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Abstract—A highly scalable solver framework, based on a
linearized octree is presented. It allows for fully distributed
computations and avoids special needs on single processes with
potential bottlenecks, while enabling simulations with complex
geometries. Scaling results on the Cray XE6 system Hermit
at HLRS in Stuttgart are presented with runs up to 3072
nodes with 98304 MPI processes. Even with a fully indirect
addressing a high sustained performance of more than 9% can
be achieved on the system, enabling very large simulations. Two
flow simulation methods are shown, a Finite Volume Method
for compressible flows, and a Lattice Boltzmann Method for
incompressible flows in complex geometries.
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I. INTRODUCTION

An efficient usage of modern massively parallel hardware
is non-trivial, and simulation frameworks often suffer from
bottleneck problems at some point in the process chain.
A lack of scalability imposes a severe limitation, as the
development of modern computing architectures follows a
trend to ever more distributed resources.

Scalability bottlenecks often only become visible after
surpassing a larger number of processes. Methods which
increase in running time or consumed memory with the
number of processes in a O(p) manner will eventually
begin to dominate the simulation on thousands of processes,
while they might not even be noticed on smaller counts of
processes.

In the following we present a simulation framework
designed for the distributed computation of mesh-based
methods. We consider two different numerical algorithms
(Finite Volume and Lattice Boltzmann method) in the field of
computational fluid dynamics (CFD) on top of a common in-
frastructure, based on an octree mesh representation. Octree
mesh based simulations are not new and have been proposed
for example by Flaherty et al. in 1997 [1]. However, to
the authors’ knowledge, our approach is for the first time
fully exploiting the features of such meshes for massively
distributed computing. Several implementations for octree
meshes exist, but they are often designated to a single
numerical method like the Dendro [2] library for FEM, or
impose a cell-wise computation approach prohibiting the
exploitation of vectorization like the Peano framework [3].

In our opinion, a consideration of the full simulation pipeline
as described by Tu et al. [4] is essential for successful
large scale simulations on distributed systems. The described
framework addresses the complete toolchain from mesh
generation to simulation with different solvers for different
equation systems to post-processing.

The outline of this paper is as follows: In section II we
describe our approach to a highly scalable solver frame-
work called APES (Adaptable Poly-Engineering Simulator).
Section II-A describes the partitioning and parallelization
strategy of the mesh. Different requirements of the solvers
and our approach to harmonize them are described in section
II-C. Section III outlines the algorithmic approaches to
computational fluid dynamics in the implemented solvers. In
the final section V we give a conclusion and outline future
plans for the APES simulation framework.

II. OCTREE FRAMEWORK

Many modern simulation techniques aim to solve par-
tial differential equations on a mesh, i.e. they decompose
the domain of interest into smaller discrete elements. We
consider two popular approaches of mesh-based numerical
algorithms: the Finite Volume (FVM) and Lattice Boltzmann
method (LBM). An attractive feature of these two methods
is their ability to handle arbitrarily complex geometries.
However, the type of meshes that are typically used are
different. Unstructured meshes are usually used with the
FVM, while the LBM operates on Cartesian voxel meshes.
Although an unstructured mesh nicely solves the problem of
complex geometries, its arbitrary nature imposes problems
on massively parallel and distributed computing systems. In
fully unstructured meshes, the relation of each element to
adjacent elements has to be identified explicitly and these
neighbors might be arbitrarily distributed across remote
computing partitions. If the elements of the unstructured
mesh are not sorted and neighborhood relations are not iden-
tified globally beforehand, each partition potentially requires
complete mesh information from all remote processes intro-
ducing a severe bottleneck. This can be remedied by storing
neighbor information and using a global ordering of the
elements [5]. However, such an approach is merely shifting
the problem to the preprocessing step, which eventually fails
for very large problem sizes.



33 34 45

48

46

35

57

59 60

70

71 72

5 6

7

9 10

12

13

15 16

18

19 20

8 11
14 17

1 2

3 4

Figure 1. Schematic 2D (quad-) tree mesh example.

Therefore, we propose to solve this problem by octree-
based meshes for both methods. We utilize a global, breadth-
first numbering scheme for all the nodes of the full octree
with a geometric ordering given by a space filling curve
(SFC) [6]. The tree topology information of each element is
held in the so-called treeID, an integer number, and allows
each process to compute neighbors locally with minimal data
about remote partitions.

