

Early experiences with the Cray XK6 hybrid CPU and GPU MPP platform

Sadaf R Alam
Swiss National Supercomputing Centre (CSCS)

Lugano, Switzerland
e-mail: alam@cscs.ch

Ugo Varetto
Swiss National Supercomputing Centre (CSCS)

Lugano, Switzerland
e-mail: uvaretto@cscs.ch

Jeffrey Poznanovic
Swiss National Supercomputing Centre (CSCS)

Lugano, Switzerland
e-mail: poznanovic@cscs.ch

Nicola Bianchi
Swiss National Supercomputing Centre (CSCS)

Lugano, Switzerland
e-mail: nbianchi@cscs.ch

Antonio J. Peña
Universitat Politècnica de València (UPV)

Valencia, Spain
e-mail: apenya@gap.upv.es

Nina Suvanphim
Cray Inc.

Lugano, Switzerland
e-mail: nina@cray.com

Abstract— We report on our experiences of deploying,
operating and benchmarking a Cray XK6 system, which is
composed of hybrid AMD Interlagos and NVIDIA X2090
nodes and the Cray Gemini interconnect. Specifically we
outline features and issues that are unique to this system in
terms of system setup, configuration, programming
environment and tools as compared to a Cray XE6 system,
which is based also on AMD Interlagos (dual-socket) nodes and
the Gemini interconnect. Micro-benchmarking results
characterizing hybrid CPU and GPU performance and MPI
communication between the GPU devices are presented to
identify parameters that could influence the achievable node
and parallel efficiencies on this hybrid platform.

Keywords-MPP systems, Cray XK6, Cray XE6, accelerators,
programming environment, performance characterization

I. INTRODUCTION
This manuscript provides an overview of the

characteristics and features of the Cray XK6 system, which
are critical for not only porting existing GPU accelerated
applications but also fundamental for achieving high node
and parallel efficiencies. The Cray XK6 is a hybrid CPU and
GPU massively parallel processing (MPP) platform that
incorporates the Cray Gemini interconnect, and NVIDIA
X2090 accelerated compute nodes [12]. The system is
considered as a first instance of a tightly integrated,
accelerator based MPP platform as it offers not only an
integrated node design but also an integrated programming
and system management environment for efficient
development and deployment of GPU accelerated
applications. At the same time, the system is seamlessly
integrated within the Swiss National Supercomputing Centre
(CSCS) operational and job accounting environments
alongside other Cray MPP production platforms.

Therefore, in addition to programming and performance
characteristics, we provide deployment and operational
considerations that are essential for managing a large-scale
hybrid system. At CSCS, two Gemini interconnect based
systems have been deployed recently: a 16-cabinet Cray XE6
system with dual-socket AMD Interlagos nodes [11] and a 2-
cabinet Cray XK6 system with hybrid AMD Interlagos and
NVIDIA X2090 GPU accelerator devices within a node.
Both systems have 32 Gbytes per node memory, a Lustre
scratch file system and have the SLURM resource manager.
We identify unique features of the Cray XK6 system with
respect to the Cray XE6 platform.

The outline of the report is as follows: an overview of the
key architectural and programming features of the Cray XK6
platform is provided in section II. In section III, unique
elements of Cray XK6 programming environment including
code development tools, and operational considerations and
issues are detailed. Benchmarking results that highlight the
unique features of the Cray XK6 system are presented in
section IV along with some a brief status update on
applications development and porting efforts on the Cray
XK6 platform. A summary of the paper and future plans for
the Cray XK6 platform and its successor system are listed in
section V.

II. ARCHITECTURAL AND PROGRAMMING ENVIRONMENT
In this section, we provide details of CSCS Cray XK6

and Cray XE6 platforms for architectural specifications,
programming and operating environment, and management
and operations of the system.

A. Processing Node
A Cray XK6 processing node is composed of an AMD

Interlagos 6272 socket, which has 16 cores constituting 8
compute modules [9].

!"#$%&'(%)*+,% !"#$%&'(%)*+,% !"#$%&-(%)*+,% !"#$%&-(%)*+,%

./%01$2,3%
445.67(88%%%
9:2,"*;%
(/</%

7(%01$2,3%
445.67(88%%%

9:2,"*;%
(/</%

(%01$2,3%
0445=%

)>?4?@%
&/8A8%

Figure 1. Layout of Cray XE6 and Cray XK6 nodes. Two nodes are connected to a Gemini interface.

The Cray XE6 has two AMD Opteron 6272 sockets per

compute node. As an accelerator device, the Cray XK6
system has an NVIDIA Fermi X2090 GPU. Figure 1 shows
two nodes of a Cray XE6 system and an XK6 system side
by side. Both systems have 32 Gbytes of DDR3-1600
memory while the Cray XK6 system has an additional 6
Gbytes of GDDR5 GPU memory.

