
Software Usage on Cray Systems across Three Centers (NICS, ORNL and CSCS) 

Bilel Hadri  
National Institute for Computational Sciences (NICS) 

University of Tennessee 
Oak Ridge, TN, USA 

e-mail: bhadri@utk.edu 

Timothy Robinson 
Swiss National Supercomputing Centre (CSCS) 

CH-6900 Lugano, Switzerland 
e-mail: robinson@cscs.ch 

Mark Fahey 
National Institute for Computational Sciences (NICS) 

Industrial and Information Engineering 
University of Tennessee Knoxville 

e-mail: mfahey@utk.edu 

William Renaud 
Oak Ridge National Laboratory (ORNL) 

Oak Ridge, TN, USA 
e-mail: brenaud@ornl.gov 

 
 

Abstract— In an attempt to better understand library usage 
and address the need to measure and monitor software usage 
and forecast requests, an infrastructure named the Automatic 
Library Tracking Database (ALTD) was developed and put 
into production on Cray XT and XE systems at NICS, ORNL 
and CSCS. The ALTD infrastructure prototype automatically 
and transparently stores information about libraries linked 
into an application at compilation time and also tracks the 
executables launched in a batch job. With the data collected, 
we can generate an inventory of all libraries and third party 
software used during compilation and execution, whether they 
be installed by the vendor, the center’s staff, or the users in 
their own directories. We will illustrate the usage of libraries 
and executables on several Cray XT and XE machines (namely 
Kraken, Jaguar and Rosa). We consider that an improved 
understanding of library usage could benefit the wider HPC 
community by helping to focus software development efforts 
toward the Exascale era.  

Keywords: library tracking, Cray XT, Cray XE, NICS, 
ORNL, CSCS, numerical libraries, I/O, applications 

I.  INTRODUCTION AND MOTIVATIONS 
Supercomputing centers host HPC systems to enable the 

scientific discoveries of researchers worldwide. On these 
systems, the staff often supports hundreds of different 
software packages, each with multiple versions, and each 
version potentially built with multiple compilers; For 
example, at the National Institute for Computational Science 
(NICS), the staff support close to 150 software packages on 
Kraken [1] (funded by the National Science Foundation). 
With the costs associated in maintaining leadership 
computing systems, it is important to identify not only the 
most used libraries but also the least-used software in order 
to provide more efficient, targeted support. Without an in-
depth knowledge of the actual usage of libraries at 
compilation and execution, application support staff are often 
required to make decisions about upgrading packages or 
removing older versions based to some degree on their own 
preferences or instincts. Unfortunately, because these 
decisions are based on incomplete data, staff must be 
conservative when deprecating and/or changing default 

software versions. Furthermore, national agencies, 
companies and research teams occasionally request reports 
on library and application usage on HPC systems, with 
particular interest placed on software that was funded or 
developed by one of their initiatives. Hence, it is essential to 
measure and monitor the software usage and forecast needs. 
The Automatic Library Tracking Database (ALTD) thus 
aims to better understand library usage on HPC systems.  

The ALTD automatically and transparently stores 
information about libraries linked into an application at 
compilation time and also stores information about 
executions of such applications in batch jobs. The solution is 
based on intercepting the linker – to get information on 
libraries utilized – and intercepting the MPI job launcher to 
track parallel jobs executed. Wrapping the linker and the job 
launcher through scripts is a simple and efficient way to 
obtain the information automatically and transparently with 
no overhead. In addition, the ALTD stores information about 
compilation and execution in an SQL database, which can be 
mined to provide reports. For example, the ALTD can 
generate data on the most or least used libraries, and finer-
grained detail such as specific version numbers. This 
database can assist application support staff in their decision 
process to upgrade, deprecate, or remove libraries, and thus 
provide a higher quality service to their users. It can also 
provide the ability to identify users that are still linking 
against deprecated libraries, or using libraries or compilers 
that are known to have bugs or performance issues. Tracking 
the usage of software thus allows for higher quality – and 
more efficient – user support. 

The ALTD prototype has been installed on Cray XT/XEs 
at three different centers: NICS and Oak Ridge Leadership 
Computing Facility (OLCF), both located at Oak Ridge 
national Laboratory, and the Swiss National Supercomputing 
Centre (CSCS), in Lugano, Switzerland.  

In this paper, we will present various reports on the usage 
of libraries and executables – for example, the number of 
instances that particular libraries have been used, and the 
total number of CPU hours consumed by third-party 
software applications. The data mining with ALTD on Cray 
systems managed by three different centers (NICS, ORNL 



and CSCS) will help to obtain a detailed and accurate survey 
of the usage of software installed not only by the vendor, but 
also by the staff at different HPC centers and by the users in 
their home directory. For instance, since several compilers 
are provided on Cray systems, information about which 
compilers are used to build certain applications is beneficial 
not only for the centers, but also for the vendors and the 
developers of software applications and libraries.  

Tracking library usage is part of a solution for improving 
the state of HPC software development and support as the 
computational science community moves towards the era of 
Exascale computing and beyond. 

This paper is organized as follows: Section 2 provides an 
overview on ALTD. Section 3 presents results from data 
mining efforts including the most libraries and executables 
on Kraken, Jaguar and Rosa. Finally, section 4 summarizes 
the results of the software usage analysis and presents our 
plans for future improvements to the ATLD project. 

II. OVERVIEW OF ALTD 

A. Description of ALTD 
In this section we describe briefly the objectives and 

implementation of the ALTD. We refer the reader to [2] for 
more details. 

