
Performance evaluation and optimization of the ls1-MarDyn Molecular Dynamics
code on the Cray XE6

Christoph Niethammer
High Performance Computing Center Stuttgart (HLRS),

University of Stuttgart,
70550 Stuttgart, Germany
Email: niethammer@hlrs.de

Abstract—Today Molecular Dynamics (MD) Simulations are
a key tool in many research and industry areas: Biochemistry,
solid state physics, chemical engineering, to just mention some.
While in the past MD was a playground for some very
simple problems, the ever-increasing compute power of super
computers lets handle more and more complex problems: It
allows increasing number of particles and more sophisticated
molecular models which were too compute intensive in the
past. In this paper we will present performance studies and
results obtained with the ls1-MarDyn MD code on the new
Hermit System (Cray XE6) at HLRS. The code’s scalability
up to the full system with 100.000 cores will be discussed
as well as a comparison to other platforms. Furthermore we
will present in detail code analysis using the Cray software
environment. From the obtained results we will discuss further
improvements which will be necessary for upcoming systems
in the post petascale era.

Keywords-performance, optimization, Cray, XE6, molecular
dynamics

I. INTRODUCTION

Molecular Dynamics (MD) Simulations are a key tool
in many research and industry areas such as biochemistry,
solid state physics or chemical engineering, to just mention
some. While in the past MD was a playground for some
very simple problems, the ever-increasing compute power
of super computers lets handle more and more complex
problems today. This allows not only to simulate larger
systems with higher number of particles but also more
sophisticated molecular models which were too compute
intensive in the past. The basics of MD simulations will
be introduced in section II

In this paper we will present performance studies and
results obtained with the ls1-MarDyn MD code on the new
Hermit System (Cray XE6) at HLRS. ls1-MarDyn is a MD
code used to simulate nano fluids. It allows the study of flow
phenomena or condensation processes at the nano scale. As
the density of fluids is high it is essential to simulate large
systems.

ls1-MarDyn is written in C++ and entirely MPI parallel.
It is build in a modular fashion which allows the separation
of physical calculations and parallel algorithms allowing

easy collaboration of experts in both fields. A more detailed
description of the program will be given in section III

Porting and optimization of ls1-MarDyn for the Cray XE6
system started with a detailed code analysis. At first we
present a comparison of the code on different platforms. This
includes a study of the different compiler environments on
the Cray system which can have a major impacts on the
overall performance as will be shown in section V-A.

Further on we present results of a more in detail per-
formance analysis using the Cray performance tools. Here
we identified different bottlenecks. As will be seen commu-
nication and I/O are the main problems for limited scala-
bility. This requires some code modifications for the new
Cray system. E.g. reducing global communication which
can hurt performance dramatically on such large systems.
Improvements in the MPI communication will be discussed
in section V-B of this paper. A second major point is the
I/O part, e.g. used for reading/writing checkpoints. Improve-
ments gained in this part of the program will be presented
in section V-C. As we show ls1-MarDyn can scale up to the
full system with 100.000 cores applying these modifications
today.

At the end we will discuss further improvements which
will be necessary for upcoming systems in the post petascale
era.

II. BASICS

Starting point for all classical MD simulations is Newton’s
2nd law which states, that the motion of each molecule is
determined by the simple differential equation

miv̇i = miẍi = Fi (1)

where mi is the mass of the molecule, xi and vi its position
and velocity as well as Fi the force acting on it. In case
of molecules with an angular momentum a similar equation
determines the time evolution of the molecules rotation.

The force Fi is given by the superposition of all forces
between molecule i and its interaction partners j. The
interaction between molecules are determined by the inter-
action potential U(r) where rij is the distance of the two

molecules:

Fi =
∑
j 6=i

Fij = −
∑
j 6=i

∇U(rij) (2)

Depending on the studied problem different potentials are
used to model the system. The most common potentials in
MD simulations of solids, liquids and gases are the Lennard-
Jones 12-6 potential, Coulomb interactions and their higher
order electrostatic interactions like those of dipoles and
quadrupoles as well as the Tersoff potential [1], [2].

