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Abstract— We report on our experiences of deploying, 
operating and benchmarking a Cray XK6 system, which is 
composed of hybrid AMD Interlagos and NVIDIA X2090 
nodes and the Cray Gemini interconnect. Specifically we 
outline features and issues that are unique to this system in 
terms of system setup, configuration, programming 
environment and tools as compared to a Cray XE6 system, 
which is based also on AMD Interlagos (dual-socket) nodes and 
the Gemini interconnect. Micro-benchmarking results 
characterizing hybrid CPU and GPU performance and MPI 
communication between the GPU devices are presented to 
identify parameters that could influence the achievable node 
and parallel efficiencies on this hybrid platform. 

Keywords-MPP systems, Cray XK6, Cray XE6, accelerators, 
programming environment, performance characterization 

I.  INTRODUCTION 
This manuscript provides an overview of the 

characteristics and features of the Cray XK6 system, which 
are critical for not only porting existing GPU accelerated 
applications but also fundamental for achieving high node 
and parallel efficiencies. The Cray XK6 is a hybrid CPU and 
GPU massively parallel processing (MPP) platform that 
incorporates the Cray Gemini interconnect, and NVIDIA 
X2090 accelerated compute nodes [12].  The system is 
considered as a first instance of a tightly integrated, 
accelerator based MPP platform as it offers not only an 
integrated node design but also an integrated programming 
and system management environment for efficient 
development and deployment of GPU accelerated 
applications.  At the same time, the system is seamlessly 
integrated within the Swiss National Supercomputing Centre 
(CSCS) operational and job accounting environments 
alongside other Cray MPP production platforms. 

Therefore, in addition to programming and performance 
characteristics, we provide deployment and operational 
considerations that are essential for managing a large-scale 
hybrid system. At CSCS, two Gemini interconnect based 
systems have been deployed recently: a 16-cabinet Cray XE6 
system with dual-socket AMD Interlagos nodes [11] and a 2-
cabinet Cray XK6 system with hybrid AMD Interlagos and 
NVIDIA X2090 GPU accelerator devices within a node. 
Both systems have 32 Gbytes per node memory, a Lustre 
scratch file system and have the SLURM resource manager. 
We identify unique features of the Cray XK6 system with 
respect to the Cray XE6 platform. 

The outline of the report is as follows: an overview of the 
key architectural and programming features of the Cray XK6 
platform is provided in section II.  In section III, unique 
elements of Cray XK6 programming environment including 
code development tools, and operational considerations and 
issues are detailed.  Benchmarking results that highlight the 
unique features of the Cray XK6 system are presented in 
section IV along with some a brief status update on 
applications development and porting efforts on the Cray 
XK6 platform.  A summary of the paper and future plans for 
the Cray XK6 platform and its successor system are listed in 
section V. 

II. ARCHITECTURAL AND PROGRAMMING ENVIRONMENT 
In this section, we provide details of CSCS Cray XK6 

and Cray XE6 platforms for architectural specifications, 
programming and operating environment, and management 
and operations of the system. 

A. Processing Node 
A Cray XK6 processing node is composed of an AMD 

Interlagos 6272 socket, which has 16 cores constituting 8 
compute modules [9].   
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Figure 1.  Layout of Cray XE6 and Cray XK6 nodes.  Two nodes are connected to a Gemini interface. 

 
The Cray XE6 has two AMD Opteron 6272 sockets per 

compute node. As an accelerator device, the Cray XK6 
system has an NVIDIA Fermi X2090 GPU.  Figure 1 shows 
two nodes of a Cray XE6 system and an XK6 system side 
by side.  Both systems have 32 Gbytes of DDR3-1600 
memory while the Cray XK6 system has an additional 6 
Gbytes of GDDR5 GPU memory.  

B. Interconnect 
The Cray XE and XK series systems are based on the 

Cray Gemini interconnect.  As shown in figure 1, two nodes 
are connected to a Gemini chip via a Hypertransport (HT3) 
interface.  Both systems have a 3D torus topology: CSCS 
Cray XE6 system has Class 2 – 3D Torus and the XK6 has 
Class 0 – 3D Torus topology.  

C. Operating System 
Cray Linux Environment (CLE), which is a lightweight 

variant of Linux, has been installed on both systems.  The 
systems are used in a cross-compile mode where typically 
code development has been done on a frontend system 
without CLE (using regular Linux) and GPU devices.  

