
The Eclipse Parallel Tools Platform

Toward an Integrated Development Environment for Improved Software Engineering on Crays

Jay Alameda and Jeffrey L. Overbey
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, IL, USA

{alameda,overbey2}@illinois.edu

Abstract—Eclipse is a widely used, open source integrated
development environment that includes support for C, C++,
Fortran, and Python. The Parallel Tools Platform (PTP)
extends Eclipse to support development on high performance
computers. PTP allows the user to run Eclipse on her laptop,
while the code is compiled, run, debugged, and profiled on a
remote HPC system. PTP provides development assistance for
MPI, OpenMP, and UPC; it allows users to submit jobs to the
remote batch system and monitor the job queue; and it
provides a visual parallel debugger.

In this paper, we will describe the capabilities we have added
to PTP to support Blue Waters, the Cray XE6/XK6 system
being installed at NCSA. These capabilities include submission
and monitoring of ALPS jobs, support for OpenACC, and
integration with Cray compilers. We will describe ongoing
work and directions for future collaboration, including
integration with CrayPat, Loopmark compiler feedback, and
parallel debugger integration.

Keywords-Blue Waters; Eclipse; IDEs; integrated
development environments; Parallel Tools Platform;
programming environments; PTP

I. INTRODUCTION

Computational science models are becoming increasingly
complex, with the most complex models exceeding a million
lines of code. As software complexity increases, so does the
need for many software engineering tools, including tools for
version control, issue tracking, automated testing, reverse
engineering, and automated refactoring. However, every
new tool a scientific programmer must learn is yet another
distraction from his primary goal: science.

Eclipse is a widely used, open source integrated
development environment that seamlessly integrates this
functionality into one single, cohesive, graphical tool. It is
most popular for Java development, but it has more recently
been extended to support C, C++, UPC, Fortran (77 through
2008), Python, and many other languages. It provides point-
and-click access to version control systems (including CVS,
Subversion, and Git) and issue tracking software (e.g.,
Bugzilla). It integrates with virtually all existing build
systems (including Make) and provides an easy-to-use,
graphical debugger. It also provides code completion, code
searching, code templates, automated refactoring, and many

other tools to ease the processes of writing and
understanding code. In short, it makes a full suite of
software engineering tools accessible to scientific
programmers while only requiring them to learn one tool:
Eclipse.

The Eclipse Parallel Tools Platform (PTP) extends the
base C/C++/UPC/Fortran capabilities in a number of key
directions needed to support scientific application
development on high performance computers. First, PTP
allows the user to run Eclipse on her laptop, while the code is
compiled, run, debugged, and profiled on a remote HPC
system. PTP also provides development assistance for MPI,
OpenMP, and UPC, including integrated documentation and
static analysis tools. For code execution, the Parallel Tools
Platform provides a graphical interface allowing users to
submit jobs to the remote batch system and monitor the job
queue. PTP also includes a facility for integrating external
performance tools, such as TAU, and a visual parallel
debugger.

For the past several months, we have been extending the
Eclipse Parallel Tools Platform to work with Blue Waters,
the Cray XE6/XK6 system being installed at the National
Center for Supercomputing Applications at the University of
Illinois. In this paper, we will describe the capabilities we
have added to PTP to support Cray machines, including
submission and monitoring of ALPS jobs, support for
OpenACC, and integration with Cray compilers. We will
describe ongoing work and directions for future
collaboration, including integration with CrayPat, Loopmark
compiler feedback, and parallel debugger integration.

II. THE ECLIPSE PARALLEL TOOLS PLATFORM (PTP)

PTP is based on the Eclipse IDE, which has been
successfully used by many developers, using many
programming languages, to aid in all aspects of the software
development process. Eclipse has many facets. First, it is a
vendor neutral, multilingual, open source workbench for
software development. It is also an extensible platform for
integrating tools, both internal and external to Eclipse.
Finally, it is based on a plug-in framework that one can use
to create, integrate, and utilize software tools.