B. Interconnect
The Cray XE and XK series systems are based on the

Cray Gemini interconnect. As shown in figure 1, two nodes
are connected to a Gemini chip via a Hypertransport (HT3)
interface. Both systems have a 3D torus topology: CSCS
Cray XE6 system has Class 2 – 3D Torus and the XK6 has
Class 0 – 3D Torus topology.

C. Operating System
Cray Linux Environment (CLE), which is a lightweight

variant of Linux, has been installed on both systems. The
systems are used in a cross-compile mode where typically
code development has been done on a frontend system
without CLE (using regular Linux) and GPU devices.

D. Program Development and Execution Tools
Code development utilities, for example, compilers,

debuggers and performance measurement tools for the x86
microprocessors are similar on both platforms. For
example, Cray, PGI, Intel, GNU and Pathscale compilers
are available on both platforms. The Cray XK6 system has
additional compilers and runtime drivers for GPU

execution. Both systems have a similar job launching
interface namely Application Level Placement Scheduler
(ALPS), which allows users to specify mapping and control
of parallel MPI and OpenMP jobs.

E. Numerical libraries
Tuned and optimized versions of math libraries

including BLAS, Lapack, and FFTW are available as part of
the Cray scientific libraries (libsci). A subset of GPU-
accelerated APIs is available for the Cray XK6 platform.

F. Communication libraies
An optimized version of message-passing (MPI)

communication for the Gemini interconnect has been
provided as part of the Cray programming environment. In
addition, compilers for PGAS languages (Coarray Fortran
and UPC) are supported by the Cray compilation
environment (CCE) [4].

G. Job scheduler and resource accounting
CSCS has deployed the SLURM resource management

system on both platforms, which CSCS has developed for
the Cray platforms [5]. Currently, the minimum allocation
unit is a processing node of a Cray XK6 and XE6 node.
Although users can specify core and memory requirements
through the job scheduler script, there has been no
mechanism in ALPS to identify accelerator resources.

!"#$%&'#

Figure 2. NVIDIA Fermi architecture. A streaming multi-processing (SM) unit has

32 cores and there are 16 such SMs in a Fermi X2090 device.

!"#$%&% !"#$%'(%!"#$%'% !"#$%')%

Figure 3. AMD Interlagos block diagram. Two

Bulldozer cores form a compute module to share two 128-
bit FMAC units.

Cray has extended system management and diagnostics

tools for the GPU devices. Cray Linux Environment (CLE)
provides a Node Knowledge and Recognition tool called
NodeKARE, which performs node health checks [6]. For
example, the node health checker takes into consideration
the status of the GPU devices be checking whether the
device is in a healthy state and that all the memory has been
cleared and available to the next process. In other words, on
a Cray XK6 system, additional tests are performed to verify
nodes are healthy and ready to run jobs prior to usage

III. UNIQUE ELEMENTS OF CRAY XK6 SYSTEM
Previous section highlighted several common design and

programming elements of the Cray XE and XK series MPP
platforms, which could enable a smooth transition from a
multi-core based node to an accelerator-based system.
However, we (at CSCS) experienced a few issues as the first
site to install such a system with an accelerator device,
which is considered as an I/O component from the operating
system viewpoint. In this section, background to the unique
elements of the Cray XK6 platform is provided.

A. Compute Units
The characteristics feature of a Cray XK6 node is an

accelerator device: NVIDIA X2090 Fermi GPU. Table I
provides a comparison with AMD Interlagos 6272 Opteron
processors.

TABLE I. COMPUTE UNIT SPECIFICATIONS OF GPU AND HOST CPU
(OPTERON 6272) OF A CRAY XK6 NODE. TOTAL COMPUTE PERFORMANCE

PER NODE IS 665+269 GFLOPS

 Fermi X2090 Opteron 6272
Cores 512 16
Clock frequency 1.15 GHz 2.1MHz
Floating point
performance

665 GFlops
(double-precision)

134.4 GFlops
(double-precision)

Memory
interface

GDDR5 DDR3 (1600)

Power envelope 225-250 W 90-115 Watts

B. Memory Subsystems
The two compute elements have distinct memory address

spaces and offer distinct memory hierarchies in terms of the
cache levels and sizes. Table II lists the characteristics of
these compute unit hierarchies. Note that the minimum level
of sharing for the NVIDIA devices is a streaming
multiprocessor (SM), which is composed of 32 cores, and the
L1 cache and shared memory are configurable by user
software. On Fermi, 32,768 x 32-bit register files are also
shared by the compute cores. Register files are dynamically
allocated to threads executing on compute cores, this is the
space where variables local to a thread are stored. Hence,
these are considered "shared" (Table II) as there is no fixed
configuration that assigns register files to specific cores.