D. Program Development and Execution Tools 
Code development utilities, for example, compilers, 

debuggers and performance measurement tools for the x86 
microprocessors are similar on both platforms.  For 
example, Cray, PGI, Intel, GNU and Pathscale compilers 
are available on both platforms.  The Cray XK6 system has 
additional compilers and runtime drivers for GPU 

execution.  Both systems have a similar job launching 
interface namely Application Level Placement Scheduler 
(ALPS), which allows users to specify mapping and control 
of parallel MPI and OpenMP jobs.  

E. Numerical libraries 
Tuned and optimized versions of math libraries 

including BLAS, Lapack, and FFTW are available as part of 
the Cray scientific libraries (libsci).   A subset of GPU-
accelerated APIs is available for the Cray XK6 platform. 

F. Communication libraies 
An optimized version of message-passing (MPI) 

communication for the Gemini interconnect has been 
provided as part of the Cray programming environment.  In 
addition, compilers for PGAS languages (Coarray Fortran 
and UPC) are supported by the Cray compilation 
environment (CCE) [4]. 

G. Job scheduler and resource accounting 
CSCS has deployed the SLURM resource management 

system on both platforms, which CSCS has developed for 
the Cray platforms [5].  Currently, the minimum allocation 
unit is a processing node of a Cray XK6 and XE6 node.  
Although users can specify core and memory requirements 
through the job scheduler script, there has been no 
mechanism in ALPS to identify accelerator resources. 
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Figure 2.  NVIDIA Fermi architecture.  A streaming multi-processing (SM) unit has 

32 cores and there are 16 such SMs in a Fermi X2090 device.  
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Figure 3.  AMD Interlagos block diagram.  Two 

Bulldozer cores form a compute module to share two 128-
bit FMAC units. 

 
Cray has extended system management and diagnostics 

tools for the GPU devices.  Cray Linux Environment (CLE) 
provides a Node Knowledge and Recognition tool called 
NodeKARE, which performs node health checks [6].  For 
example, the node health checker takes into consideration 
the status of the GPU devices be checking whether the 
device is in a healthy state and that all the memory has been 
cleared and available to the next process.  In other words, on 
a Cray XK6 system, additional tests are performed to verify 
nodes are healthy and ready to run jobs prior to usage 

III. UNIQUE ELEMENTS OF CRAY XK6 SYSTEM 
Previous section highlighted several common design and 

programming elements of the Cray XE and XK series MPP 
platforms, which could enable a smooth transition from a 
multi-core based node to an accelerator-based system.  
However, we (at CSCS) experienced a few issues as the first 
site to install such a system with an accelerator device, 
which is considered as an I/O component from the operating 
system viewpoint.  In this section, background to the unique 
elements of the Cray XK6 platform is provided. 

A. Compute Units 
The characteristics feature of a Cray XK6 node is an 

accelerator device: NVIDIA X2090 Fermi GPU.  Table I 
provides a comparison with AMD Interlagos 6272 Opteron 
processors.  

TABLE I.  COMPUTE UNIT SPECIFICATIONS OF GPU AND HOST CPU 
(OPTERON 6272) OF A CRAY XK6 NODE.  TOTAL COMPUTE PERFORMANCE 

PER NODE IS 665+269 GFLOPS 

 Fermi X2090 Opteron 6272 
Cores 512 16 
Clock frequency 1.15 GHz 2.1MHz 
Floating point 
performance  

665 GFlops 
(double-precision) 

134.4 GFlops 
(double-precision) 

Memory 
interface 

GDDR5 DDR3 (1600) 

Power envelope 225-250 W 90-115 Watts 

B. Memory Subsystems 
The two compute elements have distinct memory address 

spaces and offer distinct memory hierarchies in terms of the 
cache levels and sizes.  Table II lists the characteristics of 
these compute unit hierarchies.  Note that the minimum level 
of sharing for the NVIDIA devices is a streaming 
multiprocessor (SM), which is composed of 32 cores, and the 
L1 cache and shared memory are configurable by user 
software.  On Fermi, 32,768 x 32-bit register files are also 
shared by the compute cores.  Register files are dynamically 
allocated to threads executing on compute cores, this is the 
space where variables local to a thread are stored.  Hence, 
these are considered "shared" (Table II) as there is no fixed 
configuration that assigns register files to specific cores. 