PTP was developed to support all aspects of science and
engineering application development, from coding and
analysis, to launching and monitoring (on remote HPC

resources), to debugging and performance tuning. The
foundational IDE in PTP supports a wide range of parallel
programming technologies (including MPI, OpenMP, and
UPC). It also supports numerous runtime systems, including
batch resource managers such as TORQUE and MPI
runtimes such as OpenMPI. It includes a framework for
integrating external parallel tools, such as the TAU
Performance System, including integration of feedback from
these tools. PTP has been designed to help simplify a users’
interactions with the diverse range of HPC systems that they
will likely encounter as they develop, port, debug and
optimize their application codes. Besides being able to
integrate external tools, PTP comes preconfigured to
recognize errors and warnings from popular compilers,
integrating the reported problems with the source code view.
This facility can also be used to integrate compiler feedback
(e.g., reports about successful or unsuccessful loop
vectorization) directly into the source view in Eclipse.

The support for runtime systems is delivered with many
configurations for popular batch and MPI runtime systems,
and can be further customized for new runtime systems or
site policies through a comprehensive XML configuration
document. Scalable monitoring of the remote HPC resources
is also provided as part of the runtime support.

Besides the traditional “local” project type supported by
Eclipse, in which one can use Eclipse to develop applications
on their local resource (such as their laptop), PTP supports a
fully remote project type, in which source, builds and runs
occur on a remote system, as well as a “synchronized”
project type, in which a developer’s source code exists not
only on their laptop computer, but also on any number of
remote HPC resources. A developer can set up any number
of build configurations to support builds on the remote
systems, synchronization of source code occurs no less
frequently than at build time.

Eclipse’s “Team” support allows projects to be connected
to version control systems, including CVS, Subversion, and
Git. Team support is extended by a component called the
Mylyn Bridge, which links source code in a repository with
issue tracking systems such as Bugzilla and Jira. This allows

the developer to fully associate issues with the source, as
checked into the repository, to help the engineer be more
productive in their work. Eclipse also has a hierarchical,
indexed help system, which is accessible within Eclipse as
well as exportable to a web server. Help documentation is
primarily written in HTML, and it is straightforward to
integrate documentation produced by tools such as Doxygen
into this system, as well as hand-crafted help for one’s
application.

III. EXTENDING PTP FOR BLUE WATERS

At NCSA, we are actively working to make Eclipse a
viable alternative to the command line for simple application
development on Blue Waters. Users should be able to
import source code from a version control system, edit the
code, compile it using the Cray, GNU or PGI compilers, and
then run the application by submitting and monitoring a
batch job, all from within Eclipse. The 2011 release of
Eclipse and PTP (the so-called “Indigo” release) had most of
the infrastructure needed to make this possible—indeed,
users could perform these tasks quite well on typical Linux
clusters—but we had to make a number of additions to make
the same possible on a Cray.

Our additions to PTP focused on four areas: customizing
the user interface for job submission and monitoring,
supporting environment modules, supporting the C/C++ and
Fortran compilers from Cray and PGI (GNU was already
supported), and supporting OpenACC development.

A. Job Submission

In a command-line environment, system administrators
typically provide sample job scripts, which users use as
templates in order to submit their own jobs to the batch
scheduler. In PTP, it is possible to write and submit custom
job scripts, exactly as one would do on the command line,
but PTP provides another means to submit jobs, which is
much simpler.

When the user uses this simpler job submission interface,
he never sees a job script. Instead, a dialog box allows him
to set job attributes (e.g., the batch queue, wall clock limit,

 (a) (b)
Figure 1. PTP’s graphical user interface for (a) submitting and (b) monitoring jobs on the Blue Waters prototype system.

number of MPI processes, and number of processes per
node) and submit the job to the batch scheduler. All of this
is done using a graphical interface.

This graphical interface has the added advantage that it
can be customized for particular machines. The customized
interface for submitting jobs to Blue Waters is shown in
Figure 1(a). Note the extensive explanatory text, as well as

the “Run in Dual-Stream Mode” checkbox (an aprun option
for the Cray XE6 that has no equivalent on a typical
mpirun).

B. Job Monitoring

PTP also provides a graphical interface for job
monitoring, based on LLview [6]. Although TORQUE has
been supported for several years, our colleagues at Jülich
Supercomputing Centre recently added support for job
monitoring on Crays, which internally uses a combination of
TORQUE and ALPS commands.