A primary objective of ALTD was to provide a 
lightweight solution with essentially no overhead at 
compilation or runtime. Our solution is based on intercepting 
the GNU linker (ld) [3] to get the linkage information, and 
the job launcher (aprun)[4] to get runtime information. 
Wrapping the linker and the job launcher through scripts is a 
simple and efficient way to obtain the required information 
automatically and transparently. ALTD is able to track both 
static and shared libraries; however, libraries that are loaded 
and unloaded at runtime such as dynamically linked libraries, 
are not tracked, since ALTD stores information during the 
linking process.  

Our custom wrapper for the linker (ld) intercepts the user 
link line and parses the command line to capture the link 
line, which is then stored in the linkline table in the ALTD 
database (MySQL). Because of the fact that typically more 
libraries are included on a link line than are actually used, we 
employ a two-step process to identify the libraries actually 
linked into the executable. At the same time an ELF section 
header is included in the user’s code, which is a marker that 
will be used to record any subsequent usage of this particular 
executable. 

We intercept the job launcher as a secondary measure of 
“library usage” by counting how many times an executable is 
run, and thus in turn how many times each library is used, by 
linking the jobs table back to the linkline table. This script 
extracts some job-specific environment variables from the 
batch system, such as job id (PBS_JOBID in the case of 
PBS, SLURM_JOBID in the case of SLURM). Then, the 
command objdump is run on the executable to display the 
information that has been stored in the section header of the 
user’s executable during the linking process. Finally, the 
extracted information is inserted in the jobs table of the 

database, and control is passed back to the aprun wrapper 
that then calls the real aprun. 

Towards the end of every month, Cray provides the latest 
release of its programming environment, which typically 
includes new versions of scientific libraries, message passing 
libraries, third-party libraries, and so on. It is generally the 
case, therefore, that many different versions of a given 
library (or compiler, or application) are present on the system 
at the same time. Hence it is important that not just the 
library name but also the version number is recorded. This is 
a fairly straightforward task, because of the way in which 
libraries are installed and made available to users. NICS, 
OLCF and CSCS all make their software available via 
modules, and the modulefiles set paths to libraries through 
setting environment variables. The paths contain version 
numbers according to known conventions, and thus the 
linkline recorded by ALTD contains version number 
information inherently. In other words, when a library is 
linked into an application, the complete library path is 
intercepted, and this path contains both the name of the 
library and its version number. 

B. Installation 
1) Various approaches 

The ALTD framework can be put into production by 
implementing one of the following two methods: 

a) using a modulefile: A modulefile can be used to 
make ALTD part of the default environment. This method 
gives the user the ability to bypass the ALTD wrappers by 
simply unloading the ALTD module (if it causes any 
unforeseen problem, for example). This method has the 
potential benefit of being scalable – if one has multiple 
linkers or job launchers with the same name in different 
locations, by loading the ALTD module appropriately, the 
wrappers are then “in front” of the various linkers/launchers. 

b) linker and job launcher relocation: Another 
installation method is to rename the actual ld and aprun 
commands to, for example, ld.x and aprun.x, and then place 
ALTD’s ld and aprun wrappers in /usr/bin. This method has 
the advantage that the ALTD framework is completely 
transparent to the user, and the user cannot turn off ALTD 
logging by unloading a module.  

2) Machines installed 
The ALTD has been in production on Cray XTs at three 

different centers: NICS, Oak Ridge Leadership Computing 
Facilty (OLCF), both located at Oak Ridge National 
Laboratory, and CSCS – the Swiss National Supercomputing 
Centre. A prototype was first put in production on the Cray 
XT Jaguar[5] at OLCF in 2009 using the linker and job 
relocation implementation. During the process of upgrading 
the Cray XT5 Jaguar to a Cray XK6 TITAN, the module 
approach has been deployed. ALTD has been in production 
on Kraken (using the module-based ATLD implementation) 
since February 2010. At CSCS, ALTD has been in 
production on Rosa [6] since June 2011, at which time the 
machine was an XT5. Rosa was upgraded to an XE6 in 



December 2011. CSCS uses the linker and job launcher 
relocation implementation of ALTD.  

 
3) Known Issues 
There is a known issue between the Totalview [7] 

debugger and ALTD, which requires a workaround be put in 
place. The workaround allows Totalview to function 
correctly, but does not allow ALTD to track applications that 
are executed from within Totalview. 

When testing ALTD with the Cray Programming 
Environment and the Cray Compiler (CCE), we noticed that 
CCE uses its own linker (rather than the GNU linker located 
in /usr/bin). A workaround with the altd modulefile is to set 
LINKER_X86_64 to the location of the ld from ALTD 
(/sw/altd/bin/ld) and the module ALTD has to be unloaded 
and loaded when PrgEnv-cray is used. After reporting this 
issue Cray created an environment variable ALT_LINKER 
for users who want to use an alternative linker path. This 
change was introduced with xt-asyncpe/5.05, whereby the 
workaround is no longer required. 

III. ANALYSIS REPORTS 
ALTD stores information about every executable linked 

and every job executed, and this corresponds to hundreds of 
Mb of data gathered on each platform. It is clear, therefore, 
that data mining must be performed to extract any valuable 
information on the usage of libraries. For Jaguar and Kraken, 
we consider the data corresponding to a one-year period 
from 1 January to 31 December 2011. For Rosa, we consider 
the data gathered over a total of nine months: a six-month 
period (from 1 June to 30 November 2011) as a Cray XT5, 
and a three-month period (from 1 December 2011 to 29 
February 2012) after the upgrade to XE6. In this report the 
usage by the staff involved in the installation of the software 
have not been included, to reduce the impact of high usage of 
a package during its installation. In total, ALTD has recorded 
the following data at each site:  
• Kraken: 456,437 successful compilations by 860 users, 

and 1,434,972 application executions by 919 users. 
• Jaguar: 1,024,793 successful compilations performed 

by 684 users and 1,325,538 application executions by 
671 users. 