TABLE II. CACHE AND MEMORY HIERARCHY OF THE NVIDIA FERMI
X2090 AND OPTERON BULLDOZER 6272 PROCESSORS

 Fermi X2090 Opteron 6272
L1 cache (size) 16-48 KB 16 KB
L1 (sharing) SM (32 cores) Core
L2 cache (size) 768 KB 2028 KB
L2 (sharing) All SMs Module (2 cores)
L3 cache -- 8 MB
L3 (sharing) -- Socket
Shared memory 16-48 KB per

SM
--

Global memory 6 GB 32 GB

The AMD Opteron memory hierarchy also includes non-

uniform memory access (NUMA) regions on socket as well
as on a node. Figure 4 shows NUMA layout of a Cray XE6
node with 4 NUMA regions, 2 per socket. On the Cray
XK6 platform, there are 2 NUMA regions, hence the impact
of the memory placement is less significant as compared to
a Cray XE6 node.

!"
#"

$"
%"

&"
'"

("
)"

*+,-"!"

."
/"

#!"
##"

#$"
#%"

#&"
#'"

*+,-"#"

%#"
%!"

$/"
$."

$)"
$("

$'"
$&"

*+,-"%"

$%"
$$"

$#"
$!"

#/"
#."

#)"
#("

*+,-"$"

001%2#(!!"

001%2#(!!"

001%2#(!!"

001%2#(!!"

001%2#(!!"

001%2#(!!"

001%2#(!!"

001%2#(!!"

34"567898"96:;4<="

>4
?=
6:
"!
"

>4
?=
6:
"#
"

Figure 4. NUMA layout of a Cray XE6 node. There are 2 NUMA regions
per AMD Opteron 6272 socket, therefore, a Cray XK6 node has 2 NUMA

regions. Memory transfers take place over the Hypertransport links.

C. Programming Languages (CUDA & OpenCL)
CUDA is an interface for programming NVIDIA GPU

devices that has been introduced by NVIDIA [3][13]. Both
C and Fortran interfaces are available. An offload model has
been proposed by CUDA where compute-intensive code
blocks are executed on the GPU devices but the host does the
control and data orchestration. CUDA proposes a data
parallel programming model and a code developer can
identify and develop parallel kernels using a few constructs.
Likewise, there are constructs for specifying data transfer
operations to and from host memory to the device memory.
The CUDA programming model also describes a detailed
memory model with register, local and global shared
memories, which programmers can exploit in order to tune
and optimize their codes on the device. In practice, most of
tuning and optimization efforts using the CUDA model are
centered on minimizing overheads of host and device
transfers as well as localizing memory operations within the
CUDA memory hierarchy. Recently, an x86 compiler has
been introduced for CUDA codes by the PGI compiler.
Hence, the codes written for the GPU devices can now be
executed on CPUs [16]. The CUDA C compiler from
NVIDIA (nvcc) and the CUDA Fortran compiler from PGI
are available on the Cray XK6 platform.

Currently, an older version of CUDA, version 4.0
instead of version 4.1, is available on the CSCS
Cray XK6 platform. There are a number of
dependencies that have been delaying the update
process. Earlier the issue was the availability of
an appropriate driver version as the Cray platform
installs a special version of the NVIDIA CUDA
drivers. Recently, the driver has been updated to
support CUDA 4.1 but the Cray PE has some
other dependencies. Once resolved, version 4.1
will be available. It is expected this process will
be streamlined for future releases of CUDA and
OpenCL programming updates.

OpenCL is a set of open standards that have been
introduced for developing programs for systems with
heterogeneous compute units [18]. Hardware vendors
provide the standard conformant drivers. Hence, OpenCL
codes can be executed on both CPU and accelerators. The
programming model allows for both data and task
parallelism. Like CUDA, there is a concept of parallel
programming for a device where concurrent tasks can be
grouped into work-items. OpenCL memory model is also
somewhat similar to the CUDA memory model (mainly due
to the underlying architectural characteristics), where
memory access options depend on how a data structure has
been declared.

D. GPU Drivers and Runtime (CUDA & OpenCL)
On the Cray XK6 platform, in order to execute

applications on the GPU devices, NVIDIA CUDA and
OpenCL drivers and runtimes are required. For CUDA
codes, the CUDA runtime and the driver API, both provided
by NVIDIA, are available on the backend compute nodes of
the system as the frontend or login nodes do not contain a
GPU device. In the case of OpenCL everything (compiler
and implementation) is in the driver, so there is basically
one single driver for OpenCL and CUDA and two separate
libraries. The OpenCL code is then just-in-time-compiled
from C. The CUDA code has to be precompiled through
nvcc to either binary or ptx.

An example of a unique issue we experienced
soon after the system became operational was the
OpenCL availability. A header file needed for
OpenCL code was not installed on the XK6
compute node at the default location even though
complete CUDA SDK was installed as part of the
Cray PE. This issue was resolved by copying the
file manually.