The equations of motion for all particles in the system
build up a large coupled differential equation system. This
system cannot be solved analytically. MD simulations ap-
proximate the solution by a time discretization. In each time
step the current forces on all molecules are calculated. Then
the velocities and positions at the next time step are deter-
mined from the forces, positions and velocities at the current
time step. The sequence of these states build up a trajectory
in the physical phase space. Different physical properties can
be gained from this like the ensemble properties temperature,
pressure, chemical potential or time dependent properties
like the diffusion coefficient or condensation rate.

III. PROGRAM DESCRIPTION

Section II introduced different physical potentials. In the
case of a potential, which changes significantly only in a
short range and stays nearly constant in the far part, some
simplifications can be introduced. For these short range
potentials the potential can be split up into a near field and
a far filed part. While the near field part will be calculated
exactly within a cutoff radius rc, the far field part will not
be evaluated for every interaction but taken into account by
a far field correction.

This splitting allows now to modify the interaction algo-
rithm. Only molecules within the cutoff radius have to be
considered. Decomposing the simulation domain into cells
of the dimension rc guarantees that all interaction partners
of a molecule are found in the cell of the molecule itself
and the direct neighbouring cells. By this the computational
costs can be reduced from O(N2) required to compute all
the interactions between N molecules to O(N) required to
compute all interactions within the cutoff distance.[1]

In ls1-MarDyn molecules are modeled as rigid rotators
and are build up from one or more interaction sites. Different
site types are implemented for all the interaction potentials:
Lennard-Jones, charge, dipole, quadrupole and Tersoff. The
interaction of two molecules is calculated from the interac-
tion between all the sites within the interacting molecules.

IV. THE HERMIT SYSTEM

The Hermit system at HLRS used for the studies is a
Cray XE6 with 3552 compute nodes. Each compute node
is equipped with two AMD Opteron 6276 (Interlagos) pro-
cessors resulting in a total of 113664 cores. The Interlagos

processor comes along with new instructions allowing the
acceleration of floating point operations. The first one are
the new advanced vector extension (AVX) SIMD operations
which allow four double precision floating point operations
per cycle and introduce a non-destructive three-operand form
c = a + b. The second one is the fused multiply-add
instruction FMA4 allowing the computation of d = a+b×c
in a single cycle. By this the peak performance of the entire
system is about 1 PFLOPS/s. Each node is equipped with
at least 32GB RAM.[3]

The nodes are connected in a 3D torus network via the
Cray Gemini interconnect[4]. This interconnect allows for
very low latencies and high bandwidths. For MPI messages
the latencies are around 1, 4µs and the bandwidth between
two nodes can become as high as 6GB/s.

V. PROGRAM ANALYSIS

The over all performance of ls1-MarDyn is influenced by
three parts: Computation, communication and I/O. As ls1-
MarDyn is written as a portable C++ program without any
hand tuned assembler code, the computational performance
is heavily influenced by the compiler. We will study the
impact of the used compiler environment in part V-A. The
main goal of the ls1-MarDyn MD code are large systems.
Their calculation require a high level of parallelism so that
the communication within the program has a major impact
on the program speed. The communication is influenced at
two points: At first by the MPI usage and implementation
within the program, and second by MPI library parameters
which can be used to optimize the MPI environment. This
part will be examined in part V-B. The last part which has
to be considered is I/O. This is influenced by the usage of
I/O calls within the program and the file system. We will
study both aspects in part V-C

To get a rough overview of the performance Cray pat
can be used. This provides a profile as well as detailed
information from hardwaer performance counters. As can
be seen in figure 1....

The over all data 1 and data 2 cache hit and miss ratio
reported by craypat are 100.0% or 0.0% respectively1. So
the basic data structures are well designed with respect to
the used algorithms.

A. Compiler environment

As mentioned in sec. IV, Hermit is equipped with AMD
Opteron 6276 (Interlagos) processors. As these processors
have a new architectural layout, compilers may have a great
impact on the system performance. In this part benchmark-
ing results with the different programming environments are
presented.

The compiler versions as well as the used compiler
options of the different programming environments are listed

1For the craypat analysis the gnu programming environment was used.