Figure 1(b) shows this monitoring interface running on
the Blue Waters Early Science System. On the left is a list of
jobs submitted to the batch system, with information similar
to that provided by qstat. (From this list, users can delete
their jobs or view their output via a context menu.) On the
right is a visualization of the nodes in the machine, organized
into rows and columns in a fashion that mimics the
machine’s physical organization into cabinets, chassis, and
blades (roughly similar the allocation grid displayed by
xtnodestat). Jobs are colored identically in the jobs list
and the machine visualization, allowing the user to see which
nodes a particular job is running on (and which nodes are
free).

C. Modules Support

Environment modules [7][8] allow users to switch
between different version of compilers, libraries, and other
installed software. Modules are common in HPC systems,
although they are especially important on Cray systems.
When a user wants to compile a program on a Cray, she
generally does not invoke the compiler directly; rather, she
loads a module for a particular programming environment
(e.g., module swap PrgEnv-cray PrgEnv-gnu) and then

invokes a generic compiler driver (e.g., cc or ftn), which
delegates to the compiler for the currently loaded
programming environment.

In Eclipse, when a user wants to compile C/C++ or
Fortran code, Eclipse simply runs make (typically on the
login node of the HPC system). On Cray systems, the
Makefile will typically invoke the cc or ftn drivers,

assuming that modules for the appropriate programming
environment have been loaded.

Thus, we added support to PTP allowing the user to
configure a set of environment modules that will be loaded at
build time, prior to running make. The user interface is
shown in Figure 2. A list of available environment modules
is shown to the user, who indicates which modules are to be
loaded. A “Select Defaults” button resets the selection to the
modules present in a new login shell. Alternatively, the user
can bypass the list and manually enter a list of module
commands.

D. Cray and PGI Compiler Support

When a project is built, the entire output of make is
present in Eclipse’s Console view. However, compiler
errors and warnings are also displayed in the Problems view,
and markers are placed next to the corresponding lines of
source code. Figure 3 shows an example: the Cray Fortran
compiler indicated a warning on line 7, and Eclipse has
accordingly placed a warning marker next to line 7 in the left
margin of the source editor.

Internally, marking errors and warnings requires that
Eclipse be able to “understand” the compiler’s output
messages, at least well enough to identify the message text

Figure 2. Configuring environment modules for build.

Figure 3. Recognition of output from the Cray Fortran compiler.

and associate it with the correct source file and line number.
Previous releases of PTP could recognize messages produced
by a number of compilers (including the GNU compilers); in
recent months, we added support for the Cray, PGI, and
Open64 compilers for C, C++, and Fortran.

Figure 3 shows Eclipse recognizing a warning from the
Cray Fortran compiler. In addition, the Cray compiler can
also produce information about what optimizations were
(not) performed (via the –h command line switch); if these
are found in the output of make, they will be displayed in the
Problems view under the “Info” category, and the
corresponding source lines marked accordingly.

E. OpenACC Support

OpenACC [9] is a relatively recent standard that allows
accelerator devices (e.g., GPUs) to be programmed using
OpenMP-style directives. OpenACC was developed by
members of the OpenMP Working Group on Accelerators,
and it is expected that the OpenACC API will eventually be
merged into OpenMP [10]. OpenACC is currently supported
(at least partially) in Cray and PGI’s compilers.

In Eclipse, we have added user assistance features for
OpenACC in two key areas.

 Documentation. In the Fortran editor, when the
Fortran Declaration view is enabled, this view will
display a brief summary when the editor caret is
placed on an OpenACC directive or procedure call.
This is shown in Figure 4. (Similar information is
available in the C/C++ editor.)

 Content Assist. In the Fortran editor, if the user
types part of the $!acc directive prefix and presses
Ctrl+Space, a pop-up list of OpenACC directives is
shown to the user (as shown in Figure 5); this list is
refined as the user types more characters, and
pressing Enter inserts the selected directive’s text.
(This facility is called content assist in Eclipse; it is
more generally called auto-completion and is similar
to Visual Studio’s IntelliSense.) After the directive
is inserted, the integrated OpenACC documentation

is displayed (as described previously), informing the
user of the supported clauses.