On the Cray XK6 platform, CSCS also
installed an OpenCL driver for execution on the
CPUs as this has not been made available as part
of the Cray PE.

E. Incremental GPU programmning using OpenACC
Both CUDA and OpenCL programming approaches

require fundamental changes to existing CPU-only code. In
order to facilitate an incremental adoption of the accelerator
devices, a few directives based standards have been
introduced [1][17]. Cray compiler environment (CCE)
provides support for the latest standard for accelerator
programming called OpenACC. The OpenACC directives
provide control for the following functionalities: regions of
code to accelerate, data to be transferred to and from the
device, and compiler hints for loop scheduling and cache
usage. An example of an OpenACC accelerator region is
below:

!$acc parallel loop vector_length(NTHREADS)
!$acc& private(x1,y1,i1,i2,i3,x2,y2) present(r,s)
 do j3=2,m3j-1
 i3 = 2*j3-d3
 do j2=2,m2j-1
 i2 = 2*j2-d2

 do j1=2,m1j
 i1 = 2*j1-d1
 x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)
 > + r(i1-1,i2, i3-1) + r(i1-1,i2, i3+1)
 y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)
 > + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3+1)
 enddo

 do j1=2,m1j-1
 i1 = 2*j1-d1
 y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)
 > + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
 x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)
 > + r(i1, i2, i3-1) + r(i1, i2, i3+1)
 s(j1,j2,j3) =
 > 0.5D0 * r(i1,i2,i3)
 > + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
 > + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
 > + 0.0625D0 * (y1(i1-1) + y1(i1+1))
 enddo

 enddo
 enddo
!$acc end parallel

The code can be compiled using an additional module

(craype-accel-nvidia20) and can be executed using the aprun
command without any additional flags for GPU execution.
Hence, from a user point of view, there have been no
changes in the execution model for a Cray XK6 node as
compared to a Cray XE6 node. The only restriction is the
number of MPI tasks. Only one MPI task can be executed
per node when the code is GPU accelerated, as the NVIDIA
driver setting on the Cray XK6 nodes has been configured
to support a single processor accessing the GPU (exclusive
access mode).

F. Accelerated libraries
Another critical component of the Cray integrated

environment for GPU code development is availability of the
accelerated numerical libraries. This includes a subset of
BLAS and LAPACK functions [10][14]. Additionally, some
functions have been optimized to run in hybrid host multi-
threaded and GPU accelerated configurations. The library
has been designed to work in different modes: it can work
without any code modifications where data transfers to and
from GPU are hidden from users; and it allows modifications
to enable code developers to hide data transfer latencies. For
example, a user can make the following call and it will be
executed on the GPU if the matrix sizes are larger:

dgetrf (M, N, A, lda, ipiv, &info)

if instead of CPU, the GPU device pointers are being

passed the code will execute on the device:

dgetrf (M, N, d_A, lda, ipiv, &info)

Data must be transferred to the GPU prior to the call to
improve performance.

The libsci accelerator interface can also be invoked
within the directives environment.

!$acc data copy(c), copyin(a,b)
!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,alpha,a,lda,
& b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

G. Code Development Tools
The code development process involves bug fixing and

tuning for optimization and performance. On Cray systems,
there are third part debugging tools from TotalView and
Allinea DDT for MPI and OpenMP programming [8][20].
Likewise, for performance measurement and tuning, Cray
performance analysis toolset (perftools) are available for
parallel MPI and hybrid MPI and OpenMP applications.

Both TotalView and Allinea DDT have introduced
CUDA debugging features in their tools; however, DDT
supports OpenACC officially.

One of the most critical issues on the Cray XK6,
right from the beginning, has been availability of
a debugger for parallel, GPU-accelerated
applications. Features that are unique to the Cray
XK6 platform have been the root cause of some
of the issues. Problems arise when MPI and
debug processes try accessing the device
simultaneously, which is setup as the exclusive
access mode (as per NVIDIA recommendation).
At the time of writing this paper, a fix has been
made available and it is being verified.

Similar issues have been recorded and reported to both

Cray and NVIDIA regarding seamless support of
performance measurement tools. Cray performance tools
can measure performance of the OpenACC code regions but
it has not been straightforward to measure performance of
MPI and CUDA applications without manually editing the
source files. This issue has now been resolved.

The GUI based performance tool from NVIDIA
for performance profiling currently is not
functional on the Cray XK6 system. This is
because the data has been collected on the XK6
compute nodes that have the NVIDIA X2090
GPU devices, while the front-end and login
nodes are without them. It is not possible to
connect to the compute nodes through ssh like
other commodity clusters.