Figure 1. Initial call tree of the ls1-MarDyn program obtained with a Cray
pat sampling experiment. The program was run using 8192 processes. The
initial and final I/O (including MPI Barrier calls) take a big part of the
time because the program was run only for a view time steps.

in table I. The listed options were selected from a set of
different combinations being the once producing the fastest
code for the specific compiler.

Compiler Version Options
GCC 4.6.2 -O3
Cray 8.0.3 -O3
Intel 12.1.3 -O3
PGI 12.2 -fast -Mipa=fast,inline -Minline=levels:10

Table I
COMPILER VERSIONS IN THE DIFFERENT PROGRAMMING

ENVIRONMENTS AND USED OPTIONS ON THE HERMIT SYSTEM.

 0

 0.5

 1

 1.5

 2

LJ EOX

n
o

rm
a

liz
e

d
 r

u
n

ti
m

e

Compiler comparison

GNU Cray Intel PGI

Figure 2. Normalized execution times of a single centered Lennard-
Jones (LJ) and an Ethylen Oxide (EOX) system for the different compiler
versions.

Figure 2 shows the normalized execution times for two
physical systems. The GNU compiler produces the fastest
code closely followed by the Cray and Intel compiler. With
up to 84.4% longer execution times in the EOX scenario,
the PGI compiler produces by far the slowest code.

B. MPI Communication

The parallel programming model used in ls1-MarDyn is
MPI. The parallelisation is based on a domain decompo-
sition: Each process gets a spatial domain of the simulated
system. While ls1-MarDyn allows arbitrary implementations
of domain decompositions, we focus on the default imple-
mentation using equal sized cuboidal subdomains.

As the calculation of the potentials and forces requires
information about the molecules’ spatial neighbours, halo
areas are required which cache the information about the
surrounding of the subdomain owned by a process. In each
time step molecules crossing subdomain boundaries have to
be transfered between the processes as well as the molecules
in the halo areas.

The communication pattern used to exchange the particle
data consists out of 3 communication phases. In each phase
the particles are communicated along one of the directions
x, y or z as shown in figure 3. This communication scheme
reduces the number of send and receive operations and
can make usage of a 3D network topology. The drawback
coming along with this communication scheme is less op-
portunity for overlap in the communication as each phase
has to be completed before the next one can start. The
implementation of this part within ls1-MarDyn makes use
of non blocking send and receive operations in combination
with overlap of computation and communication making
improvements in this part unlikely.

(a) x-direction (b) y-direction

Figure 3. MPI communication pattern used for the molecule exchange
between the sub domains in each time step. Representation is limited to
the x- and y-direction. The last communication in z direction is done
respectively.

So this is not the limiting factor in ls1-MarDyn as can
be seen in figure 1: Craypat reports an overall number of 4
places with MPI Allreduce calls. This is taking up around
20% of the computational part for the given example with 2
million molecules on 8192 cores. Craypat also reports long
times for the MPI Barrier call in the checkpoint writing
part which look worse but will not be as critical because
checkpointing was enabled for every time step – which will
not be the case in a real production environment.

1) Evaluation and optimization of reduction operations in
ls1-MarDyn: Within ls1-MarDyn global values like energy,
temperature or pressure have to be calculated in each time
step. This requires reduction operations summing up all
the local values of all the processes’ subdomains. Looking
at figure 1 we see that these collective communication

operations require most of the communication time of ls1-
MarDyn. Looking into the source code shows that multiple
all-reduction calls are occurring in sequence. As this col-
lective operation limits the scalability of the program these
calls should be avoided as much as possible.

Using a derived data type in combination with a cus-
tom reduction function allows to combine the sequence
of MPI Allreduce calls for all the variables into a single
MPI Allreduce call. We refer to the implementation using
multiple MPI Allreduce calls as not-agglomerated and to
the one using a derived data type as agglomerated.

PEs not-agglomerated agglomerated improvement
4096 68.57 61.83 9.83%
8192 45.51 41.34 9.18%

16374 41.17 36.95 11.95%

Table II
EXECUTION TIMES OF LS1-MARDYN USING ONE MPI REDUCTION FOR
EVERY GLOBAL VARIABLE (NOT AGGLOMERATED) AND THE VERSION

USING ONE MPI REDUCTION WITH A DERIVED DATA TYPE
(AGGLOMERATED).