Figure 1 shows a sample discretization of a cubic physical
domain. For the sake of simplicity, we restrict the illus-
trations to a quadtree in two dimensions, where the same
rules apply to the equivalent octree in three dimensions.
An obstacle is located at the center of the bounding cube.
This bounding cube corresponds to the root cell of the tree,
and its children are refined towards the obstacle. The mesh
generation is described in detail in Harlacher et al. [7].

The mesh is generated in a recursive fashion, starting from
the root cell on level 0. Surface geometry is provided in the
form of triangles with the help of STL files. Attached to the
geometrical objects is a definition of the resolution level,
and the tree is recursively refined accordingly. The result is
a hierarchical mesh, i.e. each cell has one parent cell on the
next coarser level and a uniform amount of eight children on
the next finer level. The spatial ordering of the children on
each level is obtained by the space-filling Z-Curve, indicated
by the orange line in figure 1. This introduces a linearization
of the hierarchical tree into a linear representation. Only the
leaf nodes of the tree are part of the final mesh.

An example of a fully refined mesh for a porous medium
is presented in Figure 2.

A. Parallelization and domain decomposition

With the linearization of the tree by means of the SFC,
we obtain a one-dimensional list of elements. This list can
be divided easily into chunks of similar size to achieve a

Figure 2. Detail of a porous medium approximated by an octree mesh. The
grey cells build up the fluid domains, the red boundaries contain geometries,
and the blue cells are not part of the computational domain.

reasonable partitioning for parallel runs. Figure 3 shows this
partitioning strategy. Only leaf nodes of the tree are stored
in the list. The colored boxes indicate the distribution of ele-
ments to the processes. This is important in order to achieve
a balanced method for reading the mesh efficiently in parallel
on a distributed system. The partitioning might be refined
afterwards, to take into account different computational costs
of certain elements.

The treeIDs are stored in 8 byte signed integers for best
portability. This allows for meshes of up to 1.8 · 1018

elements which corresponds to one million elements in
each coordinate direction. Each element is identified by the
numbering scheme as pointed out in Figure 1 and 3.

Mesh-based numerical solvers for partial differential equa-
tions typically work with a stencil to include values of the
neighboring cells for computations of the current cell. With
the previous definitions and the topology of the octree, we
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Figure 3. Schematic 2D tree representation of the mesh in Figure 1.

can efficiently find these stencils in the distributed mesh.
In the APES framework, the solvers provide information of
the used stencil. The framework then looks up the requested
information in the distributed mesh of actually existing
neighboring elements. This includes building up so called
halo elements to receive data from remote processes.

Our approach for stencil-based neighbor identification is
as follows: From the unique treeID, the element position and
its size can be determined in terms of the tuple of the spatial
coordinates and the level it resides on.

treeID⇐⇒ coord(x, y, z, level) (1)

This definition of cell indices defines a one-to-one relation
between cell index and the treeID in the complete tree.
With this relation it is straight forward to find treeIDs of
arbitrary neighbors given by offsets relative to the current
cell position. This identification of the required treeIDs
within the stencil is purely local.

To obtain the processes, which are holding data for a
desired treeID, we take advantage of the introduced global
ordering. Since we cut the linearized information into par-
titions maintaining the ordering, it is sufficient to store the
first and last treeID each process holds to obtain the partition
in which a sought treeID resides. This partition identification
of a treeID is then a purely local operation. The complete
algorithm can be decomposed into the following steps:

• get the required treeID
• check if the required treeID is local
• create path from this treeID to the root element
• iterate over the remote processes and check if treeID is

between first and last for one of these processes

Note, that the storage of each partition’s first and last treeID
requires O(p) memory consumption with a relatively low
constant of 336bytes/process. Such a limitation does not
hurt yet on a system like the Cray XE6 Hermit with around
105 cores and 1 GB of memory per core, but is already
notable on a Blue Gene System like the Jugene with roughly
3 · 105 cores and only 512 MB of main memory per core.
It will be most likely not feasible on systems with millions
of cores. This is similar to the limitation of current MPI
communicators, and might be overcome with the help of a
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Figure 4. Linearization of the cells of the mesh of Figure 1. Offsets
indicated by smaller numbers below the colored boxes. Distribution over
processes is indicated by the color.

distributed hash-like data structure at the cost of additional
communication.

