
Titan: Early experience with the Cray XK6 at Oak Ridge National Laboratory

Arthur S. Bland, Jack C. Wells, Otis E. Messer, Oscar R. Hernandez, James H. Rogers

National Center for Computational Sciences

Oak Ridge National Laboratory

Oak Ridge, Tennessee, 37831, USA

[blandas, wellsjc, bronson, oscar, jrogers, at ORNL.GOV]

Abstract— In 2011, Oak Ridge National Laboratory began an

upgrade to Jaguar to convert it from a Cray XT5 to a Cray

XK6 system named Titan. This is being accomplished in two

phases. The first phase, completed in early 2012, replaced all of

the XT5 compute blades with XK6 compute blades, and

replaced the SeaStar interconnect with Cray’s new Gemini

network. Each compute node is configured with an AMD

Opteron™ 6274 16-core processors and 32 gigabytes of DDR3-

1600 SDRAM. The system aggregate includes 600 terabytes of

system memory. In addition, the first phase includes 960

NVIDIA X2090 Tesla processors. In the second phase, ORNL

will add NVIDIA’s next generation Tesla processors to

increase the combined system peak performance to over 20

PFLOPS. This paper describes the Titan system, the upgrade

process from Jaguar to Titan, and the challenges of developing

a programming strategy and programming environment for

the system. We present initial results of application

performance on XK6 nodes.

Keywords-component; Titan, Jaguar, Cray XK6, hybrid

computing

I. INTRODUCTION

Titan, a hybrid Cray XK6 system, is the third generation
of major capability computing systems at the Department of
Energy (DOE) Office of Science’s Oak Ridge Leadership
Computing Facility (OLCF) located at the Oak Ridge
National Laboratory (ORNL). It is an upgrade of the existing
Jaguar system [1] first installed at the OLCF in 2008. The
initial upgrade from Cray XT5 to Cray XK6 compute nodes
was accepted in February 2012 and consists of 18,688
compute nodes for a total of 299,008 AMD Opteron 6274
―Interlagos‖ processer cores and 960 NVIDIA X2090
―Fermi‖ Graphical Processing Units (GPU). The peak
performance of the Opteron cores is 2.63 PFLOPS and the
peak performance of the GPUs is 638 TFLOPS. In late 2012,
the 960 NVIDIA X2090 processors will be removed and
replaced with at least 14,592 of NVIDIA’s next generation
―Kepler‖ processors with a total system peak performance in
excess of 20 PFLOPS.

ORNL is deploying Titan in 2012 as part of the DOE
Office of Science’s Leadership Computing Facility program
in support of its basic and applied science missions.
Examples of specific modeling and simulation areas where
Jaguar and Titan are being and will be used include better
understanding turbulent combustion, creating biofuels from
cellulose, designing more efficient materials for photovoltaic
cells, understanding the role of turbulence in combustion

turbines, building a virtual nuclear reactor to increase power
output and longevity of nuclear power plants, modeling the
ITER prototype fusion reactor, predicting impacts from
climate change, earthquakes and tsunamis, and improving
the aerodynamics of vehicles to increase fuel economy.
Access to Titan is available through several allocation
programs. More information about access is available
through the OLCF web site at:
http://www.olcf.ornl.gov/support/getting-started/.

The OLCF worked with Cray to design Titan to be an
exceptionally well-balanced system for modeling and
simulation at the highest end of high-performance
computing. The Cray XK6 nodes and the AMD Opteron
processors double both the memory bandwidth and memory
capacity per node as compared to the Jaguar Cray XT5
system it replaced. The system will be linked to an external
global parallel file system by twice the number of I/O nodes
and will use InfiniBand (IB) cards that provide at least twice
the bandwidth of the IB cards in Jaguar. The file storage
system is being acquired independently from the Titan
system and will have at least twice the bandwidth and
capacity of Jaguar’s file system. The key new component of
Titan is that a majority of the Cray XK6 nodes include an
NVIDIA GPU application accelerator. In the November
2011 Top500 list [2] of the world’s most powerful
computers, 39 of the 500 computers on the list used
application accelerators, including three of the five fastest
computers.