F. Future Directions

The customizations listed thus far will be publicly
available in the June 2012 (“Juno”) release of Eclipse. These
represent, the most critical changes needed to make
development on Blue Waters possible given the short period
of time between the Blue Waters platform change and the
Juno release in June 2012. Providing a comprehensive,
robust development environment for Crays will require
research and development in a number of areas, including
the following.

 Parallel Debugger Integration. PTP includes a
parallel debugger, which is designed for debugging
MPI programs on clusters. With the appropriate
ALPS integration, it may be possible to use this
debugger on Crays, at least for small- to medium-
scale debugging.

 Craypat Integration. PTP includes a component
called the External Tools Framework, or ETFw,
which allows command-line tools to be launched
from Eclipse. It allows the Eclipse GUI to solicit
arguments from the user, run the external tool, and
then launch any analysis of the results. ETFw has
been used to integrate the TAU Performance
System [5] with Eclipse and could likewise be used
to integrate the Cray Performance Analysis Tools.

 Improved Loopmark Integration. There is another
component of ETFw called the Feedback View. An
external tool can write an XML file containing
information about a source file (e.g., what compiler
optimizations were, or were not, performed); then,
the Feedback View will display this information in a
table, as well as place visual markers on the
corresponding lines of source code. This could be an
alternative means of integrating the Cray compiler’s
loopmark information into Eclipse.

 Refactorings for OpenACC. A refactoring tool
automates certain, methodical changes to source
code while ensuring that they will not change the
program’s externally observable behavior. A typical
example is Rename, a refactoring that changes the
name of a procedure and updates all of its call sites

Figure 4. Integrated OpenACC Documentation

Figure 5. Content assistance/templates for
OpenACC directives.

accordingly (and fails if the new name is invalid).
Photran includes extensive automated refactoring
support [1][2][3][4]. A number of new refactorings
could be added to support OpenACC development.
One example is Make Loop OpenACC-Parallel: the
user would select a DO-loop; Photran would check
the context and contents of the loop, ensuring that
introducing an OpenACC parallel loop directive
would not change the program’s behavior; then, if it
is determined to be safe, Photran would insert the
surrounding OpenACC parallel loop/end parallel
loop directives.

IV. ENABLING SOFTWARE ENGINEERING

Eclipse PTP is able to make many software engineering
tasks considerably easier or even feasible. For starters, one
significant advantage of PTP, indeed, any IDE, is the
visibility one gains into the source structure and content,
such as seen in Figure 6 for the application HOMME.

Another aspect of assistance for the software engineer is
to help deduce the call hierarchy of a new application. In
Figure 7, one can see a flat source directory hierarchy, and a
main function in the source file startup.c. Using the call
hierarchy capability in the C/C++ Development Toolkit
which is part of PTP, one can quickly gain an understanding
of the call hierarchy based on static analysis, as seen in
Figure 8.

Application software engineers are often faced with the
challenge of managing code development amongst a variety
of HPC resources. PTP offers the capability of a
synchronized remote project, in which the uncommitted
master source code is held locally at a developer’s
workstation, with source synchronization to one or more
HPC resources. Figure 9 shows a schematic of how this
service functions.

One important aspect of software engineering for science
and engineering applications is performance tuning. Eclipse
PTP provides an integration point for popular performance
analysis tools such as TAU, through its External Tools

Framework (ETFw). Besides providing support for
launching performance experiments, Eclipse provides
mechanisms for linking data with visualization tools as well
as direct feedback mechanisms to indicate performance

issues directly in one’s source code.
Eclipse PTP also takes advantage of comprehensive

support for source code repositories, through the Team
support features in Eclipse. Repositories supported include
CVS, Subversion, Git, and more; common features amongst

Figure 8. Navigable call hierarchy derived from
the main function in startup.c.

Figure 7. Source distribution with few hints as to the logical
structure of the source code.

Figure 6 Source navigation for the application HOMME:
directory structure (left), syntax-aware editor (middle),

and code outline (right), in the Fortran perspective.

the repositories include source version numbers, indications
of source files which have uncommitted changes, as well as
menus for driving many interactions with the repository.
Finally, Team support provides visual mechanisms for

comparing different versions of a source, allowing the
developer easy means to select which changes they want to
preserve in a source code merge operation.