• Rosa: 103,451 successful compilations by 254 users, 
and 501,102 application executions by 309 users. 

It is interesting to observe that on both Kraken and Rosa 
the number of individual users compiling (linking) a code is 
significantly smaller than the total number of users running 
jobs. The percentage of active users who have never 
compiled a code is about 18% and 6%, on Rosa and Kraken, 
respectively. The presence of these “black-box” users, who 
are likely running applications installed either by the centers’ 
staff or by their colleagues, needs to be taken into account 
when center staff are considering the installation and 
maintenance of third-party applications for their users.  

A. Library usage during linking 
In this section, we consider two different metrics for 

determining library usage: the total number of instances of 

linking a given library, and the number of unique users 
linking a given library. The reason we consider the latter 
metric is that the total number of instances can in some cases 
be artificially high – for example, in the case of autotuning 
experiments, which might involve a user performing many 
hundreds of compilations, generating executables that are 
never used for performing production science.  

1)  Compilers  
Cray provides its users with support for several different 

compiler suites – open source and proprietary – including 
GNU, PGI, Intel, Pathscale and its own compiler, the Cray 
Compiler Environment (CCE). There is a not insignificant 
cost associated with supporting a compiler suite – 
programming environment infrastructure needs to be 
updated, and all associated libraries need to be continually 
rebuilt – so it is in the interest of Cray to have a good 
understanding of the use of compilers on its machines. 
Moreover, it is in the interest of HPC centers to know 
whether they need to be paying for particular proprietary 
compilers.  

It is not, however, a completely trivial task to determine 
which compiler has actually been used in a given 
compilation. Determining the usage of the compiler by 
searching for compiler paths (like /opt/pgi, /opt/cray/cce, and 
so on) can produce false positives: most codes need some 
libraries from /opt/gcc, even when GNU’s compiler was not 
used for the compilation. For this reason, we have restricted 
the mining of compiler usage to MPI codes, where we can 
determine the compiler definitively by searching for the 
“mpich2-<compiler>” string in the linkline.  

Tables I and II show the number of compilations 
performed with, and the number of users of, the compilers 
available on the different systems. On both Kraken and 
Jaguar, PGI is the default compiler, and the results show that 
the majority of codes are built with PGI on these systems. 
The next most popular compilers are GNU and Intel, while 
the use of CCE and Pathscale – which is no longer officially 
supported by Cray – is much lower. It should be noted, 
however, that CCE has been available to Kraken users only 
from the middle of the 2011, and, moreover, the fix to track 
CCE usage described earlier was only implemented in the 
last quarter of 2011. The actual usage of CCE is therefore 
higher in early 2012, where the number of number of 
instances on Jaguar(TITAN), for example, has increased to 
close to 10% of total compilations and the number of users 
has increased to close to ten. 

TABLE I.  USAGE OF COMPILERS (NUMBER OF INSTANCES) 

Compiler Kraken Jaguar Rosa 
GNU 26689 70854 9407 
PGI 51154 132345 6116 
Intel 6321 55182 1729 
CCE 69 343 1415 

Pathscale 14 1486 389 

TABLE II.  USAGE OF COMPILERS (NUMBER OF UNIQUE USERS)  

Compiler Kraken Jaguar Rosa 
GNU 189 190 85 
PGI 609 524 87 



Compiler Kraken Jaguar Rosa 
Intel 146 64 41 
CCE 3 3 39 

Pathscale 3 38 20 
Unlike the other centers, CSCS has chosen not to load a 

specific programming environment by default – users must 
load one explicitly themselves – and, perhaps because of 
this, the results are somewhat different to the other sites. At 
CSCS, GNU is the most popular compiler, followed by PGI. 
Like the other sites, Intel is the third most popular compiler, 
but CCE usage is much higher than at the other sites. Cray 
no longer officially supports Pathscale, and for this reason, 
CSCS encouraged its Pathscale users to change to a different 
compiler. Only two users have invoked the Pathscale 
compiler since the machine was upgraded to a Cray XE6 in 
December 2011. 

2) Overall most used libraries  
Besides the MPI library, the top 10 most used libraries 

fall into three major categories on all machines: numerical 
libraries (LibSci, FFTW, ACML, PETSc), I/O software 
(HDF5, NetCDF), and performance analysis tools (Craypat, 
PAPI, TAU).  

In order to facilitate an improved understanding of 
library usage, we provide the rankings of libraries (installed 
by the vendor and the center staff) with the version number 
of the library used. This information can assist the staff, and 
vendor, in making decisions on deprecating and/or changing 
default software versions. Furthermore, this methodology 
also facilitates the detection of software installed by the users 
in their home directories.  

3) Numerical Libraries 
Numerical libraries are in general the most used libraries 

on the Cray systems and it is not surprising to observe that 
the Cray Scientific library (LibSci) [8] is the most linked 
library, as shown in Tables III to V (note that on Rosa, the 
MPI library is higher ranked with 19056 instances, as shown 
in Table II).  

LibSci is loaded by default at all three sites and was 
linked in close to 10% of all codes compiled on the systems. 
It is used by about 50%, 43% and 33% of the users on 
Jaguar, Rosa and Kraken respectively. On Kraken it was 
determined, by examining the linklines recorded by ALTD, 
that a number of users were linking their applications to the 
native LAPACK/BLAS implementation from Netlib, rather 
than the optimized library from Cray. Such behavior would 
be nearly impossible to detect without the aid of a tool such 
as ALTD.  