This paper is organized as follows: The authors describe
the Titan system architecture and our reasons for some of the
choices we made in the design. We describe the process of
upgrading Jaguar to Titan. We discuss the programming
strategy for effectively using the GPU accelerators and the
programming environment we have assembled for our users.
Finally, we present some early performance results of
applications on the first phase of the upgrade.

II. TITAN SYSTEM DESCRIPTION

Titan is the system being delivered as part of the OLCF-3
project, the third major architecture delivered for our users
since the DOE Leadership Computing Facility program was
created in 2004. The OLCF-1 system was Phoenix, a Cray
X1 and X1E vector system. The OLCF-2 system was Jaguar,
a series of machines built on the Cray XT system
architecture ranging from a 25 TFLOPS XT3 in 2005 to the
2.3 PFLOPS XT5 placed in service in 2009. The OLCF-3

project upgraded the Jaguar XT5 system to Cray’s XK6
architecture using the latest Opteron processor, Gemini
interconnect, and most notably different from prior systems,
NVIDIA’s GPU application accelerators.

The Cray XK6 is an evolution of the Red Storm system
architecture [3] developed through collaboration between
Sandia National Laboratories and Cray, and first delivered in
2005 in Cray’s commercial XT3 product. Through a series of
evolutionary steps, the XT3 produced the XT4, XT5, and in
2010 the last in the XT series, the XT6. Each generation of
the XT series used the same Cray SeaStar interconnect [4],
but incremented the model number when a new generation of
AMD’s Opteron processor socket was used in the product. In
each of these models, Cray delivered at least two revisions of
the node board with an upgraded version of the processor.

A. Node Architecture

The XK6 node consists of an AMD Opteron 6274
―Interlagos‖ 16-core processor linked to an NVIDIA X2090
―Fermi‖ GPU. The AMD Interlagos processor is the first to
use the new ―Bulldozer‖ [5] module, each of which contains
two integer processor cores that share a floating-point unit
capable of generating eight 64-bit results per clock cycle.
With eight floating-point units per processor and eight
operations per clock cycle, the 2.2 GHz processors in Jaguar
each have a peak performance of 140.8 GFLOPS. Each
processor has four separate memory channels connected to
DDR3-1600 memory providing up to 102.4 GB/s of memory
bandwidth. The Interlagos processor connects to the
NVIDIA GPU through a Hypertransport-3 (HT-3) to PCI-
express version 2 conversion chip. The bidirectional
bandwidth between the Interlagos processor and the GPU is
10.4 GB/s.

The NVIDIA GPU is mounted on an SXM form factor
PCI-express card with 6 GB of GDDR5 memory. The first
phase of the upgrade to Jaguar includes 960 compute nodes
configured with NVIDIA Fermi GPUs [6]. The SXM
module is a different form factor but functionally equivalent
to the NVIDIA M2090 [7]. The Fermi GPU has 16
streaming multiprocessors (SM) and has a peak performance
of 665 GFLOPS. The Fermi implements memory error
correcting codes that can correct single-bit memory errors
and report double-bit errors (SECDED), but at a cost of
storing those codes in the GDDR5 memory. The memory
error correcting codes decrease the available memory per
GPU to approximately 5.25 GB. The memory bandwidth
between a Fermi GPU and the GDDR5 memory is 177 GB/s
with error correction turned off, and approximately 140 GB/s
with error correction enabled.

In late 2012, the NVIDIA ―Kepler‖ GPU will become
generally available and will replace the Fermi GPUs in Titan.
It will use the same SXM form factor board with 6 GB of
GDDR5 memory. The specific details of the HPC version of
the Kepler GPU architecture have not been released;
however, an architecture document [8] describing the
GeForce 680 version of the Kepler GPU shows the single
precision floating point performance as almost twice that of
the Fermi processor and describes some of the features of the
Kepler architecture.