The obtained results for both versions are presented in
table II. As can be seen the agglomerated version reduces the
execution time for the given setup by around 10% compared
to the not-agglomerated version.

2) Evaluation and tuning of the MPI environment: The
MPI library used in all programming environments is Cray
MPI version 5.4.4 which is based on MPICH2 version
1.3.1. It is optimized for the Cray Gemini interconnect
and provides a variety of tuning and steering parameters.
Some of them can be derived using the craypat tools. In the
following the effect of some of these parameters is evaluated.

As described at the beginning of this section, ls1-MarDyn
uses a 3D domain decomposition scheme for the MPI
parallelisation. Because the underlying network topology
of Hermit is a 3D torus the process topology may be
mapped to the network topology[5]. To place the processes
on respective compute nodes different strategies are available
in the MPI runtime system. The method can be chosen
with the MPICH_RANK_REORDER_METHOD environment
variable. Available methods are round-robin (0), SMP-style
(1), folded-rank (2) and custom rank placement (3).

As the rank ordering of processes within the domain is
known inside ls1-MarDyn, manual assignment is possible.
An optimized rank placement file can be obtained with
the grid order tool. An optimized placement can also be
obtained automatically with the Cay performance tools.
In table III results for the different placement methods
are presented. With a reduction of the execution time by
3% the results show only little effect of the placement
onto the overall runtime. This indicates that the overlap
of communication with computation can hide latency and
bandwidth problems within the code effectively.

RANK ORDER 4096 PEs
round-robin 15.8(7)
SMP-style 15.5(3)
folded-rank 15.9(7)
custom (grid-order) 15.4(6)
custom (craypat) 15.1(2)

Table III
EXECUTION TIMES OF THE MAIN LOOP WITHIN LS1-MARDYN FOR

DIFFERENT RANK ORDER STRATEGIES. NUMBERS IN BRACKETS STATE
THE UNCERTAINTY OF THE RESULT WHICH WAS OBTAINED AS AVERAGE

OVER MULTIPLE RUNS.

Another possibility to steer the MPI environment
is the tuning of the already discussed reduction
operations. Of special interest may be here the parameters
MPICH_USE_DMAPP_COLL which enables optimized
DMAPP2 collective algorithms, MPICH_COLL_SYNC
which performs a barrier before each MPI collective and
MPICH_REDUCE_NO_SMP which disables smp-aware
algorithms. Results for their usage are given in table IV.
As can be seen most of them have no effect. Only
MPICH_COLL_SYNC results in an increases execution time
– as one may expect on a NUMA system like Hermit.

4096 PEs
none 15.5(0)
MPICH_COLL_SYNC 16.9(4)
MPICH_USE_DMAPP_COLL 15.(58)
MPICH_REDUCE_NO_SMP 15.5(2)

Table IV
INFLUENCE OF DIFFERENT MPICH TUNING PARAMETERS.

 100

 1000

 10000

 100000

 100 1000 10000 100000

s
p

e
e

d
u

p

#PEs

LS1-MarDyn scaling on Hermit

1.0 Mio particles
16.8 Mio particles

67.1 Mio particles
268.4 Mio particles

ideal

Figure 4. Scaling of ls1-MarDyn on the Hermit system for different
numbers of molecules.

2DMAPP (Distributed Memory Application) is a new programming API
developed which can make use of one-sided communication in Cray Baker
networks.

C. I/O

The studies so far considered only the program parts
including calculation and communication. While in normal
programs I/O may not be important it can become a real
problem at scale. Concurrent access to a single file by
100.000 processes or parallel access to 100.000 files by each
process stresses the filesystem badly. In the following the I/O
system of ls1-MarDyn will be discussed.

In ls1-MarDyn I/O occurs at different points in the pro-
gram. At first there is the input file which has to be read
in at program start. This input file consists out of two files:
A general description file for the simulation parameters and
a phase space file holding component information as well
as molecule positions and velocities. The latter can be a
restart file from a previous run or generated with an external
program. The second I/O part in ls1-MarDyn is the output
of results during the program run. A generalized interface
allows to save data in a regular interval. Data written by
the output modules can be either some single values like
the current pressure, sets of multiple values e.g. for the
radial distribution function or large data sets required e.g.
for restart or visualization. The last I/O operation performed
during a program run writes out the final result and stores
a restart file which can be used later on.