TABLE II.  CACHE AND MEMORY HIERARCHY OF THE NVIDIA FERMI 
X2090 AND OPTERON BULLDOZER 6272 PROCESSORS 

 Fermi X2090 Opteron 6272 
L1 cache (size) 16-48 KB 16 KB 
L1 (sharing) SM (32 cores) Core 
L2 cache (size) 768 KB 2028 KB 
L2 (sharing) All SMs Module (2 cores) 
L3 cache  -- 8 MB 
L3 (sharing) -- Socket 
Shared memory 16-48 KB per 

SM 
-- 

Global memory 6 GB 32 GB 
 
The AMD Opteron memory hierarchy also includes non-

uniform memory access (NUMA) regions on socket as well 
as on a node.  Figure 4 shows NUMA layout of a Cray XE6 
node with 4 NUMA regions, 2 per socket.  On the Cray 
XK6 platform, there are 2 NUMA regions, hence the impact 
of the memory placement is less significant as compared to 
a Cray XE6 node.   
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Figure 4.  NUMA layout of a Cray XE6 node.  There are 2 NUMA regions 
per AMD Opteron 6272 socket, therefore, a Cray XK6 node has 2 NUMA 

regions. Memory transfers take place over the Hypertransport links. 

C. Programming Languages (CUDA & OpenCL) 
CUDA is an interface for programming NVIDIA GPU 

devices that has been introduced by NVIDIA [3][13].  Both 
C and Fortran interfaces are available.  An offload model has 
been proposed by CUDA where compute-intensive code 
blocks are executed on the GPU devices but the host does the 
control and data orchestration.  CUDA proposes a data 
parallel programming model and a code developer can 
identify and develop parallel kernels using a few constructs.  
Likewise, there are constructs for specifying data transfer 
operations to and from host memory to the device memory.  
The CUDA programming model also describes a detailed 
memory model with register, local and global shared 
memories, which programmers can exploit in order to tune 
and optimize their codes on the device.  In practice, most of 
tuning and optimization efforts using the CUDA model are 
centered on minimizing overheads of host and device 
transfers as well as localizing memory operations within the 
CUDA memory hierarchy.  Recently, an x86 compiler has 
been introduced for CUDA codes by the PGI compiler.  
Hence, the codes written for the GPU devices can now be 
executed on CPUs [16].  The CUDA C compiler from 
NVIDIA (nvcc) and the CUDA Fortran compiler from PGI 
are available on the Cray XK6 platform.    

 
Currently, an older version of CUDA, version 4.0 
instead of version 4.1, is available on the CSCS 
Cray XK6 platform. There are a number of 
dependencies that have been delaying the update 
process.  Earlier the issue was the availability of 
an appropriate driver version as the Cray platform 
installs a special version of the NVIDIA CUDA 
drivers. Recently, the driver has been updated to 
support CUDA 4.1 but the Cray PE has some 
other dependencies. Once resolved, version 4.1 
will be available.  It is expected this process will 
be streamlined for future releases of CUDA and 
OpenCL programming updates. 

OpenCL is a set of open standards that have been 
introduced for developing programs for systems with 
heterogeneous compute units [18].  Hardware vendors 
provide the standard conformant drivers.  Hence, OpenCL 
codes can be executed on both CPU and accelerators.  The 
programming model allows for both data and task 
parallelism.  Like CUDA, there is a concept of parallel 
programming for a device where concurrent tasks can be 
grouped into work-items.  OpenCL memory model is also 
somewhat similar to the CUDA memory model (mainly due 
to the underlying architectural characteristics), where 
memory access options depend on how a data structure has 
been declared.  

D. GPU Drivers and Runtime (CUDA & OpenCL) 
On the Cray XK6 platform, in order to execute 

applications on the GPU devices, NVIDIA CUDA and 
OpenCL drivers and runtimes are required.  For CUDA 
codes, the CUDA runtime and the driver API, both provided 
by NVIDIA, are available on the backend compute nodes of 
the system as the frontend or login nodes do not contain a 
GPU device.  In the case of OpenCL everything (compiler 
and implementation) is in the driver, so there is basically 
one single driver for OpenCL and CUDA and two separate 
libraries. The OpenCL code is then just-in-time-compiled 
from C.  The CUDA code has to be precompiled through 
nvcc to either binary or ptx. 