B. Gemini Interconnect

One of the key differences between the Cray XK6 and prior
generation XT systems is the Gemini interconnect [9].
Instead of a SeaStar ASIC for each node, each Gemini
custom ASIC connects two nodes to the 3-D torus
interconnect. All of the cables and backplane
interconnections between node boards are the same for
SeaStar and Gemini based system. The only difference is the
mezzanine card on the node boards. The mezzanine card is a
separate printed circuit board that attaches to the base XK6
node board and contains either the SeaStar or Gemini ASIC
along with any support circuitry and the interconnections
between the SeaStar or Gemini chips. This feature allowed
ORNL to upgrade from an XT5/SeaStar system to an
XK6/Gemini system while reusing the cabinets, cables, and
backplanes. Figure 1 shows the functional layout of the
Gemini ASIC
.

Figure 1 - Functional layout of the Gemini ASIC (Courtesy of

Cray Inc.)

In describing a 3-D torus, it is convenient to describe the
three directions as ―X‖, ―Y, and ―Z‖, referring to the
common directions in a coordinate system. Each Gemini
ASIC therefore has six directional links with the positive and

negative directions in the X, Y, and Z directions. The X and

Z links have twice as many wires as the Y cables because
the X and Z directions have two physical cables, replacing
two separate positions in the SeaStar torus with one position
in the Gemini torus and taking advantage of the extra cables
to increase the bandwidth, as shown in Figure 2.

Some of the links between Gemini ASICs go over cables,
and some of the links are implemented as traces on the
Gemini mezzanine card or in the XK6 cabinet backplane.
The length of the cables also varies depending on the
direction in the torus. In Titan, the X dimension of the torus
goes from cabinet to cabinet in the same row of cabinets on
the computer room floor; therefore the number of Gemini
ASCIs in the X dimension is equal to the number of cabinets
in a row. The Y dimension cables go from row to row with
the two Gemini ASICs on a mezzanine card also connected
in the Y dimension. The result is that the number of Gemini
ASICs in the Y dimension is equal to two times the number
of rows. The Z dimension stays within an XK6 cabinet.
There are 48 Gemini ASICs in a cabinet, two per XK6 blade.

Network
Links to
other
Gemini

ASICs
48-Port

Router N
et

lin
k

24

NIC1

NIC0

Node
1

Node
0

H
T-

3

24
+X

24
-X

12
+y

12
-y

24
+Z

24
-Z

Number of bits
per direction

Cray Gemini ASIC

The 24 Gemini 0 ASICs of each blade in a cabinet are wired
together in the Z dimension as are the 24 Gemini 1 ASICs.
The result is that Titan’s 200 cabinets, each with 24 blades
and 48 Gemini ASICs are wired into a three dimensional
torus with 25 Gemini ASICs in the X dimension, 16 Gemini
ASICs in the Y dimension and 24 Gemini ASICs in the Z
dimension for a total of 9,600 Gemini ASICs, each of which
is connected to two nodes.

Figure 2 - Logical layout of interconnect ASICs in the SeaStar

(top) and Gemini (bottom) networks on a node board

(Courtesy of Cray Inc.)

The Gemini links have differing bandwidths depending
on the direction and if the link goes over a cable, mezzanine
card trace, or through the backplane that connects blades in a
cabinet. Table 1 shows the bandwidths of each of the link
types. Titan’s 3-D torus dimension listed above is (25 x 16 x
24). The cross section bandwidth in the X dimension is
75Gbps * 16 Geminis in the Y * 24 Geminis in the Z * 2
directions per cable * 2 torus paths / 8 bits/byte = 14,400
GB/s. Using the same formula the cross section bandwidth in
the Y dimension is 11,250 GB/s and in the Z dimension is
24,000 GB/s. The bisection bandwidth is the smallest of
these three at 11,250 GB/s. Table 2 presents measured
latency and bandwidth numbers from the XK6 as compared
to the XT5 system.