FFTW [9] is the second most popular numerical library 
and it is interesting to note that the 2.1.5 version of FFTW is 
still well used and, on Kraken, it represents about 15% of the 
total usage of FFTW. ACML [10] is in general the third most 
used library on the Cray systems. ACML is actually a 
dependency for the Cray compiler, however we find that 
most of its usage on Jaguar, for example, is in conjunction 
with the PGI and GNU compilers. The high usage of ACML 
might be explained by its increased performance for certain 
LAPACK routines such as QR factorization and eigenvalues, 
as shown in [11]. A variety of packages including PETSc 
[12], Trilinos, Sprng are next highest ranked. We note that 

the TPSL (Third Party Scientific Libraries) [8] module, 
which contains a collection of third-party mathematical 
libraries for solving problems in dense and sparse linear 
algebra, is ranked among the top 10 on both Kraken and 
Rosa. TPSL includes the Hypre, SuperLU, SuperLU_dist, 
MUMPs, and ParMetis libraries. 

Remarkably, on Kraken, we notice that ATLAS is the 
second most linked package, albeit by only 8 users. This case 
is likely an example of an autotuning experiment, since 
ATLAS autotunes the BLAS for the systems through 
empirical compilations. The example of ATLAS shows that 
taking into consideration only the number of instances of 
linking of a given library can be in some cases give an unfair 
reflection of real usage.  

On Jaguar and Kraken there are some heavily used 
numerical packages that were installed by the users; an 
example is fftpack [13]. By examining the linklines recorded 
by ALTD we were able to determine that the usage of 
fftpack is associated with the wrfv3 code, a Weather 
Research and Forecasting model [14]. 

TABLE III.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON KRAKEN  

Library instances users Library/ version instances users 
Libsci  42271  291 libsci/10.5.02 29787 220 
atlas   35954 8 fftw/3.2.2.1  15987 128 
fftw   24494  235 xt-libsci/10.4.5  12167 169 
acml   3537  59 fftw/2.1.5  3710 64 
petsc   2460 20 acml/4.4.0/  3088 39 
sprng  1745 13 sprng/2.0b/  1739 12 
arpack  1721  11 petsc/3.1.05  1571 13 
tspl 1517 14 arpack/2008  1543 1 
gsl  1451  48 tpsl/1.0.0/  1517 14 
fftpack  1317 35 gsl/1.14  1063 39 

TABLE IV.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON JAGUAR  

Library instances users Library/ version instances users 
libsci 74970 317 libsci/10.4.4/  47383 245 
fftw 48728 163 fftw/3.2.2.1/  44779 109 
acml 17198 58 libsci/10.5.0/  26303 208 
trilinos  7518 25 acml/4.3.0/  9360 43 
petsc  6008 58 acml/4.4.0/  7727 32 
parmetis 1810 19 petsc/3.0.0.10/  1882 29 
umfpack 1773 24 fftw/3.2.2/  1832 15 
arpack 1166 12 parmetis/3.1 .1 1793 15 
fftpack 1069 21 trilinos/10.4.0/  1786 10 
pspline 1066 16 petsc/3.1.04/  1152 25 

TABLE V.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON ROSA  

Library instances users Library/ version instances users 
libsci 6240 109 fftw/3.2.2.1  4497 53 
fftw 6042 84 libsci/11.0.01/ 2806 33 
acml 2020 48 libsci/10.5.02  1919 55 
trilinos 1090 9 acml/4.4.0/  1123 44 
tpsl 974 7 libsci/11.0.04/  974 33 
parmetis 913 8 trilinos/10.6.0  731 1 
umfpack 865 9 fftw/3.3.0.0  721 27 
petsc 469 11 tpsl/1.0.0/  532 3 
mkl 145 7 libsci/11.0.03/  512 24 
Gsl 116 4 fftw/2.1.5  346 16 

 



An examination of library versions reveals that users on 
Rosa are linking their codes with more recent versions 
compared to users on Kraken and Jaguar. This could be 
explained at least to some degree by the forced relink 
required when Rosa was upgraded from XT5 to XE6 in 
December 2011. It might also be explained by a higher 
regularity of changing of default modules on Rosa compared 
to Jaguar. 

One of the most powerful aspects of ALTD is its ability 
to identify users running codes that were built with legacy 
versions of libraries (particularly ones that are known to 
provide suboptimal performance, or are known to contain 
bugs). As an illustrative example of how support staff might 
use the ALTD tool in this manner, we analysed which 
applications were run on a month-by-month basis, noting the 
version of LibSci that was linked in for each application. The 
results for Rosa are shown in Table VI. The time period 
covered corresponds to the XE6 incarnation of Rosa, which 
came online with LibSci version 11.0.03. Version 11.0.04 
was released at the end of December, 11.0.05 at the end of 
February, and 11.0.06 at the end of March. The results show 
that the majority of codes that ran in March 2012 were built 
with the oldest version of LibSci available on the system 
(version 11.0.03, released in November 2011). Moreover, 
there are essentially no applications currently running on 
Rosa that were linked with either of the two most recent 
versions of LibSci. Similar analysis on Kraken revealed that 
nearly half of all users are still executing codes built with 
10.5.X and even 10.4.X versions of LibSci. This shows that 
some users have not recompiled their codes since the 
upgrade from CLE2.2 to CLE3.1, as 10.4.5 is not available 
on the new OS. 