Only a single MPI Allgather communication is needed
to exchange requirements from remote partitions before the
local distributed search. Compared to fully unstructured
meshes, our approach requires only very little communica-
tion with neighbor processes due to the implicit topology of
the tree.

This strategy is not affected by local refinements and also
works for arbitrarily refined meshes. The same applies for
the following section which describes our approach to fully
parallel input and output of mesh-related data.

B. Parallel I/O

The exploitation of truly parallel input and output (I/O)
operations is a key feature to achieve high scalability on
distributed systems. If we order the computing processes
linearly (e.g. by the rank identifier in the context of MPI),
each process gets a contiguous piece of data in a known
region to read from disk. This enables each process to
handle the I/O exclusively in its partition. Figure 4 shows
a schematic representation of our I/O format for the mesh
and related files, such as restart files.

The mesh file consists of a contiguous binary file with 16
bytes for each element. An 8 byte integer holds the treeID
and another one holds the property information for each
element. The property integer of each element in the mesh
file is used as a bitmask to assign additional properties, e.g.
boundary conditions, to each cell. Each bit indicates, if a
certain property is active for the element. If so, there might
be additional information attached to the element, which is
stored in a separate file. Additional property data is only
stored for those elements, where the property is active. This
approach only requires once a counting of all elements with
a given property on all processes and their global reduction
with the help of a prefix summation, to find the offsets in the
property data. Parallel prefix summation is provided by the
MPI Exscan operation, which has a running time complexity
of only O(log p).

A text formatted header provides general information on
the mesh. This includes the overall number of cells and a
description of the spatial origin and length of the bounding
cube. In case of a periodic domain without boundary infor-
mations or other properties, we end up with a total storage
amount of 16 Bytes/cell. Our algorithmic approach for octree
data storage is not restricted to the mesh itself. We can use
it in a similar way for writing simulation results to disk.



C. Common features of the solver framework

On top of the octree framework our implementation of
the solvers is organized in two additional algorithmic layers.
The first provides generic functionality of common tasks in
the octree and is common to all solvers. On top of this
we introduce solver specific algorithms in a second layer.
To summarize we have three levels of algorithms in our
framework:
• basic algorithms of the octree mesh itself
• common algorithms of the solvers (often related to the

octree mesh)
• solver-specific algorithms
It is worth mentioning that all the data structures in our

framework are created such that they offer the possibility to
operate in a level-wise manner. Clearly, this is an advantage
in time-dependent explicit simulations where the size of a
cell leads to a restriction of the maximum time step. There-
fore, this strategy allows for local time-stepping algorithms
to operate with optimal time-steps. To provide a detailed
analysis of the performance of our solver framework it is
necessary to consider all layers of our approach. Therefore,
we also describe the solver-specific algorithms briefly in the
following section.

III. NUMERICAL SCHEMES

In the following we focus on transient flows, i.e. flows
that involve time-dependent phenomena. We show how
solvers based on FVM and LBM are integrated in the APES
framework. The former is used to solve compressible flows
while the latter is used for incompressible flow problems.

A. Finite Volume Method for (non-)linear conservation laws

The Finite Volume Method is a popular method for the
numerical solution of conservation laws [8]. Conservation
laws are special types of partial differential equations of
the following type (where we assume Ω to be an open and
bounded subset of three-dimensional Euclidean space):

∂tu(x, t) +∇ · F (u(x, t)) = 0 ∀x ∈ Ω (2)

These types of equations cover a wide range of physical
processes, such as electrodynamics and fluid dynamics.
The equation type is determined by the flux function F
and in case of Euler or Navier-Stokes equations the non-
linearity of this function causes major problems. The discrete
formulation of the FVM can be obtained from (2) by a
tessellation T of Ω into a finite set of N cells (we denote
the cells by Ti with i = 1, · · · , N ), integration over each of
these cells and applying the Gaussian theorem:

∂t

∫
Ti
udV = −

∫
Ti
∇ · F (u) dV = −

∫
∂Ti
F∗ · ndS (3)

