systems
available on Hopper, we have identified the Lustre scratch
file system as the optimal file system for users to store
shared object files (.so files) and Python modules (the.py
and .pyc files). This has brought a four-fold speedup
compared to the original user prediction when storing Warp
libraries and Python modules on the /home file system. We
tested Cray’s new shared library default path
(/opt/cray/lib64) compared to the original RPATH approach
deployed on Hopper, and we also tested a shorter
LD_LIBRARY_PATH, and found no observable startup
time reduction for this specific application code (Warp)
which has a relatively small number of shared object files
(48) to load compared to the number of python modules
(260) to import. The DLcache and FMcache methods
developed by one of the authors [Davis] are able to reduce
both the shared object file loading time and the Python
module import time effectively by reducing the number of
the metadata IO operations and their contention, as well as
reducing the number of cores doing IO operations. Our
effort has brought a ten-fold speedup for Warp startup time
at 36K core concurrency compared to the /opt/cray/lib64
directory as the shared library default search path, and has
allowed Warp to start up in 7 minutes at 40K core
concurrency.

Our tests suggest that when users run shared applications
at scale on Hopper, they should store their shared libraries
and/or Python modules on the /scratch file system, and adopt
the DLcache and FMcache methods in their large scale runs
where applicable to achieve a tractable startup time on
Hopper.

VII. ACKNOWLEDGEMENT
The authors would like to thank Sue Kelly at Sandia

National Laboratories who helped us getting started with
this work and bridged the collaboration between NERSC
and Cray. The authors also thank Sean Zhu, a NERSC
summer student in 2011, who was involved with the early
work of this project. Authors also thank NERSC user David
Grote (WARP developer), and Jean-Luc Vay who motivated
us to investigate the performance issues with the shared
libraries on Hopper. David Grote provided the WARP code
and instructions to build and run the code, and was involved
with the DLcache and FMcache tests. Authors would like to
thank Nick Wright, Andrew Uselton, Thomas Davis, David
Skinner, Harvey Wasserman and other NERSC staff for
their valuable discussions and help. This work was
supported by the ASCR Office in the DOE, Office of
Science, under contract number DE-AC02-05CH11231. It

used the resources of National Energy Research Scientific
Computing Center (NERSC).

REFERENCES

[1] http://www.nersc.gov/users/computational-systems/hopper/
[2] http://docs.cray.com/books/S-0005-4003/S-0005-4003.pdf
[3] Richard Gerber, The Case for Shared-Library Support in High

Performance Scientific Computing, NERSC internal report, April,
2011.

[4] http://hif.lbl.gov/theory/WARP_summary.html/

[5] Suzanne M. Kelly, Ruth Klundt and James H. Laros III, Shared
Libraries on a Capability Class Computer, CUG metting, May 23-26,
2011, Alaska, Fairbanks.

[6] http://computation.llnl.gov/casc/Pynamic/pynamic.htm
[7] Andrew Uselton, The Performance Monitoring Archive, https://portal-

auth.nersc.gov/project/pma/
[8] Mike Davis, Using the DLcache and FMcache methods for large

scale Python applications and shared library applications,
http://www.nersc.gov/assets/userguide.txt/
http://www.nersc.gov/users/software/development-tools/python-tools/