C. System Description

Titan is built from 200 Cray XK6 cabinets arranged as 8
rows of 25 cabinets per row. Each cabinet is powered by a
480 volt, three-phase circuit and when fully configured with
maximum memory and the highest speed processors and
accelerators, is rated to consume a maximum of 54 KVA per
cabinet. When configured with the Kepler GPUs, Titan is
expected to draw a peak of as much as 10 MVA of power

and a more typical 7-8 MVA when running an average mix
of applications.

The cabinets for Titan are cooled using Cray’s
ECOphlex™ technology in which liquid R-134a refrigerant
is vaporized by the heat exiting the Cray XK6 cabinet. The
vapor is then condensed with a chilled water heat exchanger
to efficiently capture the heat from the system.

Titan’s cabinets contain a mix of I/O and compute blade
designs. There are a total of 4,800 blades, each containing
four nodes. 4,672 of the blades are Cray XK6 compute
blades. Each of the XK6 compute nodes has a single AMD
Interlagos processor and four DDR3-1600 8 GB memory
modules. In addition, at least 3,648 will also have NVIDIA
Kepler GPUs. 1,024 XK6 node boards will initially be
Opteron-only, with an open slot available for expansion.

The remaining 128 blades are Cray XIO boards which
contain four service and I/O nodes used to boot the system,
as login nodes for interactive use, for network nodes to
connect Titan to the internet, and as Lustre routers to link
Titan to the Spider external file system. The initial Spider
configuration has a bandwidth of 240 GB/s and capacity of
10 petabytes. The OLCF expects to more than double both
the bandwidth and capacity of the Spider file system in 2013.

Table 2 – MPI performance benchmarks, comparing Jaguar’s

XK6 performance with XT5 performance measured at the

October 2009 Istanbul upgrade.

III. UPGRADING JAGUAR TO TITAN

The upgrade of Jaguar to Titan is being accomplished in
two phases, as mentioned earlier. The first phase replaced all
of the XT5 compute blades with XK6 compute blades. The
second phase will add the NVIDIA Kepler GPUs to the node
boards once those processors are commercially available in
late 2012. A complicating factor for the upgrade is that
Jaguar is a production computer with users depending on it
for their work. Taking Jaguar down for a long period of time
for the upgrade was not a viable option for the OLCF. The
XT and XK 3-D Torus networks and the external Lustre file
system, known as Spider, that the OLCF developed for
Jaguar provide the flexibility to upgrade Jaguar in phases,
always keeping a 1+ PFLOPS portion of Jaguar available for

Link Type Bits per
direction

Clock Rate Bandwidth
per Direction

X and Y cables 24 3.125 Gb/s 75 Gb/s

Y cables 12 3.125 Gb/s 37.5 Gb/s

Y mezzanine 12 6.25 Gb/s 75 Gb/s

Z backplane 24 5.0 Gb/s 120 Gb/s

Table 1 – Titan’s torus link bandwidths across Gemini [10].

Test XK6 Performance
XT5

Performance

MPI Unidirectional
Bandwidth

5.87 GB/s (x dim)

1.62 GB/s 3.47 GB/s (y dim)

6.09 GB/s (z dim)

MPI Bidirectional
Bandwidth

10.6 GB/s (x dim)

2.93 GB/s 5.40 GB/s (y dim)

10.5 GB/s (z dim)

MPI ping-pong, zero
byte latency, nearest

neighbors

1.50 sec (x dim)

6.20 μs 1.70 sec (y dim)

1.55 sec (z dim)

MPI ping-pong, zero
byte latency, across

full machine
3.96 s 8.70 μs

MPI All Reduce 22.41 s 147 μs

MPI Barrier 24.80 s 112 μs

the users, except during the final test of the combined
system.