On the right hand side we replaced the physical flux func-
tion F by its numerical counterpart F∗ that is no longer

depending on the state within the cell alone. Instead, it is a
function of the state left and right of the faces of Ti:

F∗ = F∗(u−,u+) (4)

Defining the integral mean for cell i by

ūi =

∫
Ti
udV (5)

we obtain a semi-discrete scheme for the integral mean of
each cell:

∂tūi = −
∫
∂Ti
F∗
(
u−i ,u

+
i

)
· ndS (6)

The right hand side of the equation above is typically
integrated by a quadrature rule (with quadrature points
x(1), · · · , x(M) and weights w(1), · · · , w(M)):

∂tūi = −
M∑
k=1

w(k)F∗
(
u−i

(
x(k)

)
,u+

i

(
x(k)

))
(7)

In case of higher order Finite Volume Methods the values for
u− and u+ on the right hand side are obtained with higher
accuracy by a reconstruction step. The higher the accuracy,
the larger the stencil has to be. In the following we focus
on the MUSCL scheme [9]. This is a second order scheme
and is the following fully discrete version of equation (7),
where s denotes a properly defined (limited) slope:

u±,ni = un
i ±

∆x

2
s

u
±,n+ 1

2
i = u±,ni − ∆t

2∆x

(
F(u−,ni )−F(u+,n

i−1)
)

un+1
i = un

i −
∆t

∆x

(
F∗(u+,n+ 1

2
i )−F∗(u−,n+

1
2

i )
)

(8)

In case of the Euler equations we have the following set
of conserved quantities: u = (ρ, j, E)

T , where ρ denotes
density, j momentum and E energy. With the auxiliary
definition of pressure, denoted by p and given by the
equation of state, the Euler equations read:

∂tρ+∇ · j = 0

∂tj +∇ ·
(
j⊗ j

ρ
+ pI

)
= 0

∂tE +∇ ·
(

(E + p)
j

ρ

)
= 0 (9)

One way to obtain the numerical flux over ∂Ti is to solve
the so called Riemann problem for the Euler equations.
This solves the above equation system subject to the initial
condition

u (x, t = 0) =

{
ul , if x < 0

ur , if x > 0
(10)

An overview of available Riemann solvers is given in [10].
In the following we always use the so called HLLE-flux.
Indeed, the flux calculation is one of the most expensive
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Figure 5. Schematic representation of a cell for the Lattice Boltzmann
method in 2D for the D2Q9 model. The arrows indicate the direction of
propagation in the streaming step.

parts of the solver, especially for non-linear conservation
laws. To avoid redundant flux calculations in the FVM
solver, we iterate over the faces instead of the cells. This
saves roughly a factor of two in the effort for the flux
calculation.

B. Lattice Boltzmann Method for incompressible flows

The Lattice Boltzmann Method (LBM) is an alternative
numerical scheme for the simulation of incompressible
flows. It has been shown that the LBM can be derived from
Cellular Automata or as a special discretization of the Boltz-
mann equation [11]. The latter recovers the hydrodynamic
macroscopic equations (i.e. the Navier-Stokes equation) in
the limit of small Knudsen numbers. The LBM algorithm
has the following form

fi(x+ 1, t+ 1) = fi(x, t) +
1

τ
(feqi (x, t)− fi(x, t)) (11)

Here, f denotes a probability density function, which de-
scribes the probability to find a particle with a certain
velocity at ~x. The upper algorithm is operating on a mesh
of cubic elements, as we access the data at integer spatial
and temporal coordinates. The index i is running over all the
links of the lattice, i.e. 19 for the standard D3Q19 model in
three dimensions. Figure 5 gives a typical shape of a cell
in the LBM for the standard D2Q9 model. The links are
numbered and denoted by ci. In the following, Q denotes
the number of links per cell.

The probability density function f is related to the
macroscopic quantities of the incompressible Navier-Stokes
equation by

ρ(x, t) =

Q∑
i

fi(x, t)

j(x, t) =

Q∑
i

cifi(x, t) (12)

Algorithm (11) is usually decomposed into a collision

f̂i(x, t)←
1

τ
(feqi (x, t)− fi(x, t)) (13)

and streaming step

fi(x+ 1, t+ 1)← fi(x, t) + f̂i(x, t). (14)

The collision step is a fully local operation and given by the
so called BGK approximation. The streaming step involves
pure memory copies of all Q local f values along the links
to adjacent cells.