TABLE VI.  APPLICATIONS LINKED WITH LIBSCI ON ROSA  

 Usage of LibSci versions  

Month 11.0.3 11.0.4 11.0.5 11.0.6 

Dec 11 2326 18 0 0 

Jan 12 4875 2387 0 0 

Febr12 6388 4459 0 0 

March 12 2280 1693 4 0 

 Number of users using LibSci versions  

Dec 11 33 4 0 0 

Jan 12 17 29 0 0 

Febr12 12 30 0 0 

March 12 12 26 2 0 

TABLE VII.  APPLICATIONS LINKED WITH LIBSCI ON KRAKEN  

 Usage of LibSci versions  

Month 10.4.5 10.5.0 10.5.02 11.0.01 11.0.4 11.0.6 

Dec 11 2977 0 18886 1930 0 0 

Jan 12 4625 4 20370 621 77 0 

Febr12 2794 17 14262 692 1 0 

March 12 520 0 8582 979 8890 7 

 Number of users using LibSci versions  

Dec 11 17 0 71 5 0 0 

Jan 12 14 1 76 4 2 0 

Febr12 17 1 95 7 1 0 

March 12 11 0 47 7 75 2 

4) I/O libraries 
I/O libraries are the second most popular class of 

libraries used on the Cray systems, the most prevalent 
packages being HDF5 [15], NetCDF [16] and Szip [17], as 
shown in Tables VIII to X. We notice that the relative usage 
of these libraries differs significantly across the centers, 
however. On Kraken, hdf5 and iobuf [18] (installed by the 
staff) represent about 70% of I/O library usage. The usage 
of hdf5 is divided among several versions, and older 
versions such as 1.6.10 are used by a significant number of 
users. The Adaptable I/O System (ADIOS) [19] library, 
developed at OLCF, is used by only a few users on Kraken 
and Jaguar. Interestingly, the majority of use is of versions 
built by the users themselves. On Jaguar, NetCDF is the 
most used I/O package and most of the usage corresponds to 
a legacy version: 3.6.2. On Rosa, we find that users are 
linking their codes with only recent versions of HDF5 and 
NetCDF. 

TABLE VIII.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON KRAKEN  

Library instances users Library/ version instances users 
hdf5   6574  126 iobuf/beta  5763 16 
Iobuf  5781  17 hdf5/1.8.4.1  2023 48 
netcdf   3564  61 hdf5/1.8.5.0  1931 50 
Adios 2804 3 hdf5-par/1.8.5.0  1811 23 
Szip 1533 51 netcdf/3.6.2/  1600 25 
hdf4   661 11 szip/2.1 1533 51 
p-netcdf   320 6 hdf5-par/1.8.4.1  1467 17 
Silo 62 5 netcdf/3.6.3/  868 5 

 netcdf/4.0.1.3/  593 16 
hdf5/1.6.10  505 18 

TABLE IX.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON JAGUAR  

Library instances users Library/ version instances users 
netcdf 63172 159 netcdf/3.6.2  52164 98 
hdf5  15750 167 p-netcdf/1.1.1  8577 21 
p-netcdf  12448 36 hdf5/1.8.3.1  5713 42 
szip 3427 55 netcdf/4.0.1.1  5089 30 
adios 3427 30 hdf5-par/1.8.4.1  4875 50 
silo 2339 20 p-netcdf/1.0.3  3863 15 
liblut 273 5 szip/2.1  3427 55 

 netcdf-
hdf5par/4.0.1.3 3324 28 
hdf5/1.8.5.0/  2900 58 
netcdf/4.1.1.0/  2685 39 

TABLE X.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON ROSA  

Library instances users Library/ version instances users 
hdf5 4742 50 hdf5/1.8.5.0/ 4375 47 

netcdf 2769 43 netcdf/4.1.1.0/ 2560 41 

 

hdf5-par/1.8.5.0/ 2255 28 
hdf5-par/1.8.3.1/ 1235 6 
netcdf-
hdf5par/4.1.1.0 884 5 



Library instances users Library/ version instances users 
hdf5-par/1.8.4.1/  417 6 
hdf5/1.8.4.1  299 6 
hdf5-par/1.8.6/  234 10 
hdf5-
par/1.8.2.3.1  157 3 

hdf5-par/1.8.7  45 5 
5) Performance tools 
The most commonly used performance tool on the Cray 

systems is Craypat [8], followed by PAPI[20] and TAU 
[21], as shown in Tables XI to XIII. As was highlighted in 
[2], Craypat was in fact found to be the most used package 
on Jaguar in 2009, and on Kraken in 2010, when ALTD was 
in its early production phase. The number of users making 
use of performance tools to analyze their code is relatively 
small compared to the other categories. This might be 
explained by the fact that most users are relatively familiar 
with the Cray systems and their codes, and that profiling 
and analysis might be employed during code development 
rather than during the production science project. Only on 
Jaguar do we observe a substantial use of Vampir [22] and 
the HPCToolkit [23].  

TABLE XI.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON KRAKEN  

Library instances users Library/ version instances users 
craypat   4628  33 perftools/5.2.0  3352 21 
papi 999  63 craypat/5.1.3/  2950 30 
tau  471  39 craypat/5.1.0/  1674 11 
fpmpi 295 11 papi/4.1.2/  339 34 
mpip 113 3 tau/2.20 315 38 
ipm 32 6 fpmpi/1.1 295 11 

 papi/4.1.0.0.2  229 17 
papi/3.6.2.2  200 8 
papi/3.7.2  133 19 
mpip/3.1.2 113 3 

TABLE XII.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON JAGUAR  

Library instances users Library/ version instances users 
papi  6091 144 papi/3.7.2  3787 121 
craypat 3076 59 craypat/5.1.0/  1331 29 
vampir 1854 20 vampirtrace/5.11  782 16 
hpctoolkit 597 20 vampirtrace/5.12  780 4 
tau 537 26 craypat/5.1.3  767 19 

 papi/3.6.2.2  388 7 
papi/4.1.0.0.2 285 17 
craypat/5.0.2/  275 20 
vampirtrace/5.13  160 2 
hpctoolkit/5.1.0  143 8 