Besides supporting source repositories, which are
essential for collaborative code development, one can use a
capability bundled in Eclipse for source code-issue tracking
integration. This capability, called the Mylyn Bridge, allows
a software engineer to track issues, in the context of their
source code, as presented in Eclipse. Context is preserved
between the issue tracking system (such as Bugzilla) and
their source repository, and presented in the context of the
source code navigation views built into Eclipse.

Finally, Eclipse provides a mechanism to help software
engineers provide documentation for their project (usually an
engineer’s least favorite task). The Eclipse Help System, as
seen in Figure 10, provides a searchable, hierarchical

documentation system that is remarkably easy to develop
collaboratively. Additionally, plug-ins are available to ease
development of the HTML documentation. The help system
is then deployable within the context of a normal Apache

httpd server, which provides opportunities for wider
dissemination of one’s documentation.

V. CONCLUSIONS

Eclipse provides a sophisticated, intelligent, and
extensible software development environment. Source code
navigation features aid in reverse engineering and software
maintenance. Integration with version control and issue
tracking systems support best practices in software
configuration management. A searchable, independently
deployable online help system is ideal for providing user and
developer documentation. PTP extends Eclipse with
capabilities that can substantially ease the process of building
HPC applications: code editing and navigation, compilation,
job submission and monitoring, debugging, and performance
tuning are all integrated into a single tool. Our work
supporting Blue Waters in PTP is a first step toward making
this environment available to Cray developers. With the
support of the Cray community, we believe that PTP has the
potential to become a full-featured development environment
for Cray application developers. More information on PTP
can be found at http://www.eclipse.org/ptp.

ACKNOWLEDGMENT

This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the
National Science Foundation (award number OCI 07-25070),
the Workbench for High Performance Computing (WHPC)
SI2 project, which is supported by the National Science
Foundation (award number OCI-1047956), and the state of
Illinois. Blue Waters is a joint effort of the University of
Illinois at Urbana-Champaign, its National Center for
Supercomputing Applications, Cray, and the Great Lakes
Consortium for Petascale Computation.

REFERENCES
[1] J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refactorings for

Fortran and High-Performance Computing,” 2nd Intl. Workshop Soft.
Eng. for High Performance Computing System Applications (SE-
HPCS 05).

[2] J. Overbey, S. Negara, and R. Johnson, “Refactoring and the
Evolution of Fortran,” 2nd Intl. Workshop Soft. Eng. for
Computational Science and Engineering (SECSE 09).

[3] M. Méndez, J. Overbey, A. Garrido, F. Tinetti, and R. Johnson, “A
Catalog and Classification of Fortran Refactorings,” 11th Argentine
Symp. Soft. Eng. (ASSE 2010).

[4] J. Overbey, M. Fotzler, A. Kasza, and R. Johnson, “A Collection of
Refactoring Specifications for Fortran 95,” ACM Fortran Forum, vol.
29, issue 3, pp. 11–25, December 2010.

[5] S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” International Journal of High Performance Computing
Applications, vol. 20, issue 2, pp. 287–331, Summer 2006.

[6] LLview [Online]. Available: http://www2.fz-juelich.de/jsc/llview/

[7] J. L. Furlani and P. W. Osel, “Abstract Yourself with Modules,” Proc.
10th Large Installation Sys. Admin. Conf. (LISA 96), pp. 193–204.

[8] Modules – Software Environment Management [Online]. Available:
http://modules.sourceforge.net/

[9] OpenACC [Online]. Available: http://www.openacc-standard.org/

[10] OpenACC – Frequently Asked Questions [Online]. Available:
http://www.openacc-standard.org/Frequently-Asked-Questions

• Projects types can be:

File Service Index Service

Launch Service

Build Service

Debug Service

Local source
code

Source code
copy

Local Remote

Compute

Edit Search/Index
Navigation

Synchronize

Executable

Figure 10. The Eclipse Help System.

Figure 9. Schematic of synchronized project capability in PTP.
Note that build, run and debug occurs on the remote HPC system.