There are also a number of generalizations of the LBM.
One is the so called multiple relaxation time (MRT) model.
It replaces the scalar relaxation parameter τ in front of
the collision step by a matrix M . The complete LBM-
MRT method has the following algorithmic form (where the
vector f = (f1, · · · , fQ)T is the collection of the linkwise
probability density function fi)

f(x+ 1, t+ 1) = f(x, t) +M (feq(x, t)− f(x, t)) (15)

Although the MRT algorithm involves more floating point
operations due to the matrix-vector multiplication, the gen-
eral structure of the LBM is unmodified. In the following
section we consider both types of the LBM with respect to
performance.

IV. PERFORMANCE RESULTS

We present performance studies of our implementations
on the Cray XE6 system Hermit at the HLRS in Stuttgart.
The Hermit system (Cray XE6) consists of 3552 computing
nodes with 32 cores each. We investigate strong and weak
scaling behavior for a number of problem sizes. As a test
case we use a fully cubic domain and a Gaussian pulse. Our
test case for the performance and scaling measurements con-
sists of a fully periodic, cubic simulation domain. Refining
the overall simulation domain by one level increases the
number of cells by a factor of eight. We consider runs with
up to 3072 nodes of our solver and cover refinement levels
three to eleven (i.e. 83 to 811 cells) with uniform cell sizes.

1) Performance Measure: For the following discussion,
we define MCUPS (million cell updates per second) as
a measure of the system performance. Update refers to
a complete time step cycle of the computing algorithm.
Obviously, this defines an absolute performance measure
(i.e. it depends on the number of cores we use for parallel ex-
ecution). Usually this performance depends on the problem
size in serial executions, as it is influenced by cache usage,
non-computational implementation overheads and so on. On
the other hand, ideal parallel execution is expected to just
replicate the serial behavior on each execution unit. Thus, the
MCUPS are to be proportional to the number of processes in
the parallel simulation run. It is therefore useful to define a
relative performance measure, which indicates the behavior
of the application per execution unit. On supercomputing



systems it is usually not useful, or even possible to use less
than a dedicated node. Due to this, a meaningful execution
unit is given by a single node. For this purpose we define
the number of million cell updates per second per node
(MCUPSN) as

MCUPSPN =
MCUPS
#nodes

. (16)

As already pointed out, this measure would be constant
over the number of processes in case of an ideal scaling.
Combining the baseline serial behavior over the problem
size with the replicated execution on parallel units in a
single graph, we end up with a performance map (see e.g.
Figure 6) characterizing the overall runtime behavior of the
application. This is achieved by plotting the MCUPS per
execution unit over the problem size per execution unit
with one data series per process count. The expectation
is, that all graphs for multiple processing units are below
that of the single processing unit, since they have additional
communication costs attached to them.

For the overall execution it is important to first understand
the application behavior within a single node, and then
make optimal use of each node in runs with multiple nodes.
We first performed these intranode performance runs with
1, 2, 4, 8, 16 and 32 cores. To obtain the best performance
of a single node, we use pinning to distribute the processes
within the node to a specific core.

2) FVM Performance and Scaling: The physical test case
in the cubic, periodic domain is based on a Gaussian pulse
in density and constant values for all other variables. Due
to the nature of the octree and the periodicity, we gain self-
similar problems, whenever the domain is subdivided into
smaller partitions by a factor of eight. We make use of
this fact to obtain perfect weak scaling problems, where
the work done by each processor is exactly the same for
the different processor counts. That is, number of cells to
compute, amount of data to communicate and number of
neighbors to communicate with, stays constant within the
weak scaling experiment.