> aprun -n 1 ./deviceQuery
[deviceQuery] starting...
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Found 1 CUDA Capable device(s)

Device 0: "Tesla X2090"
 CUDA Driver Version / Runtime Version 4.10 / 4.0
 CUDA Capability Major/Minor version number: 2.0
 Total amount of global memory: 5375 MBytes (5636554752 bytes)
 (16) Multiprocessors x (32) CUDA Cores/MP: 512 CUDA Cores
 GPU Clock Speed: 1.30 GHz
 Memory Clock rate: 1848.00 Mhz
 Memory Bus Width: 384-bit
 L2 Cache Size: 786432 bytes
 Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)
 Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 32768
 Warp size: 32
 Maximum number of threads per block: 1024
 Maximum sizes of each dimension of a block: 1024 x 1024 x 64
 Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and execution: Yes with 2 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Concurrent kernel execution: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support enabled: Yes
 Device is using TCC driver mode: No
 Device supports Unified Addressing (UVA): Yes
 Device PCI Bus ID / PCI location ID: 2 / 0
 Compute Mode:
 < Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.10, CUDA Runtime Version = 4.0, NumDevs = 1,
Device = Tesla X2090
[deviceQuery] test results...
PASSED

Figure 5. Output on the device query test showing several aspects of the device setup. This data has been collected after the latest driver version update,
which is in prerequisite for CUDA 4.1 installation.

IV. BENCHMARKING RESULTS
CUDA SDK provides a list of micro-benchmarks and

examples for validating the device configuration and these
can also serve as primitive diagnostic tools, which code
developers can use to verify whether compiler and driver
versions and other settings. Output from the device query
test is shown in figure 4. The first piece of information it
reports is the device is CUDA capable and it has been
identified correctly by the runtime (X2090). Second, we
observe that the driver version installed support the latest
releases of CUDA compilers but later we note that the
current runtime is 4.0. Other device settings, such as the
support for features like pinned memory and unified virtual
address have been listed in the output.

The amount of GDDR5 memory has been shown in
figure 4 as well. Since the ECC is enabled, it is less than 6
Gbytes. The total number of CUDA cores is also reported
together with the clock frequency. This confirms the layout
shown in figure 2. Additionally, the memory hierarchy

information is reported including the size of cache and
memory bandwidth information. The maximum number of
threads and memory per block are also indicated. The
devices access mode (exclusive) is also mentioned in the
output.

Another restriction of the Cray XK6 platform is
that only a single MPI task can be assigned to a
processing node for an accelerated application.
This is due to non-exclusive device setting. Some
applications, e.g. NAMD
(www.ks.uiuc.edu/Research/namd), require
support of multiple MPI tasks in order to achieve
maximum efficiency per node.

CSCS has setup 8 nodes with non-exclusive
mode where multiple MPI tasks can share the
GPU device. On these devices the output is

< Default (multiple host threads can use
::cudaSetDevice() with device simultaneously) >

> aprun -n 1 ./stream
[Double-Precision Device-Only STREAM Benchmark implementation in CUDA]
./stream Starting...

 Device 0: Tesla X2090
 Array size (double precision) = 8000000
 using 128 threads per block, 62500 blocks
 device STREAM_Copy: Pass
 device STREAM_Copy_Optimized: Pass
 device STREAM_Scale: Pass
 device STREAM_Scale_Optimized: Pass
 device STREAM_Add: Pass
 device STREAM_Add_Optimzied: Pass
 device STREAM_Triad: Pass
 device STREAM_Triad_Optimized: Pass
Function Rate (MB/s) Avg time Min time Max time
Copy: 133515.7922 0.000960 0.000959 0.000964
Copy Opt: 133779.2629 0.000958 0.000957 0.000961
Scale: 133457.8880 0.000960 0.000959 0.000962
Scale Opt: 133721.1137 0.000958 0.000957 0.000958
Add: 131538.5506 0.001460 0.001460 0.001461
Add Opt: 131532.7913 0.001461 0.001460 0.001462
Triad: 131478.0247 0.001461 0.001460 0.001462
Triad Opt: 131478.0247 0.001462 0.001460 0.001465

[streamBenchmark] - results: PASSES

./stream Exiting...

Figure 6. GPU memory bandwidth results using CUDA version of the Stream benchmark. The benchmark has been developed by M. Fatice (NVIDIA).
The peak bandwidth of the device is ~178 Gbytes/sec. Note that no data transfer between the host and device takes place for the benchmark.