 

TABLE XIII.  LIBRARY USAGE RANKED BY NUMBER OF INSTANCES AND 
NUMBER OF USERS ON ROSA  

Library instances users Library/ version instances users 
craypat 3465 32 craypat/5.1.3/  3462 31 
papi 577 35 papi/4.1.0.0.2  295 28 
scalasca 163 7 papi/4.1.4/  139 5 
tau 27 2 papi/4.1.3/  95 3 

 papi/4.1.0/  46 4 
tau/2.21  18 1 

 

6) Programming Models/Language 
Regarding programing models, the results show that on 

Rosa their use is limited to boost, which was used on 650 
occasions and by just five users. We note that python use 
was detected for only one user, but this package is not 
generally used during the link phase, in any case. Indeed, for 
the others systems, the ALTD data show unreasonably low 
python usage. 

TABLE XIV.  NUMBER OF INSTANCES OF AND USERS USING DIFFERENT 
PROGRAMMING LANGUAGES 

Programing 
Developments 

Packages 

Machine 

Kraken Jaguar 

instances users instances users 
Python 14 6 28 10 
Chapel 6 2 635 10 
Charm 210 10 814 10 
Upc 13 1 10 1 
globalarrays 214 6 78 5 
boost 117 6 638 12 
 
Otherwise, as shown in Table XIV, we notice a high 

usage of charm, globalarrays, and chapel, a parallel 
programming language whose development is led by Cray.  

7) Software installed by users  
On all the systems, many users choose to install their 

own versions of the libraries needed by their codes, even if 
they are installed centrally. Some popular packages detected 
are ATLAS, Trilinos, FFTW, Umfpack, as well as 
development projects such as ADIOS and NAMD[24].  

B. Application usage during execution  
This section will illustrate the usage of the most 

launched executables on the different systems. As described 
in the previous section, the left side of the table shows the 
overall usage of the executables from third party software, 
while the right side of the table presents only the results of 
the packages installed by the staff (this corresponds to the 
/sw/ tree on Jaguar and Kraken, and the /apps/ tree on Rosa). 
It should be noted that some users copy the centrally 
installed version of an application to their scratch space on 
Lustre before performing their simulations. This behavior 
would result in the use of centrally installed software being 
underestimated.1  

It is a challenging task to create a complete reference list 
of executables and determine which of them correspond to a 
given third party software package. To search for a package 
such as Quantum Espresso[25], one would need to include a 
large number of different executable names (pw.x, ph.x, and 
so on). In the case of GROMACS [26] the executable is 
called mdrun; for Amber[27] it could be pmemd or sander, 
and lmp is generally associated with LAMMPS [28].  

In the first part of this section we analyze application 
usage based on the number of individual executions, while 

                                                             
1 A better approach to identify applications would be to consider their “tag_id”, which is assigned 
during link time and is stored in ALTD database. This method would identify categorically the 
packages installed by the staff at HPC centers.  



in the second part we take in consideration the number of 
CPU hours consumed by the applications. 

1) Application usage by the number of instances  
Tables XV, XVI and XVII show the usage of the third 

party software and executables ranked by the number of 
instances on Kraken, Jaguar and Rosa, respectively. Overall, 
the data shows that the most used codes are dominated by 
classical and ab initio molecular dynamics packages 
(NAMD, Amber, Espresso, GROMACS, CPMD, CP2K, 
VASP). NAMD is by far the most used package both on 
Kraken and Rosa, while on Jaguar, the most executed 
application is IOR (an I/O benchmark). This is not as 
surprising as it seems when one considers that Jaguar is 
connected to the largest Lustre-based file system in the 
world [29], and we note also the use of utilities specifically 
developed for JaguarPF, such as SPDCP, a tool for 
archiving data. IOR is followed by LAMMPS, which is 
installed by the staff on Jaguar, however 97% of its 
utilization was for versions installed by the users. The same 
is true for the numerical weather prediction code ESMF 
(Earth System Modeling Framework) [30], Other climate 
modeling applications are also represented, including 
nwpara and ccsm. 

TABLE XV.  USAGE BY NUMBER OF INSTANCES AND USERS ON KRAKEN  

Applica-
tion instances users Application / 

version instances users 

namd 368349 109 namd/2.7/  294547 19 
aprs 192749 20 namd/2.7b2  16237 10 
amber 71261 18 namd/2.7b1-09  7834 4 
hmc 51541 10 gromacs/4.5.3  3162 12 
vasp 17884 33 namd/2.7b1/  2576 3 
wrf 20141 19 amber/10  1830 7 
espresso 14597 20 amber/11  1081 4 
lammps 7035 40 namd/2.8 1052 10 
gromacs 6345 28 cpmd/3.13.2  1047 6 
cpmd 1773 6 q-espresso/4.2.1  950 1 

TABLE XVI.  USAGE BY NUMBER OF INSTANCES AND USERS ON JAGUAR  

Applica-
tion instances users Application / 

version instances users 

ior_bench 496352 2 vasp/4.6 16333 8 
lammps 105345 31 lammps/9sep10 2899 6 
esmf 86480 9 namd/2.7b1 1400 4 
amber 64725 4 namd/2.6 692 1 
vasp 45533 26 lammps/1jui11 477 4 
nwpar 33484 1 spdcp/1.0.0 121 17 
ccsm 25557 61 adios/1.3 46 4 
espresso 19605 20 esmf/5.2.0 25 3 
gromacs 8443 9 namd/2.7b4 14 1 
namd 5143 14 gromacs/4.0.5/ 12 1 