In the first phase of the upgrade, the 200 cabinet Jaguar
system was divided into two sections, the first with 104
cabinets and the second with 96 cabinets.

The X-dimension torus cables were removed between the
two sections of the system so that one section could be
upgraded, while the other section remained in operation for
the users. This was necessary because the SeaStar and
Gemini networks are electrically incompatible, even though
they use the same cables and connectors. The 256 Service
and I/O (SIO) nodes in Jaguar are distributed throughout the
cabinets of the system and link to the Spider file system’s
object storage servers through a switched DDR IB network.
Thus, when the system was segmented, the bandwidth to the
file system remained proportional to the number of nodes,
and each of the SIO nodes could reach the entire file system
through the IB network fabric. Finally, the OLCF has
maintained a portion of the Spider file system for testing, and
the portion of the system that was being upgraded used this
part of the file system. The result was that the 96 cabinet
section of Jaguar was initially upgraded to the XK6 blades
and run as a separate system, while we worked through the
acceptance tests on that portion of Jaguar. The remaining 104
cabinets were connected to the production Spider file system
and continued in operation for our users.

Once the 96 cabinet upgrade and testing was complete,
the users were moved to the newly upgraded section by
remounting the production Spider file system on the
upgraded Cray XK6 nodes. We then replaced the blades in
the 104 cabinet side of the system and ran diagnostics on that
section of the system. Now, with both segments running the
Gemini interconnect, we could recombine the two halves of
the system for final acceptance. This was the only time
during the upgrade where users could not run on the system.
We needed to verify that the Gemini network worked
properly at this scale since no other system of this size had
previously been built using Gemini technology. After a few
days of dedicated system testing that verified the
functionality and performance of the system, we began a
stability test running a fixed set of applications chosen to
represent a substantial portion of the workflow on Jaguar and
Titan. After a few more days, the stability test continued with
selected users allowed to run applications to harden the
system. The upgrade started in early October 2011 and the
final acceptance test was completed in February 2012

IV. PROGRAMMING STRATEGY FOR TITAN

The Center for Application Acceleration Readiness
(CAAR) is a collection of application teams, vendor partners,
and tool developers brought together by the OLCF to
produce the successful port of six representative applications
to Titan, ensuring this suite of codes is capable of day-one
scientific output when Titan is put into production, as well as
serving as a laboratory to establish a set of best practices for
other application ports. Succinctly, the mission of CAAR is
to explore sustainable methods to uncover and exploit
hierarchical parallelism in modern HPC codes, thereby
ensuring portable performance on current and near-future

platforms. Five of the six CAAR applications are discussed
in some detail in Section VI.

It has been a common practice in HPC to refactor codes
as architectures changed from vector supercomputers to
symmetric multiprocessing systems to massively parallel
cache-based machines. During each of these epochs,
considerable effort was expended to exploit that facet of the
new architecture that held the most promise for performance
and scalability: codes on vector machines were re-engineered
to minimize scalar operations, arrays were massaged to fit in
data caches, and loops were rewritten and otherwise
transformed to minimize node-to-node communication on
MPPs. All of these changes could disrupt (what were often
originally quite intuitive) data structures and program flow.
One of the goals of the CAAR is to closely examine codes
that broadly represent the types of simulation activity at the
center and to more thoughtfully explore how the
programming model should be modified in response to not
only the Titan system, but a wider set of current and future
systems.