 
An example of a unique issue we experienced 
soon after the system became operational was the 
OpenCL availability.  A header file needed for 
OpenCL code was not installed on the XK6 
compute node at the default location even though 
complete CUDA SDK was installed as part of the 
Cray PE.  This issue was resolved by copying the 
file manually.   
 

On the Cray XK6 platform, CSCS also 
installed an OpenCL driver for execution on the 
CPUs as this has not been made available as part 
of the Cray PE. 

 

E. Incremental GPU programmning using OpenACC 
Both CUDA and OpenCL programming approaches 

require fundamental changes to existing CPU-only code.  In 
order to facilitate an incremental adoption of the accelerator 
devices, a few directives based standards have been 
introduced [1][17].  Cray compiler environment (CCE) 
provides support for the latest standard for accelerator 
programming called OpenACC. The OpenACC directives 
provide control for the following functionalities:  regions of 
code to accelerate, data to be transferred to and from the 
device, and compiler hints for loop scheduling and cache 
usage.  An example of an OpenACC accelerator region is 
below: 

 
 
 



 

 

!$acc parallel loop vector_length(NTHREADS) 
!$acc& private(x1,y1,i1,i2,i3,x2,y2) present(r,s) 
      do  j3=2,m3j-1 
         i3 = 2*j3-d3 
         do  j2=2,m2j-1 
            i2 = 2*j2-d2 
 
            do j1=2,m1j 
              i1 = 2*j1-d1 
              x1(i1-1) = r(i1-1,i2-1,i3  ) + r(i1-1,i2+1,i3  ) 
     >                 + r(i1-1,i2,  i3-1) + r(i1-1,i2,  i3+1) 
              y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1) 
     >                 + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3+1) 
            enddo 
 
            do  j1=2,m1j-1 
              i1 = 2*j1-d1 
              y2 = r(i1,  i2-1,i3-1) + r(i1,  i2-1,i3+1) 
     >           + r(i1,  i2+1,i3-1) + r(i1,  i2+1,i3+1) 
              x2 = r(i1,  i2-1,i3  ) + r(i1,  i2+1,i3  ) 
     >           + r(i1,  i2,  i3-1) + r(i1,  i2,  i3+1) 
              s(j1,j2,j3) = 
     >               0.5D0 * r(i1,i2,i3) 
     >             + 0.25D0 * ( r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2) 
     >             + 0.125D0 * ( x1(i1-1) + x1(i1+1) + y2) 
     >             + 0.0625D0 * ( y1(i1-1) + y1(i1+1) ) 
            enddo 
 
         enddo 
      enddo 
!$acc end parallel  
 
The code can be compiled using an additional module 

(craype-accel-nvidia20) and can be executed using the aprun 
command without any additional flags for GPU execution.  
Hence, from a user point of view, there have been no 
changes in the execution model for a Cray XK6 node as 
compared to a Cray XE6 node.  The only restriction is the 
number of MPI tasks.  Only one MPI task can be executed 
per node when the code is GPU accelerated, as the NVIDIA 
driver setting on the Cray XK6 nodes has been configured 
to support a single processor accessing the GPU (exclusive 
access mode).  

F. Accelerated libraries 
Another critical component of the Cray integrated 

environment for GPU code development is availability of the 
accelerated numerical libraries.  This includes a subset of 
BLAS and LAPACK functions [10][14].  Additionally, some 
functions have been optimized to run in hybrid host multi-
threaded and GPU accelerated configurations.  The library 
has been designed to work in different modes: it can work 
without any code modifications where data transfers to and 
from GPU are hidden from users; and it allows modifications 
to enable code developers to hide data transfer latencies.  For 
example, a user can make the following call and it will be 
executed on the GPU if the matrix sizes are larger: 

 
dgetrf (M, N, A, lda, ipiv, &info) 
 
if instead of CPU, the GPU device pointers are being 

passed the code will execute on the device: 
 
dgetrf (M, N, d_A, lda, ipiv, &info) 

Data must be transferred to the GPU prior to the call to 
improve performance. 

The libsci accelerator interface can also be invoked 
within the directives environment. 

 
!$acc data copy(c), copyin(a,b) 
!$acc host_data use_device(a,b,c) 
 
call dgemm_acc('n','n',m,n,k,alpha,a,lda, 
& b,ldb,beta,c,ldc) 
 
!$acc end host_data 
!$acc end data 
 

G. Code Development Tools 
The code development process involves bug fixing and 

tuning for optimization and performance.  On Cray systems, 
there are third part debugging tools from TotalView and 
Allinea DDT for MPI and OpenMP programming [8][20].  
Likewise, for performance measurement and tuning, Cray 
performance analysis toolset (perftools) are available for 
parallel MPI and hybrid MPI and OpenMP applications.  