 

TABLE XVII.  USAGE BY NUMBER OF INSTANCES AND USERS ON ROSA  

Applica-
tion instances users Application / 

version 
instan

ces users 

namd  74952 22 namd/2.8 29351 12 
int2lm1  65274 8 namd/2.7b4 22160 6 
parfe 52167 13 espresso/4.2.1 17296 7 
cp2k  52010 37 cp2k/21.11.2011 11006 10 
siba 37443 4 cp2k/17.08.2010 7838 5 
gromacs 32573 13 vasp/5.2 2965 5 
echam 28480 11 vasp/4.6 2053 3 
espresso 21133 15 espresso/4.3.2 987 7 
dlpoly 8535 4 Cpmd/3.13 680 4 

Applica-
tion instances users Application / 

version 
instan

ces users 

vasp  5071 10 espresso/4.1 599 2 
On Kraken, besides the molecular dynamic codes, we 

notice a high use of packages related to ARPS [31], a 
regional forecast system developed by the Center for 
Analysis and Prediction of Storms (CAPS). The use of this 
software on Kraken is mainly limited to pre- and post-
processing of data from simulation runs executed on 
Athena, a Cray XT4 machine that was decommissioned in 
July 2011. 

On Rosa, besides the molecular dynamics packages like 
NAMD and dlpoly[32], we observe a high usage of 
executables related to community development projects 
such as int2lm [33], a code developed by Climate Limited-
area Modelling-Community. In the same science domain is 
ECHAM [34], a comprehensive general circulation model 
of the atmosphere. Two applications related to bone 
structures have particularly high usage: Parfe (a C++ code 
solving finite element problems arising from bone 
modeling)[35], and Siba (Simulate Bone Atrophy) [36]. 

2) Application usage by CPU hours consumed 
The results presented in the previous section 

corresponded to the number of instances of execution of a 
given application. A better metric might perhaps be the 
number of CPU hours consumed by an application, a metric 
which is not available directly from ALTD, but which can 
be derived by retrieving the job_id associated with an 
executable (recorded in ALTD) and linking this to other 
databases such as batch system accounting [37] or 
user/project accounting systems. 

Figures 1 and 2 show the top 10 most CPU-consuming 
applications on Kraken and Jaguar, respectively. Each 
application’s position is plotted using the CPU hours 
consumed and the average cores per run, while the size of 
the circle corresponds to the total number of executions. The 
figures reveal that – for both Kraken and Jaguar – the 
applications that consumed the most CPU hours were not 
ranked among the top 10 most used applications. 

 
Figure 1.  The top 10 most CPU consuming codes on Kraken in 2011, 

showing CPU hours consumed vs the average cores per run. 



 Indeed, on Kraken, the cosmological code p-gadget 
[38], used for the simulation of black hole formation, has 
used 72 million CPU hours (close to 10% of the total CPU 
hours consumed in 2011) in 332 executions using an 
average of 98304 cores. NAMD (the most executed 
application) is ranked in second position in terms of CPU 
usage, at 55 million CPU hours. Among the top 10, we find 
two further cosmological applications: enzo, with 12325 
executions, and castro, which was run just 85 times.  

On Jaguar the most CPU hours have been consumed by 
the S3D code[39], a massively parallel direct numerical 
solver (DNS) for the full compressible Navier-Stokes, total 
energy, species and mass continuity equations coupled with 
detailed chemistry. We see some of the same applications 
on Jaguar as on Kraken, such as ccsm, HMC (Hybrid Monte 
Carlo simulations of lattice QCD) [40], and Omen. We note 
that HMC is typically executed on Jaguar using a very large 
number of cores (average of 55345 cores), while on Kraken 
the average is much lower (around 3150). 
 

 
Figure 2.  The top 10 most CPU consuming codes on Jaguar in 2011, 

showing CPU hours consumed vs the average cores per run. 

IV. CONCLUSIONS AND FUTURE WORK 
ALTD, the Automatic Library Tracking Database, 

transparently records information about libraries used at link 
time and the usage of executables at job launch time. The 
data mined from three Cray systems (Kraken, Jaguar and 
Rosa) indicate high usage of three main categories of 
libraries during the linking process: numerical libraries (eg. 
LibSci, FFTW) are the most used, followed by I/O libraries 
(eg. HDF5, NetCDF), followed by performance and 
profiling tools (eg. CrayPAT and PAPI). The applications 
realm is largely dominated by molecular dynamics codes, 
such as NAMD, and climate modeling codes. In terms of the 
CPU hours consumed, however, cosmological simulations 
tend to dominate.  

The results of our data mining have shown that a 
significant number of users are using their own executables 
even where there is a centrally installed application 
available. There could be a number of reasons for this: a 
user might require a non-standard version (they are 

contributing their own plugins or code modifications, for 
example), they might prefer to use a version built by them 
(perhaps built with exactly the same compiler and compiler 
options as other versions they use on different machines), or 
it may simply be that they are unaware that a centrally 
installed version exists.  

The data mining has confirmed that there is extensive 
use made of numerical libraries (particularly LibSci, 
ACML, and PETSc). These packages provide BLAS, 
LAPACK, and FFTW routines as well sparse and iterative 
routines packed into single libraries. Since ALTD tracks 
only the name of library that was linked against (say LibSci 
or PETSc), the use of individual routines from such libraries 
is not currently identifiable. As future work, we envisage 
adding such functionality to track individual routines and 
correlate them back to “logical” libraries, which in turn 
could assist library develops and vendors (and centers) to 
tune the most used functions for current and upcoming 
architectures, including multicore and graphics accelerators.  