Many modern codes in use on Jaguar today rely wholly
on domain decomposition via MPI for parallelization. The
Titan hybrid multicore architecture will demand that this
level of parallelism be augmented with SMP-like and vector-
like parallelism. Importantly, the most profitable path
forward for exploiting the hybrid multi-core nodes will likely
not be simply relegating some portion of the parallel work
that is currently de-composed via MPI to a thread-level
decomposition on the accelerator. For example, an explicit
grid code should not expect to see performance improvement
by parallelizing the same operations over node-local patches
of grid and ―coarsening‖ the level of the MPI decomposition
[11]. Rather, those operations that are performed serially in
the MPI-only code will need to be parallelized via a
threading mechanism or, perhaps, local MPI communicators
on the node, and those operations within the implied loop
nests will profit from vector-like parallelization via the
GPU’s. This discovery or, perhaps in some case, the
rediscovery of hierarchical levels of parallelism in current
codes will form the heart of a successful programming model
on Titan.

The CAAR codes have provided ample opportunity for
us to begin exploring exactly how we will expose this
parallelism to engage the new hardware. It is important to
note that current notional designs for exascale machines will
also rely primarily on ubiquitous, but hierarchical,
parallelism to achieve high performance. Concomitantly, the
kind of code transformations being undertaken on CAAR
codes today will be beneficial on a host of current and near-
future platforms when they are completed, whether or not
those platforms use GPUs. The general notions of increasing
data locality and exposing the maximum amount of inherent
parallelism in codes will have positive impacts on
performance for these codes on Titan, Sequoia, Mira,
Stampede, Blue Waters, and other leadership scale systems.

V. PROGRAMMING ENVIRONMENT

A Programming Environment (PE) is defined as the
collection of software that supports the application
development cycle for one or more programming models. A
typical PE consists of compilers, programming languages,
libraries, debuggers, and performance tools unified within a
common infrastructure.

During the design of Titan and the initial application
work in CAAR, ORNL tools developers encountered a major
challenge: there was no production-ready PE for rapidly
porting codes to a hybrid GPU-based system that could meet
petascale-level performance. As a result, the OLCF assessed
the current state-of-the-art in order to select a suite of tools
necessary to build an effective PE ecosystem that met the
demanding needs of Titan’s applications. In addition to
commonly available commodity tools, our ecosystem
consists of highly customized compilers, performance tools,
debuggers, source code analyzers, and GPU libraries
specifically built for Titan. Table 3 provides a list of tools in
the Titan PE, an asterisk marks tools that were customized
and enhanced specifically for Titan.

The CAAR suite of codes are a diverse bunch and the
number and types of programming tools used to port them to
the Titan architecture are at least as varied. Recent state-of-
the-art approaches included hand-coded CUDA and the use
of compiler directives. Although CUDA is most common
and, at this time, most mature technology for development,
several experiences in CAAR and our desire to produce
software that exhibits portable performance for a range of
platforms leads us to strongly advocate the use of compiler
directives.

After giving careful consideration to the ―three Ps‖,
portability, productivity and performance, we decided that a
hybrid programming model, one where programs can be
written to support different levels of abstraction in terms of
communication libraries (or PGAS languages), combined
with shared memory directives (i.e. OpenMP) and/or
accelerator programming APIs (OpenACC, HMPP) and
languages (OpenCL, CUDA), would allow application
developers to take maximum advantage of Titan with
minimal porting effort. The goal of this model is to express
parallelism in the codes at the most appropriate level and
optimize the compilers, libraries, and other tools to generate
high quality code for the underlying hardware. The most
technically challenging aspect was to design a standard GPU

accelerator directive API, as none existed when we began
this effort. To accomplish this we worked closely with
NVIDIA, the Cray compiler group, CAPS-Enterprise, and
PGI. This effort led to the de-facto standardization of
OpenACC, [12] a set of compiler-based directives targeted at
NVIDIA GPUs. As a result, Cray, CAPS, and PGI support
OpenACC with NVIDIA leading this effort and NVIDIA
CEO Jen-Hsun Huang announcing OpenACC during his
keynote address at SC’11.