In each time step we start with a communication of the
integral mean values which are used for the reconstruction
in space and are covered by stencils of cells on other
processes. Each cell reconstructs a linear interpolation of the
numerical solution by means of the neighboring six nodes
in a dimension-by-dimension approach as suggested by the
MUSCL approach. Therefore, this communication involves
exactly five floating point numbers per communicated cell.
Finally, we extrapolate the reconstructed values to faces of
the cell and extrapolate in time. Another communication
of the processes exchanges information about these face
values. In this communication it is sufficient to communicate
only those faces that are really requested by the neighboring
process. Then the flux calculation over all the faces for each
cell can be performed as well as the actual update of the
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Figure 6. Performance map of the FVM within one node of the Cray XE6
system Hermit with AMD Interlagos processors

cell values for the current time step. All in all we obtain two
communications in our simulation loop, all other operations
are purely local. One cycle of this whole simulation loop
requires roughly 630 floating point operations per element.

The results obtained for a scaling test within a single node
are shown in Figure 6 with a performance map with respect
to a single core as execution unit.

This already exposes some features of our implementa-
tion: For a very small number of cells per core we clearly
see additional overhead of the code. In parallel it is mainly
due to the relatively large communication surface for the
small partitions. As this overhead is diminishing relatively
for larger problem sizes per core, we see a strong depen-
dency of the performance on the problem size. The highest
performance per core is obtained when the system is able
to hold the complete memory of the computing loop in its
cache(s). Once the cache size is exceeded the performance
per core flattens out. Thus we can mainly distinguish three
different regions:

1) Overhead dominated very small problem sizes with
a strong gradient in the performance with increasing
problem size.

2) Problem sizes which fit into cache.
3) Problem sizes which require frequent access to the

main memory.
Furthermore we notice that due to the hardware architec-
ture of the AMD Interlagos CPUs of the Hermit system
the performance per core in case of 16 core execution is
significantly higher than the one with 32 core execution.
Nevertheless the higher the number of cores the higher
the overall performance becomes. Our FVM implementation
achieves the highest single node performance when using all
32 cores.

For the performance analysis beyond one node, we there-
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fore use all 32 cores on each node. This is shown in
Figure 7, where we plot the problem size per node on the
horizontal axis and the value of MCUPSPN on the vertical
axis. Compared to the intranode performance analysis, the
communication now involves network transfers, which dras-
tically increases the time spent on communication. We see
this effect clearly for small problem sizes per node with
a large ratio of communication to computation and low
computing efficiency. The larger the number of cells per
node, the smaller this ratio becomes. Figure 7 represents this
fact by the very steep slope on the left of the graph. Similar
to the intranode performance analysis, we reach a maximum
when the required memory fits exactly into the cache of
each node. However it is diminished by an increasingly large
communication overhead for larger node counts. In Figure 7
we can see this optimal point around 16384 cells per node.
Once we have exceeded the cache we see again that the
performance flattens out.

Please note, that Figure 7 also contains the information
about weak and strong scaling as indicated by the dashed
lines. The weak scaling can be obtained by the vertical
connection of points as this corresponds to a fixed number
of cells per node. The closer the points are located to each
other the better the weak scaling. Strong scaling can be seen
by connecting corresponding points of same overall problem
sizes over the various lines with different node counts. That
is connecting the rightmost point on 2 nodes with the next
less problem size on 16 nodes and so on. It can be seen,
that the scaling works fine on most process counts for all
problems, that fit into memory down to the cache-sized
problems, where the communication gets dominant and we
see a steep decreasing of the performance per node with
smaller problems per node.

In Figure 8 we provide an explicit overview for the weak
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scaling with different cell counts per node. For a very small
problem with 16384 cells per node, fitting into the cache,
the scaling is quite bad. In the performance map, Figure 7,
this is indicated by the large vertical distance between the
node counts at this point. For larger cell counts per node,
the scaling gets better and is nearly ideal for problems with
more than 1 million cells per node. The run on 3072 nodes
is included for completeness, even so it imposes a less ideal
partitioning. It shows a drop for a node count which is not a
power of two, however the performance achieved per node
is still acceptable.