The floating-point capabilities of the device can be

measured by executing the libsci version of the DGEMM
benchmark, which has a tuned and optimized version for:

• Multi-core host CPU (AMD Opteron 6272)
• NVIDIA Fermi X2090 GPU
• Hybrid Multi-core + GPU

The peak performance of the host processor and the

device are listed in Table 1. Using rather large matrix sizes,
for example, a 10,000 x 10,000 matrix, the following
double-precision GFLOPS rates have been achieved:

• Host only = ~ 100 GFlops
• GPU only = ~ 360 GFlops
• Host + GPU = ~ 440 GFlops

Using even larger matrices, over 450 GFlops rates can be

observed. For the memory bandwidth between host and
device and the device and host, there are two configurations.
The first one is called pageable, where the pages belonging
to the GPU device can be swapped by the operating system.
There is another option called the pinned memory where
pages belonging to the devices are locked in the host
memory. The impact on performance is obvious from the

results in table III (CUDA SDK memory bandwidth test is
used for bandwidth measurements):

TABLE III. MEMORY TRANSFER BANDWIDTH FOR TWO DIFFERENT
MESSAGE SIZES, 1024 BYTES AND 32 MBYTES, FOR TWO DIFFERENT HOST

MEMORY ALLOCATION SCHEMES (PAGEABLE AND PINNED)

 Pageable Pinned
H->D (1024 Bytes) 33.6 MB/s 195.3 MB/s
D->H (1024 Bytes) 32.7 MB/s 276.2 MB/s
H->D (32 Mbytes) 2266.8 MB/s 5518.9 MB/s
D->H (32 Mbytes) 1975.7 MB/s 6273.2 MB/s

In order to measure the memory bandwidth on the

device, we executed CUDA version of the stream
benchmark [19]. This benchmark measures main memory
bandwidth for simple, single-strided operations (Figure 6).
Due to the NUMA layout of the microprocessor memory,
depending on the access patterns, an application can exhibit
sensitivity to the placement of MPI tasks and OpenMP
threads on Cray XE6 and Cray XK6 nodes. Table IV
performance of a multi-threaded version of the stream
benchmark can yield a range of results, depending on the
placement and binding of memory and threads.

Figure 7. Characterization for GPU-GPU MPI transfers, bandwidth for

host and device transfers and data transfers between two Cray XK6 nodes on
the Gemini interconnect are presented.

Figure 8. Impact of different block sizes are measured for using different
blocking sizes using a NetPIPE benchmark that has been extended for GPU

and uGNI.

TABLE IV. RESULTS OF THE STREAM MEMORY BANDWIDTH
BENCHMARK (COPY OPERATION) WITH DIFFERENT NUMA MAPPINGS. THE

THEORETICAL PEAK OF ONE NUMA MEMORY IS 25.6 GB/S. NOTE THAT UP
TO THREE THREADS CAN SATURATE THE BANDWIDTH AND ALL RESULTS

DEMONSTRATE HIGH SENSITIVITY TO THE MEMORY AFFINITY.

Number
of
threads

Thread
placement

Memory
binding

Bandwidth
(MB/s)

1 Core 0 NUMA 0 12900.58
1 Core 0 NUMA 1 9013.58
1 Core 0 NUMA 2 6418.12
1 Core 0 NUMA 3 8894.06
3 Core 0-2 NUMA 0 15527.98
3 Core 0,2,4 NUMA 0 16832.34
4 Core 0-3 NUMA 0 16647.57
4 Core 0-3 NUMA 1 10451.38
4 Core 0,2,4,6 NUMA 0 16641.58
4 Core 0,2,4,6 NUMA 1 10512.12
8 Core 0-7 NUMA 0 15691.73
8 Core 0,2,4,

6,8,10,12,14
NUMA 0,1 33267.49

16 Core 0-15 NUMA 0,1 31403.30
Since the Cray XK6 system has been developed as a

tightly integrated MPP platform with accelerators, we
performed a number of tests for estimating GPU to GPU
transfer rates over the Gemini interconnect. Currently, MPI
calls cannot be made within the GPU kernels or pointers
using the Cray MPI. Code developers are therefore
responsible for copying data to and from the devices and
MPI the host CPUs then invokes calls.

On the Cray XK6 platform, once CUDA
module is loaded, the dynamically linked
version of the MPI library is automatically
linked instead of the static version. Some
applications experienced significant slowdown
in this mode and this issue has been under
investigation. A temporary work around has
been provided by Cray.

Latencies and bandwidth between the host and the CPU

and between two hosts are highly sensitive to message sizes,
and how the GPU memories are being declared (paged vs.
non-paged). We have extended an interconnect micro
benchmark called NetPIPE to measure the impact of these
features [15]. The benchmark has been extended using the
low-level Gemini network API called uGNI, and also inter-
node GPU transfers using CUDA. On these transfers GPU
and network transfers are pipelined, and different pipeline
chunk sizes have been explored.

Figure 7 shows the results of experiments that have been
performed to characterize data transfer latencies and
bandwidths from a GPU on one node to another GPU over
the Gemini interconnect.