OpenACC is a subset of the respective vendors’
directives, providing a common interface. OpenACC should
be fully implemented (as currently specified) before Titan
reaches production. Experience with the transition from
vector codes to message-passing codes twenty years ago
proves the benefits of common, open standards for
programming models. Much greater efficiency of effort was
achieved following the wide adoption of the MPI standard.
An open standard for the utilization of accelerators holds a
similar promise.

For all these reasons, we feel that a directive-based
approach to code refactoring is the most straightforward and
profitable path for future development. Nevertheless, as
CUDA is readily available and relatively mature (especially
when compared to some of the directive-based approaches),
it has been used heavily in the initial porting activities
undertaken by many groups to this point. And this mature
role serves an important purpose of helping the development
of directives-based compiler technology by elucidating the
capabilities of the accelerator hardware, i.e., giving the
directives approach a target to meet and exceed.
Interoperability of CUDA (including CUDA Fortran) and
directives will, therefore, be an important consideration
going forward. Congruence of memory models between
CUDA, directives, and accelerated libraries is perhaps the
most immediate and impactful place where interoperability
must be preserved.

A handful of compilers currently implement directives
for GPU programming:

• HMPP (CAPS Enterprise)
• pgf90 (The Portland Group)
• ftn (Cray)

Each of these compilers has been applied to one or more
CAAR codes at some point during our OLCF-3 project. The
directive-based approach provides:

• Incremental porting/development,
• Fast prototyping: quickly produce accelerated code

segments,
• Increase in productivity: few code modifications to

produce accelerated code,
• Transferability to different architectures (CPU, GPUs,

FPGAs), and
• Opportunity for tools to assist the user in generating, and

debugging directives, and help with performance analysis.

Of the three compiler vendors, we opted to work most
closely with CAPS-Enterprise because their GPU directive

Compilers
Performance
Tools

GPU
Libraries

Debuggers
Source
Code

Cray*
PGI
CAPS-
HMPP*
Pathscale
NVIDIA
GNU
Intel

CrayPAT*
Apprentice*
Vampir*
Vampir-
Trace*
TAU
HPCToolkit
CUDA
Profiler

MAGMA*
CULA*
Trillinos*

DDT*
NVIDIA
gdb

HMPP
Wizard*

Table 3 - Tools supported in Titan's Programming

Environment

solution, which uses a source-to-source strategy for the
translation of GPU directives, was the most advanced in
terms of features, functionality, performance and portability
across platforms. CAPS also provided ORNL with a
framework for ORNL’s scientists to help them understand
how the directives are translated to OpenCL, CUDA or other
future accelerator standards. Enhancements to the CAPS-
Enterprise GPU directives include: support for data
distribution and unified virtual addressing among
GPUs/CPU, pointers inside GPU kernels, inter-procedural
data mirrors, C++, OpenMP and GPU library compatibility.
Additionally, we worked with the vendor CULATOOLS and
the University of Tennessee to improve the CULA and
MAGMA GPU library support for Fortran. These
enhancements stemmed from application studies and their
needs.

Another challenge for Titan’s PE was to provide a
scalable, hybrid aware debugger. Our goal was to provide a
debugger capable of handling petascale-runs, while
summarizing (reducing) and presenting meaningful
information to the user. By employing sophisticated tree
topologies, Allinea, working along with ORNL, deployed the
first petascale-level debugger, DDT, for Jaguar. Field-tested
on development codes at ORNL, DDT has been shown to
scale up to over 200,000 cores. Allinea has applied a co-
design methodology, working closely with compiler vendors
that support the languages for Titan, to include GPU
directives and languages. As a result, DDT was designed
from the ground up for large-scale hybrid systems. In
addition to MPI/OpenMP parallel programs, DDT is fully
supported on NVIDA GPUs. A scalable mechanism was
designed to debug and visualize stacks, and to merge
variable stacks with the same values. In addition, DDT is
now capable of stepping into GPU directives regions. The
debugger was extended with CUDA memory debugging
capabilities, allowing the user to visualize the physical
memory layout of their codes and its distribution over both
the host and accelerator memory.