At present the data mining of ALTD is a manual process, 
consisting of python scripts that generate a few simple SQL 
queries. In the future we hope to provide tools that automate 
the querying process: support staff would thus be alerted 
immediately to cases where, for example, a user is running a 
code that is linked against a deprecated or buggy library.  

 

REFERENCES 
[1] http://nics.tennessee.edu/computing-resources/kraken 
[2] M. Fahey, N. Jones, B. Hadri, The Automatic Library Tracking 

Database, Conference: Cray User Group 2010, Edinburgh, United 
Kingdom 

[3] J. Levine, "Linkers and Loader," Morgan Kaufmann Publishers Inc, 
San Francisco, CA, USA, 1999. 

[4] aprun, "Retrieved from http://docs.cray.com/cgi-bin/craydoc. 
cgi?mode=Show;q=;f=man/alpsm/10/cat1/aprun.1.html,". 

[5] http://www.olcf.ornl.gov/computing-resources/jaguar/ 
[6] http://user.cscs.ch/hardware/rosa_cray_xe6/index.html 
[7] TotalView, "http://www.roguewave.com/products/totalview-

family/totalview.aspx". 
[8] Cray, "Cray Libraries," http://docs.cray.com. 
[9] Frigo Matteo and Johnson Steven G., "The Design and 

Implementation of FFTW3," Proceedings of the IEEE 93 (2), 216–
231 (2005). Invited paper, Special Issue on Program Generation, 
Optimization, and Platform Adaptation 

[10] AMD Core Math Library, http://www.amd.com/acml 
[11] B. Hadri and H. You A Performance Comparaison Framework for 

Numerical Libraries on Cray XT5 System., Proceedings of the 53rd 
Cray User Group (CUG11), Fairbanks, AK, May 2011 

[12] Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., 
Knepley, M. G., et al. (2008). PETSc Users Manual. Argonne 
National Laboratory. 

[13] P.N. Swarztrauber, Vectorizing the FFTs, in Parallel Computations 
(G. Rodrigue, ed.), Academic Press, 1982, pp. 51--83. 

[14] http://www.wrf-model.org/index.php  
[15] HDF5: http://www.hdfgroup.org/HDF5/ 
[16] Rew, R. K. and G. P. Davis, NetCDF: An Interface for Scientific Data 

Access, IEEE Computer Graphics and Applications, Vol. 10, No. 4, 
pp. 76-82, July 1990. 



[17] http://www.hdfgroup.org/doc_resource/SZIP/ 
[18] http://www.nics.tennessee.edu/computing-

resources/kraken/software?software=iobuf 

[19] ADIOS: http://www.olcf.ornl.gov/center-projects/adios/ 

[20] Papi. Retrieved from http://icl.cs.utk.edu/papi/ 
[21] Malony, S. S. The TAU Parallel Performance System. International 

Journal of High Performance Computing Applications, SAGE 
Publications , 20(2):287-331, 2006 

[22] F. J. Solchenbach, "VAMPIR: Visualization and Analysis of MPI 
Resources," 1996. 

[23] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, 
Gabriel Marin, John Mellor-Crummey, and Nathan R. Tallent. 
HPCToolkit: Tools for performance analysis of optimized parallel 
programs. Concurrency and Computation: Practice and Experience, 
22(6):685–701, 2010 

[24] Phillips J.C. et al., Scalable molecular dynamics with NAMD, Journal 
of Computational Chemistry26,16,p1781-1802, 2005 

[25] Limbach H., Arnold A., Mann B. and Holm C. "ESPResSo - An 
Extensible Simulation Package for Research on Soft Matter Systems". 
Comput. Phys. Commun. 174(9) (704-727), 2006 

[26] Van Der Spoel, David and Lindahl, Erik and Hess, Berk and 
Groenhof, Gerrit and Mark, Alan E. and Berendsen, Herman J. C, 
GROMACS: Fast, flexible, and free, Journal of Computational 
Chemistry, 26, p1701-1718, 2005 

[27] Case D.A. et al., The Amber biomolecular simulation programs. J. 
Computat. Chem. 26, 1668-1688, 2005 

[28] http://lammps.sandia.gov/doc/Manual.html 
[29] http://www.olcf.ornl.gov/kb_articles/spider/  

[30] ESMF http://www.earthsystemmodeling.org/ 
[31] Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced 

Regional Prediction System (ARPS) - A multiscale nonhydrostatic 
atmospheric simulation and prediction tool. Part I: Model dynamics 
and verification. Meteor. Atmos. Physics., 75, 161-193. 

[32] http://www.stfc.ac.uk/CSE/randd/ccg/software/DL_POLY/25526.asp
x 

[33] http://www.clm-community.eu/index.php?menuid=34&reporeid=53 
[34] http://parfe.sourceforge.net/index.php 
[35] http://www.mpimet.mpg.de/en/wissenschaft/modelle/echam.html 
[36] http://www.utc.fr/esb/esb98/abs_htm/MUELLER/remodeling2.html 
[37] "http://www.adaptivecomputing.com/resources/docs/gold/pdf/GoldUs

erGuide.pdf". Gold Database. 
[38] Colin DeGraf, Tiziana Di Matteo, Nishikanta Khandai, Rupert Croft, 

Julio Lopez, Early Black Holes in Cosmological Simulations: 
Luminosity Functions and Clustering Behaviour, Volker Springel, Jul 
2011 

[39] Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Direct 
numerical simulation of turbulent combustion: fundamental insights 
towards predictive models. Journal of Physics: Conference Series 16 
(2005) 65,79 

[40] M. A. Clark, Balint Joo, A. D. Kennedy, P. J. Silva , Better HMC 
integrators for dynamical simulations, PoS Lattice2010:323,2010 

 
 

 