Both TotalView and Allinea DDT have introduced 
CUDA debugging features in their tools; however, DDT 
supports OpenACC officially. 

 
One of the most critical issues on the Cray XK6, 
right from the beginning, has been availability of 
a debugger for parallel, GPU-accelerated 
applications.  Features that are unique to the Cray 
XK6 platform have been the root cause of some 
of the issues.  Problems arise when MPI and 
debug processes try accessing the device 
simultaneously, which is setup as the exclusive 
access mode (as per NVIDIA recommendation).  
At the time of writing this paper, a fix has been 
made available and it is being verified. 

 
Similar issues have been recorded and reported to both 

Cray and NVIDIA regarding seamless support of 
performance measurement tools.  Cray performance tools 
can measure performance of the OpenACC code regions but 
it has not been straightforward to measure performance of 
MPI and CUDA applications without manually editing the 
source files.  This issue has now been resolved. 

 
The GUI based performance tool from NVIDIA 
for performance profiling currently is not 
functional on the Cray XK6 system.  This is 
because the data has been collected on the XK6 
compute nodes that have the NVIDIA X2090 
GPU devices, while the front-end and login 
nodes are without them.  It is not possible to 
connect to the compute nodes through ssh like 
other commodity clusters.   

 

 
 



 

 

> aprun -n 1 ./deviceQuery   
[deviceQuery] starting... 
./deviceQuery Starting... 
 
 CUDA Device Query (Runtime API) version (CUDART static linking) 
 
Found 1 CUDA Capable device(s) 
 
Device 0: "Tesla X2090" 
  CUDA Driver Version / Runtime Version          4.10 / 4.0 
  CUDA Capability Major/Minor version number:    2.0 
  Total amount of global memory:                 5375 MBytes (5636554752 bytes) 
  (16) Multiprocessors x (32) CUDA Cores/MP:     512 CUDA Cores 
  GPU Clock Speed:                               1.30 GHz 
  Memory Clock rate:                             1848.00 Mhz 
  Memory Bus Width:                              384-bit 
  L2 Cache Size:                                 786432 bytes 
  Max Texture Dimension Size (x,y,z)             1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048) 
  Max Layered Texture Size (dim) x layers        1D=(16384) x 2048, 2D=(16384,16384) x 2048 
  Total amount of constant memory:               65536 bytes 
  Total amount of shared memory per block:       49152 bytes 
  Total number of registers available per block: 32768 
  Warp size:                                     32 
  Maximum number of threads per block:           1024 
  Maximum sizes of each dimension of a block:    1024 x 1024 x 64 
  Maximum sizes of each dimension of a grid:     65535 x 65535 x 65535 
  Maximum memory pitch:                          2147483647 bytes 
  Texture alignment:                             512 bytes 
  Concurrent copy and execution:                 Yes with 2 copy engine(s) 
  Run time limit on kernels:                     No 
  Integrated GPU sharing Host Memory:            No 
  Support host page-locked memory mapping:       Yes 
  Concurrent kernel execution:                   Yes 
  Alignment requirement for Surfaces:            Yes 
  Device has ECC support enabled:                Yes 
  Device is using TCC driver mode:               No 
  Device supports Unified Addressing (UVA):      Yes 
  Device PCI Bus ID / PCI location ID:           2 / 0 
  Compute Mode: 
     < Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device) > 
 
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.10, CUDA Runtime Version = 4.0, NumDevs = 1, 
Device = Tesla X2090 
[deviceQuery] test results... 
PASSED 

Figure 5.  Output on the device query test showing several aspects of the device setup.  This data has been collected after the latest driver version update, 
which is in prerequisite for CUDA 4.1 installation. 

IV. BENCHMARKING RESULTS 
CUDA SDK provides a list of micro-benchmarks and 

examples for validating the device configuration and these 
can also serve as primitive diagnostic tools, which code 
developers can use to verify whether compiler and driver 
versions and other settings.  Output from the device query 
test is shown in figure 4.  The first piece of information it 
reports is the device is CUDA capable and it has been 
identified correctly by the runtime (X2090).  Second, we 
observe that the driver version installed support the latest 
releases of CUDA compilers but later we note that the 
current runtime is 4.0.  Other device settings, such as the 
support for features like pinned memory and unified virtual 
address have been listed in the output.  