This involves measuring the following paths
independently:

• Device to host (cuda_dth)
• Host to device (cuda_htd)
• Between hosts over the interconnect (NP_ugni)

The effective bandwidth cannot be higher than the lowest

bandwidth of the above three. In other words, the slowest
path will limit the bandwidth. The results in figure 7 confirm
this hypothesis. For large message sizes, cuda_dth have the
highest bandwidths while cuda_htd is even lower than the
point-to-point interconnect bandwidth (NP_ugni). Hence,
overall transfer bandwidths, for a highly tuned and optimized
application cannot exceed (cuda_htd). The measure
bandwidths with different pipeline chunk sizes are shown as
NP_ugni_cuda_C1m (1 MB) and NP_ugni_cuda_C2m (2
MB).

!"
#"
$"
%"
&"

'!"
'#"
'$"
'%"
'&"

()*
+,
-".
/(
01
0-2
"

34
56
4".
+7
89
:)
;<2
"

34
56
4".
6)
;=>
?@
7<)
;<2
"

34
56
4".
A9
B)9
C>
82"

34
56
4".
-D
=ED
FG8
;G
2"

3H
#I
"

J=
>:
9;
<"

HI
+J
A/
K#
"

A9
:<
G<"
.L
8)M
>=:

"6
G<@
2"

A9
:<
G<"
.A9
B)9
CN
G"-
=98
<MG
=2"

A9
:<
G<"
./6

A2"

5H
O3
,O
6P
+"

#Q$" 'QR" #QR" #"

'%Q$"

RQ'"

#QR"#Q&"
'Q$" 'Q%"

!QP"
#Q$"

!"
##
$%

"&
'(

&)
*+
,&
-.

/&
01
2&)

*+
,&
-3

/&
('

$#
1&

3L+/" 4?G8/33S"HJ0"+)=G;CNG<" 4?G83T"

Figure 9. Summary of Cray XE6 and Cray XK6 node performance results. Note that a single Cray XE6 node has 2 AMD 6272 sockets while a Cray XK6

node has one AMD socket and an NVIDIA X2090 GPU device. These are preliminary results illustrating work in progress. For instance, speedup for
applications accelerated with CUDA and OpenCL demonstrate higher speedup. We intend on reporting progress as the devices, software stack and

algorithms improve for the Cray XK7 system.

In order to identify whether the pipeline sizes have a
significant impact on the bandwidth between GPU to remote
GPU transfers, additional tests were performed. Results are
shown in figure 8 for pipeline sizes of 256 Kbytes to up to 4
Mbytes. The results demonstrate that the these transfer rates
can be an important tuning parameter as the effective
bandwidth could be improved by as much as 40% for
transferring same message sizes between remote GPUs.

This evidence suggests that Cray could provide an
integrated MPI library that is tuned and optimized for
different message sizes for GPU to GPU transfers over the
MPI interconnect as it provides for the non-accelerator,
multi-core platforms such as Cray XE6, where the latencies
are sensitive to NUMA regions. Note that there are 4
NUMA regions on a Cray XE6 dual-socket node vs. 2 on a
Cray XK6 single-socket node. A similar solution has been
proposed by the MVAPICH library developers and this
could be implemented in the Cray MPI [7].

Since early 2010, CSCS has been engaging application
development teams in preparation for the next-generation
multi-petascale platforms as part of a project called High
Performance High Productivity Computing (HP2C). Details
of the project are available at: www.hp2c.ch. A number of
these application groups have successfully been exploiting
the Cray XK6 platform as early science users. These
applications are listed in Table V. Most of these
applications have been developed using CUDA and
OpenCL on existing cluster platforms with accelerators, and
the migration process to the Cray XK6 platform was
straightforward.

Two applications, COSMO and RAMSES, are
beginning to exploit the OpenACC incremental
programming approach and these groups are making steady
progress on the Cray XK6 platform using the Cray compiler
environment. Comparison of Cray XK6 and Cray XE6
platform for different variants of applications that are listed
in Table IV are shown in figure 9.

TABLE V. CACHE AND MEMORY HIERARCHY OF THE NVIDIA FERMI
X2090 AND OPTERON BULLDOZER 6272 PROCESSORS

!""#$%&'()*
+&,-.

/(,&$). 01(2-%3*4*/-5-#(",-)3*6-&,.*/-3&$#.

7$8/96* !"#$%&"'()(*&$+*$),)
-"+.(*&$+*$)

/012,,&+"*3*$"34%,567&8,9&:;<=)*

:;<=;* >$:&.+"')*'&8"#$),)
8$#$.%.'.:?)