A dedicated graph of the strong scaling is shown in Figure
9. We consider testcases with 84 to 89 cells total domain size.
As already pointed out previously we can find information
about strong scaling in Figure 7 by consideration of diagonal
points. We start with our analysis for 2 million cells in
total. It is clearly visible that the performance on 16 nodes
is even better than on two nodes. Comparing both points
with our performance map in Figure 7 we can immediately
recognize that the 16 node test case (resulting in 131072
cells per node) reaches a region with caching effects, which
explains the super-linear speedup. Increasing the number of
computing nodes by a factor of 64 again, leading to 2048
cells per node, drastically decreases the performance per
node resulting in approximately 40% of parallel efficiency.
For smaller problem sizes per node the situation is even
worse. In Figure 9 we observe that the scaling improves
with the overall problem size. With 16 million cells, which
is the largest problem in our series, we can fit on 2 nodes,
we can scale well up to 1024 nodes. All in all, the analysis
shows, that we can speedup a problem that fits onto a single
computing node roughly by a factor of 1000. This is also
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Figure 9. Parallel efficiency for strong scaling of the FVM implementation
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Figure 10. Speed up plot of the FVM implementation compared to the
running time on 2 nodes.

roughly the relation of available main memory per core to
the available cache.

The corresponding speed up plot is shown in Figure 10.
Please note, that we included two different ideal speed
up references due to the fact that we used a different
normalization for the 134 million cells problem as it does
not fit onto 2 nodes.

3) LBM Performance and Scaling: Similar to the per-
formance study for the FVM implementation, we use a
fully periodic, cubic simulation domain with powers of eight
as problem sizes. As usual in the LBM context, we refer
to lattice updates instead of cell updates here and change
MCUPS and MCUPSPN to MLUPS (i.e. million lattice
updates per second) and MLUPSPN (i.e. million lattice
updates per second per node).
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Figure 11. Intranode performance map for the LBM-BGK model

BGK model performance analysis: Again, we start with
an analysis of the intranode performance analysis. Figure 11
is showing the measured data for the LBM-BGK implemen-
tation. We observe the same three regions in our performance
graph. Though we see a decreasing performance per core if
more cores are used within the node, deploying all 32 cores
still provides the highest performance per node. Therefore,
we again consider full node computations in the following
internode performance analysis.

The internode performance map of the LBM-BGK model
is shown in Figure 12. We consider testcases with 83 to
811 cells. Like for the FVM analysis we use core counts
of powers of eight. We observe the large influence of the
communication for small problems per node. This results in
steep gradient of the performance graph in Figure 12 for
problem sizes with less than 105 lattices per node on more
than two nodes. Benefits from the caches are completely
diminished by the increased communication in these cases.
Due to the highly optimized kernel with only around 160
operations per lattice update and therefore low computing
time we still see an influence of the problem size on the
performance for larger problems. Thus strong scaling will
be worse than in the FVM application, while we still see a
nearly ideal weak scaling.

The weak scaling of our LBM-BGK implementation is
shown in Figure 13. We consider testcases between 1.3 ·105

and 8.4 · 106 cells per node. The points of all data lines
of Figure 13 correspond from left to right to 2, 16, 128 and
1024 compute nodes of the Hermit system. For the smallest
testcase of 1.3 ·105 cells per node we observe the following
situation: The two node execution is still in a region where
the cache is speeding up the calculation. For larger numbers
of nodes the increasing amount of communication overhead
is decreasing the performance per node at this problem
size per node. In the performance graph (Figure 12) this is
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Figure 12. Internode performance map for the LBM-BGK model
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Figure 13. Weak scaling of the LBM-BGK implementation on the Hermit
system for different problem sizes per node.

represented by the fact that the points for 1.3 · 105 cells per
node are distributed vertically. The larger the problem size
per node, the less significant the influence of communication
and therefore the better the weak scaling. For more than
one million cells per node points at fixed number of cells
per node nearly coincide. In our dedicated Figure 13 we
can find this observation, too. For sufficiently large problem
sizes per node the weak scaling is nearly perfect.