The amount of GDDR5 memory has been shown in 
figure 4 as well. Since the ECC is enabled, it is less than 6 
Gbytes.  The total number of CUDA cores is also reported 
together with the clock frequency.  This confirms the layout 
shown in figure 2. Additionally, the memory hierarchy 

information is reported including the size of cache and 
memory bandwidth information.  The maximum number of 
threads and memory per block are also indicated.  The 
devices access mode (exclusive) is also mentioned in the 
output.    

Another restriction of the Cray XK6 platform is 
that only a single MPI task can be assigned to a 
processing node for an accelerated application.  
This is due to non-exclusive device setting.  Some 
applications, e.g. NAMD 
(www.ks.uiuc.edu/Research/namd), require 
support of multiple MPI tasks in order to achieve 
maximum efficiency per node.   

CSCS has setup 8 nodes with non-exclusive 
mode where multiple MPI tasks can share the 
GPU device.  On these devices the output is  

< Default (multiple host threads can use 
::cudaSetDevice() with device simultaneously) > 



 

 

 
> aprun -n 1 ./stream  
[Double-Precision Device-Only STREAM Benchmark implementation in CUDA] 
./stream Starting... 
 
 Device 0: Tesla X2090 
 Array size (double precision) = 8000000 
 using 128 threads per block, 62500 blocks 
 device STREAM_Copy:   Pass 
 device STREAM_Copy_Optimized:  Pass 
 device STREAM_Scale:   Pass 
 device STREAM_Scale_Optimized: Pass 
 device STREAM_Add:   Pass 
 device STREAM_Add_Optimzied:  Pass 
 device STREAM_Triad:   Pass 
 device STREAM_Triad_Optimized:  Pass 
Function    Rate (MB/s)    Avg time      Min time      Max time 
Copy:      133515.7922     0.000960     0.000959     0.000964 
Copy Opt:  133779.2629     0.000958     0.000957     0.000961 
Scale:     133457.8880     0.000960     0.000959     0.000962 
Scale Opt: 133721.1137     0.000958     0.000957     0.000958 
Add:       131538.5506     0.001460     0.001460     0.001461 
Add Opt:   131532.7913     0.001461     0.001460     0.001462 
Triad:     131478.0247     0.001461     0.001460     0.001462 
Triad Opt: 131478.0247     0.001462     0.001460     0.001465 
 
[streamBenchmark] - results: PASSES 
 
./stream Exiting... 

Figure 6.  GPU memory bandwidth results using CUDA version of the Stream benchmark.  The benchmark has been developed by M. Fatice (NVIDIA).  
The peak bandwidth of the device is ~178 Gbytes/sec. Note that no data transfer between the host and device takes place for the benchmark.  

 
The floating-point capabilities of the device can be 

measured by executing the libsci version of the DGEMM 
benchmark, which has a tuned and optimized version for: 

 
• Multi-core host CPU (AMD Opteron 6272) 
• NVIDIA Fermi X2090 GPU 
• Hybrid Multi-core + GPU 

 
The peak performance of the host processor and the 

device are listed in Table 1.  Using rather large matrix sizes, 
for example, a 10,000 x 10,000 matrix, the following 
double-precision GFLOPS rates have been achieved:  

 
• Host only = ~ 100 GFlops 
• GPU only = ~ 360 GFlops 
• Host + GPU = ~ 440 GFlops 

 
Using even larger matrices, over 450 GFlops rates can be 

observed. For the memory bandwidth between host and 
device and the device and host, there are two configurations.  
The first one is called pageable, where the pages belonging 
to the GPU device can be swapped by the operating system.  
There is another option called the pinned memory where 
pages belonging to the devices are locked in the host 
memory.  The impact on performance is obvious from the 

results in table III (CUDA SDK memory bandwidth test is 
used for bandwidth measurements):  

TABLE III.  MEMORY TRANSFER BANDWIDTH FOR TWO DIFFERENT 
MESSAGE SIZES, 1024 BYTES AND 32 MBYTES, FOR TWO DIFFERENT HOST 

MEMORY ALLOCATION SCHEMES (PAGEABLE AND PINNED) 