/012,,@@@3*'8A*.88B+&#?3$B)*

:0>?* C/$8&*"')(*&$+*$),)
-"+.(*&$+*$)

/012,,@@@3*1DE3.%:))*

@1(,&%.* 5&4$)(*&$+*$)) /012,,@@@3:%.8"*(3.%:)*

0?/@A!B>* C.(8.'.:?)) /01(2,,/1*4.%:$3.%:,1%.F$*#(,1EG:%"HD)*

A!=<C<* C.(8.'.:?)) /012,,&%4B3*$"34%,I%.F$#(,CJK7=,(.L@"%$3/#8)*

<0C:9C=D/* 7$&(8.'.:?)) /012,,@@@3:$.G?+"8&*(3.%:,*&:,(.L@"%$,(1$*4$8MG)*

Applications presented in figure 9 represent production-
level simulations that have been awarded computation time
on CSCS flagship Cray XE6 system. However, these are at
different levels of maturity in terms of GPU accelerated
components. For example, SPECFEM3D production level
simulations are being performed using the GPU accelerated
while in COSMO benefits of GPU acceleration has been
explored using different strategies (CUDA and directives).
Since the Cray XK6 is considered as a prototype platform
for a multi-Petaflops Cray XK7 system that is expected to
be installed later this year at the Oak Ridge National
Laboratory (ORNL), some issues may only be resolved for a
new hardware and programming environment [2]. We
intend to collaborate with ORNL and Cray as we transition
to the next-generation integrated accelerator based MPP
platform.

V. SUMMARY AND FUTURE PLANS
Cray XK6 system is a tightly integrated MPP platform,

which offers similar programming and execution
environments as multi-core based Cray XT and XE series
systems. However, due to a fundamental difference in the
node design where a GPU device is available for code
acceleration, the system has been equipped with some

unique programming, execution and operational design
elements. As this report presents, a number of these unique
features are available and functional within the integrated
hardware and software platform. At the same time however,
since installing the system in 2011, CSCS together with
Cray have resolved a number of issues that emerged during
the operational phase. As we have identified in the paper,
some issues remain to be solved, for example, a parallel
debugger for OpenCL code development, as well as high
performance MPI for GPU programming.

ACKNOWLEDGEMENTS
We would like to acknowledge contributions of the

following individuals: Kevin Peterson, Alistair Hart, Heidi
Poxon, Luiz DeRose and Adrian Tate (Cray Inc), Tim
Robinson and Gilles Fourestey (CSCS). Peter Messmer
(NVIDIA).

REFENRENCES
[1] J. Beyer, E. Stotzer, A. Hart & B. De Supinski, “OpenMP for

Accelerators,” Proc. of the 7th International Workshop on OpenMP,
2011.

[2] A. S. Bland, R. L. Graham, O. E. Messer, II and J. C. Well, “Titan:
Early experience with the Cray XK6 at Oak Ridge National
Laboratory,” Proceedings of the Cray User Group meeting, 2012.

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel
Programming with CUDA.” Queue 6, 2 (March 2008).

[4] H. Pritchard, I. Gorodetsky, and D. Buntinas. “A uGNI-based
MPICH2 nemesis network module for the Cray XE,” Proceedings of
the 18th European MPI Users' Group conference on Recent advances
in the message passing interface (EuroMPI'11).

[5] G. Renker, N. Stringfellow, K. Howard, S. Alam and S. Trofinoff,
“Employing SLURM on XT, XE, and Future Cray Systems,”
Proceedings of the Cray User Group meeting, 2011.

[6] J. Sollom, “Overview of Node Health Checker,” Proceedings of the
Cray User Group meeting, 2011.

[7] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda.
“MVAPICH2-GPU: optimized GPU to GPU communication for
InfiniBand clusters,” Comput. Sci. 26, 3-4 (June 2011).

[8] Allinea parallel debugging tool (DDT):
http://www.allinea.com/products/ddt/

[9] AMD 6200 series processors:
http://www.amd.com/us/products/server/processors/6000-series-
platform/6200/Pages/6200-series-processors.aspxCray XK6 platform:
www.cray.com/Products/XK6/XK6.aspx

[10] BLAS (Basic Linear Algebra Subprograms):
http://www.netlib.org/blas/

[11] Cray XE6 platform:
www.cray.com/Products/XE/CrayXE6System.aspx

[12] Cray XK6 platform: www.cray.com/Products/XK6/XK6.aspx
[13] CUDA programming resources:

http://developer.nvidia.com/category/zone/cuda-zone
[14] Lapack (Linear Algenra Package): http://www.netlib.org/lapack/
[15] NetPIPE (a network protocol independent performance evaluator):

http://bitspjoule.org/netpipe/
[16] PGI Accelerator: http://www.pgroup.com/resources/accel.htm

[17] OpenACC directives for accelerators: www.openacc-standard.org
[18] OpenCL standard: www.khronos.org/opencl
[19] Stream memory bandwidth benchmark:

http://www.cs.virginia.edu/stream/
[20] Totalview debugger:

http://www.roguewave.com/products/totalview.aspx