Figure 14 shows the strong scaling for our LBM-BGK
implementation. We remind the reader that the strong scaling
can be obtained by connecting diagonal points in the perfor-
mance graph in Figure 12. In a region of up to 105 cells per
node the communication time is dominating the computation
time, resulting in a steep performance gradient on more than
2 nodes. Figure 14 shows this effect on the strong scaling
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Figure 14. Parallel efficiency for strong scaling of the LBM-BGK
implementation on the Hermit system for different problem sizes
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Figure 15. Speed up plot of the LBM-BGK on Hermit

for the two million cell test case. Compared to the FVM,
we find a higher number of cells per processor is necessary
to sustain the computations. For a total problem size of
approximately 130 million cells we can scale up to 1024
nodes with more than 80 percent parallel efficiency. This
leads to approximately 1.3 · 105 cells per node, beyond this
process count a steeper drop in the performance is expected.
All in all it is possible to scale a problem that fits into the
memory of a single node roughly by a factor of 600 without
a significant loss of parallel efficiency for the LBM-BGK.
The corresponding speed up graph is shown in Figure 15.

MRT model performance analysis: In the following we
discuss the performance of the LBM-MRT implementation.
We already mentioned that the structure of the algorithm
is the same, but the number of floating point operations
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as in Figure 12.

per byte is increased. In our implementation the number
of floating point operations is approximately three times
higher for the LBM-MRT than for the LBM-BGK. However,
the amount of communicated data remains the same. Figure
16 is showing the performance graph of the MRT model.
Since the computational part of the solver is larger than
in the BGK model, the influence of the communication is
vanishing earlier.

We omit details of the weak scaling graph of the LBM-
MRT, as it resembles that of the LBM-BGK. For smaller
problem sizes per node, the weak scaling of the LBM-MRT
is slightly better, due to the fact that the number of floating
point operations per lattice update is much higher.

The strong scaling of the MRT model is shown in Figure
17. We observe an improvement for larger number of cores
for a fixed total problem size compared to the BGK model.
For a total problem size of 16 million cells and 128 compute
nodes we reach more than 80% parallel efficiency (i.e.
86.5% parallel efficiency). For the LBM-BGK we reached
for the same setup only 76% of parallel efficiency.

The measured performance for the MRT Lattice Boltz-
mann model corresponds to a sustained performance of
around 9% of peak performance.

V. CONCLUSION AND OUTLOOK

We have shown that the implementations of the Finite
Volume and Lattice Boltzmann method is performing well
on a Cray XE6 system. Both methods show a nice weak
and strong scaling behavior. In general we are able to scale
the largest problem size that fits on a single node by a
strong scaling by a factor of 1000 for the Finite Volume
method and by a factor of 600 for the Lattice Boltzmann
method without a significant loss of parallel efficiency. We
pointed out that the scaling properties of the MRT model are

 0

 20

 40

 60

 80

 100

 120

 140

 1  10  100  1000  10000

pa
ra

lle
l e

ff
ic

ie
nc

y

nodes

2 mio. elems
16 mio. elems

134 mio. elems

Figure 17. Strong scaling of the LBM-MRT implementation. We use the
same test sizes as in Figure 14.

slightly better than for the BGK model. Especially the fully
distributed approach to the simulation enables runs for very
large problems, we managed to run testcases with up to 68
billion elements on 3072 nodes. This shows, that the scaling
in memory does not hinder full usage of the distributed
memory system.

The memory consumption per cell is higher in case of the
Finite Volume method, leading to smaller maximum problem
sizes per node compared to the LBM BGK or MRT model. It
is worth mentioning that our Finite Volume implementation
is not optimized with respect to serial performance yet, but
this implementation issue should nicely fit into the chosen
approach, as the LBM kernels already show.

All in all, we have shown that our implementations are
able to use the Cray XE6 Hermit system efficiently and we
are able to scale down to cache size without a significant
loss of efficiency. Furthermore, we outlined the need for
implicit knowledge as provided by the octree is essential
for distributed computations.

In the future we are going to investigate our octree based
framework in several directions. One of the open issues,
is the study of local refinement and load imbalances. We
have already shown that the octree framework is still able
to execute all its tasks in parallel with a minimum amount of
synchronization. We will consider load balancing for octree
meshes from a broad perspective and investigate it with
respect to memory balancing, workload redistribution and
a well defined mixture of both.

We have also seen that a strong scaling is usually limited
by a high ratio of communication overhead to compute
time for small problem sizes per node. In these regions
the performance per node drops down significantly. Usage
of OpenMP or communication hiding by overlapping the
computation, might help here. In the context of Finite



Volume methods, the influence of higher order schemes on
computational efficiency could also improve the scalability
and go hand in hand with a hybrid parallelism.
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