 Pageable Pinned 
H->D (1024 Bytes)     33.6 MB/s   195.3 MB/s 
D->H (1024 Bytes)     32.7 MB/s   276.2 MB/s 
H->D (32 Mbytes) 2266.8 MB/s 5518.9 MB/s 
D->H  (32 Mbytes) 1975.7 MB/s 6273.2 MB/s 

 
In order to measure the memory bandwidth on the 

device, we executed CUDA version of the stream 
benchmark [19].  This benchmark measures main memory 
bandwidth for simple, single-strided operations (Figure 6).  
Due to the NUMA layout of the microprocessor memory, 
depending on the access patterns, an application can exhibit 
sensitivity to the placement of MPI tasks and OpenMP 
threads on Cray XE6 and Cray XK6 nodes.  Table IV 
performance of a multi-threaded version of the stream 
benchmark can yield a range of results, depending on the 
placement and binding of memory and threads. 

 

 
 



 

 

 
Figure 7.  Characterization for GPU-GPU MPI transfers, bandwidth for 

host and device transfers and data transfers between two Cray XK6 nodes on 
the Gemini interconnect are presented.   

 
Figure 8.  Impact of different block sizes are measured for using different 
blocking sizes using a NetPIPE benchmark that has been extended for GPU 

and uGNI. 

TABLE IV.  RESULTS OF THE STREAM MEMORY BANDWIDTH 
BENCHMARK (COPY OPERATION) WITH DIFFERENT NUMA MAPPINGS.  THE 

THEORETICAL PEAK OF ONE NUMA MEMORY IS 25.6 GB/S.  NOTE THAT UP 
TO THREE THREADS CAN SATURATE THE BANDWIDTH AND ALL RESULTS 

DEMONSTRATE HIGH SENSITIVITY TO THE MEMORY AFFINITY.  

Number 
of 
threads 

Thread 
placement 

Memory 
binding 

Bandwidth 
(MB/s) 

1 Core 0 NUMA 0 12900.58 
1 Core 0 NUMA 1   9013.58 
1 Core 0 NUMA 2   6418.12 
1 Core 0 NUMA 3   8894.06 
3 Core 0-2 NUMA 0 15527.98 
3 Core 0,2,4 NUMA 0 16832.34 
4 Core 0-3 NUMA 0 16647.57 
4 Core 0-3 NUMA 1 10451.38 
4 Core 0,2,4,6 NUMA 0 16641.58 
4 Core 0,2,4,6 NUMA 1 10512.12 
8 Core 0-7 NUMA 0 15691.73 
8 Core 0,2,4, 

6,8,10,12,14 
NUMA 0,1 33267.49 

16 Core 0-15 NUMA 0,1 31403.30 
Since the Cray XK6 system has been developed as a 

tightly integrated MPP platform with accelerators, we 
performed a number of tests for estimating GPU to GPU 
transfer rates over the Gemini interconnect.  Currently, MPI 
calls cannot be made within the GPU kernels or pointers 
using the Cray MPI.  Code developers are therefore 
responsible for copying data to and from the devices and 
MPI the host CPUs then invokes calls. 

 
On the Cray XK6 platform, once CUDA 
module is loaded, the dynamically linked 
version of the MPI library is automatically 
linked instead of the static version.  Some 
applications experienced significant slowdown 
in this mode and this issue has been under 
investigation.  A temporary work around has 
been provided by Cray. 

 
Latencies and bandwidth between the host and the CPU 

and between two hosts are highly sensitive to message sizes, 
and how the GPU memories are being declared (paged vs. 
non-paged).  We have extended an interconnect micro 
benchmark called NetPIPE to measure the impact of these 
features [15].  The benchmark has been extended using the 
low-level Gemini network API called uGNI, and also inter-
node GPU transfers using CUDA. On these transfers GPU 
and network transfers are pipelined, and different pipeline 
chunk sizes have been explored. 

Figure 7 shows the results of experiments that have been 
performed to characterize data transfer latencies and 
bandwidths from a GPU on one node to another GPU over 
the Gemini interconnect.  