In figure 5 the times required for the different I/O
operations performed withing ls1-MarDyn are shown. The
times are measured within the program itself using internal
timers. While the I/O times would be perfectly constant, they
increase considerably with the number of processes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000 10000

ti
m

e
 [

s
]

#PEs

LS1-MarDyn I/O times on Hermit

checkpoint xyz RDF

Figure 5. Times for the different I/O parts in ls1-MarDyn. The LJ example
was used in combination with intermediate I/O of the radial distribution
function output and restart files in every time step. The times for the I/O
within the main loop are mean values over all time steps.

To examine the origin of this problem a more detailed
analysis was done using the Cray iobuf tool. This tool
provides detailed information about the I/O operations on
a per process level. Information include for example I/O

times, the amount of data read/written, the number and size
of used I/O buffers or the number of partial writes. Results
for a single process are provided in 6.

PE 1086: File "lj40000_t300.inp"
Calls Seconds MB/sec

Read 1 2.185619 0.003748
Open 1 0.278424
Close 1 0.731858
Buffer Read 2 3.685361 0.569049
I/O Wait 2 2.184243 0.960128
Buffers used 2 (2 MB)
Prefetches 1

Figure 6. Results reported by the iobuf tool for the access to a restart file
by a single process in a 4096 PE run.

As can be seen in the output of iobuf, in the original
program each process opened the phase space file and read
in all molecules just disregarding the molecules outside the
local domain. Parallel access to a single file is very bad. So
this was improved by letting only rank 0 read in the phase
space file which then broadcasts the molecules to the other
processes in chunks. In figure 7 the improved I/O times are
presented. They are constant over the number of processes
and allow now to (re-)start even large jobs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 1000 10000 100000

ti
m

e
 [

s
]

#PEs

LS1-MarDyn I/O times on Hermit

1.0 Mio particles
16.8 Mio particles

67.1 Mio particles
268.4 Mio particles

Figure 7. Times for the new phase space file I/O part in ls1-MarDyn. The
same examples as in figure 5 were used.

VI. CONCLUSION

The GNU programming environment delivered the best
sequential program performance for ls1-MarDyn on Hermit.
This is a bit surprising but may be due to the fact that ls1-
MarDyn is written in C++.

The Optimization of the global communication by usage
of derived data types in combination with custom reduction
operation in the MPI Allreduce calls provided roughtly 10%
speedup of the execution time for the used examples. The

optimization of the MPI rank placement provided only a
smaller benefit due to the already overlapped communica-
tion and computation in the particle exchange part of ls1-
MarDyn.

The new MPI I/O with broadcasted input provides a clear
win to the formerly used approach where each process
read in the input file separately. It is now possible to
start ls1-MarDyn with any input/restart file at scale. The
output plugins were also improved by sending their data
to a single process which then writes the output to the
file. As a serialization occures here within the program the
improvement is not of the same size as for the input but
noticeable.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry
of Education and Research (BMBF) within the program
“IKT 2020 - Forschung für Innovationen” in the call “HPC-
Software für skalierbare Parallelrechner”.

REFERENCES

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids. Oxford: Clarendon, 1987.

[2] J. Tersoff, “Empirical interatomic potential for carbon, with
applications to amorphous carbon,” Phys. Rev. Lett., vol. 61,
pp. 2879–2882, Dec 1988.

[3] [Online]. Available: http://www.hlrs.de/systems/platforms/
cray-xe6-hermit/

[4] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system
interconnect,” in Proceedings of the 2010 18th IEEE Sym-
posium on High Performance Interconnects, ser. HOTI ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 83–
87.

[5] A. Bhatelé, L. V. Kalé, and S. Kumar, “Dynamic topology
aware load balancing algorithms for molecular dynamics ap-
plications,” in Proceedings of the 23rd international conference
on Supercomputing, ser. ICS ’09. New York, NY, USA: ACM,
2009, pp. 110–116.