This involves measuring the following paths 
independently: 

 
• Device to host (cuda_dth) 
• Host to device (cuda_htd) 
• Between hosts over the interconnect (NP_ugni) 

 
The effective bandwidth cannot be higher than the lowest 

bandwidth of the above three.  In other words, the slowest 
path will limit the bandwidth.  The results in figure 7 confirm 
this hypothesis.  For large message sizes, cuda_dth have the 
highest bandwidths while cuda_htd is even lower than the 
point-to-point interconnect bandwidth (NP_ugni).  Hence, 
overall transfer bandwidths, for a highly tuned and optimized 
application cannot exceed (cuda_htd).  The measure 
bandwidths with different pipeline chunk sizes are shown as 
NP_ugni_cuda_C1m (1 MB) and NP_ugni_cuda_C2m (2 
MB). 
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Figure 9.  Summary of Cray XE6 and Cray XK6 node performance results.  Note that a single Cray XE6 node has 2 AMD 6272 sockets while a Cray XK6 

node has one AMD socket and an NVIDIA X2090 GPU device.  These are preliminary results illustrating work in progress.  For instance, speedup for 
applications accelerated with CUDA and OpenCL demonstrate higher speedup. We intend on reporting progress as the devices, software stack and 

algorithms improve for the Cray XK7 system. 

In order to identify whether the pipeline sizes have a 
significant impact on the bandwidth between GPU to remote 
GPU transfers, additional tests were performed.  Results are 
shown in figure 8 for pipeline sizes of 256 Kbytes to up to 4 
Mbytes.  The results demonstrate that the these transfer rates 
can be an important tuning parameter as the effective 
bandwidth could be improved by as much as 40%  for 
transferring same message sizes between remote GPUs. 

This evidence suggests that Cray could provide an 
integrated MPI library that is tuned and optimized for 
different message sizes for GPU to GPU transfers over the 
MPI interconnect as it provides for the non-accelerator, 
multi-core platforms such as Cray XE6, where the latencies 
are sensitive to NUMA regions.  Note that there are 4 
NUMA regions on a Cray XE6 dual-socket node vs. 2 on a 
Cray XK6 single-socket node.  A similar solution has been 
proposed by the MVAPICH library developers and this 
could be implemented in the Cray MPI [7]. 

Since early 2010, CSCS has been engaging application 
development teams in preparation for the next-generation 
multi-petascale platforms as part of a project called High 
Performance High Productivity Computing (HP2C).  Details 
of the project are available at: www.hp2c.ch.  A number of 
these application groups have successfully been exploiting 
the Cray XK6 platform as early science users.  These 
applications are listed in Table V.  Most of these 
applications have been developed using CUDA and 
OpenCL on existing cluster platforms with accelerators, and 
the migration process to the Cray XK6 platform was 
straightforward.  

Two applications, COSMO and RAMSES, are 
beginning to exploit the OpenACC incremental 
programming approach and these groups are making steady 
progress on the Cray XK6 platform using the Cray compiler 
environment.  Comparison of Cray XK6 and Cray XE6 
platform for different variants of applications that are listed 
in Table IV are shown in figure 9. 

 
 

TABLE V.  CACHE AND MEMORY HIERARCHY OF THE NVIDIA FERMI 
X2090 AND OPTERON BULLDOZER 6272 PROCESSORS 
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Applications presented in figure 9 represent production-
level simulations that have been awarded computation time 
on CSCS flagship Cray XE6 system.  However, these are at 
different levels of maturity in terms of GPU accelerated 
components.  For example, SPECFEM3D production level 
simulations are being performed using the GPU accelerated 
while in COSMO benefits of GPU acceleration has been 
explored using different strategies (CUDA and directives). 
Since the Cray XK6 is considered as a prototype platform 
for a multi-Petaflops Cray XK7 system that is expected to 
be installed later this year at the Oak Ridge National 
Laboratory (ORNL), some issues may only be resolved for a 
new hardware and programming environment [2].  We 
intend to collaborate with ORNL and Cray as we transition 
to the next-generation integrated accelerator based MPP 
platform. 

V. SUMMARY AND FUTURE PLANS 
Cray XK6 system is a tightly integrated MPP platform, 

which offers similar programming and execution 
environments as multi-core based Cray XT and XE series 
systems.  However, due to a fundamental difference in the 
node design where a GPU device is available for code 
acceleration, the system has been equipped with some 



 

 

unique programming, execution and operational design 
elements.  As this report presents, a number of these unique 
features are available and functional within the integrated 
hardware and software platform.  At the same time however, 
since installing the system in 2011, CSCS together with 
Cray have resolved a number of issues that emerged during 
the operational phase.  As we have identified in the paper, 
some issues remain to be solved, for example, a parallel 
debugger for OpenCL code development, as well as high 
performance MPI for GPU programming. 
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