The main performance analysis tools for hybrid parallel
applications are the Vampir toolset and CrayPat. The Vampir
toolset consists of three major components: the Open Trace
Format library (OTF), VampirTrace, and Vampir.
VampirTrace is used in the pre-run phase to prepare the
application source code to gather events during a run. At
runtime, VampirTrace processes the events and passes them
to the OTF library.

The visualization and analysis component of the Vampir
toolset are the Vampir client and server respectively. The
purpose of the server is to analyze the trace in parallel and
aggregate enough main memory on the compute nodes to
open/load the trace. The client visualizes the data analyzed
and transferred by the server, and offers a variety of methods
to interact with the trace, e.g. scrolling, zooming, and
highlighting areas of interest.

We selected the Vampir toolset for Titan’s PE, because
its framework was designed to be highly scalable. To
enhance the Vampir toolset for Titan, we identified four
major areas of improvement: support for GPU performance
tracing, improved I/O, tracing scalability, and the user

interface presentation of traces of large-scale runs. One of
the more important enhancements has been improving MPI
behavior of VampirServer, which now enables a user to
effectively analyze a trace of an application which utilizes
the entire Titan system. Furthermore, a new display was
implemented to directly compare two or more traces. This
display enables the time-wise alignment of the traces, and it
enables the visualization of common Vampir displays next to
each other.

The other performance tools that we support in Titan are
CrayPAT and Cray Apprentice. CrayPat is a high-level
performance analysis tool for identifying opportunities for
optimization by providing a set of experiments and reports
that measure how fast an application is running and where
the performance bottlenecks are found. CrayPat is a scalable
and low-overhead performance tool because it relies on
sampling-based technology and/or binary instrumentation.
Cray Apprentice provides a user interface to visualize the
application’s performance results. For Titan, CrayPAT and
Apprentice were enhanced to support GPUs performance
analysis.

Table 4 – Early-status XK6 performance benchmark ratios

showing the relative effectiveness of GPU acceleration on five

application codes from the CAAR suite: (a) Accelerated XK6

performance relative to XK6 without acceleration, (b)

Accelerated XK6 performance relative to XE6 (dual

Interlagos) performance. In each case, the new, refactored

code is used in measuring performance, that is, we use the best

code for each hardware option. XK6 performance results

achieved on OLCF’s development partition Titandev. XE6

performance results achieved on CSCS’s Cray XE6, Monte

Rosa [13].

VI. RESULTS TO DATE

The six primary applications selected for inclusion in the
CAAR effort are:

 S3D – Direct numerical simulation of compressible,
reacting flows for combustion science [14],

 DENOVO – A high-fidelity neutron transport code for
nuclear reactor design [15,16] ,

 LAMMPS – A molecular dynamics general statistical
mechanics based code applicable to bioenergy problems
[17],

 WL-LSMS – A first principles density functional theory
code (local density approximation) used to study magnetic
materials [18],

 CAM-SE – A highly scalable atmospheric model that is
part of the Community Climate Systems Model [19], and

Application (a) XK6 vs. XK6 (no GPU) (b) XK6 vs. XE6

S3D 1.5 1.4

DENOVO 3.5 3.3

LAMMPS 6.5 3.2

WL-LSMS 3.1 1.6

CAM-SE 2.6 1.5

 NRDF – A non-equilibrium radiation diffusion code
designed to serve as a test bed for accelerated approaches
to adaptive-mesh refinement (AMR) [20].

In the following, we present, for five of the six CAAR
applications, brief introductions to the application, the
strategy used for porting to the Cray XK6, early performance
results on Jaguar’s XK6 development partition (i.e.,
―Titandev‖). We also highlight targeted stretch research
goals for these applications on Titan over the near term.

A. S3D

Accelerated computing will allow combustion
simulations to be performed with higher chemical
complexity, or a greater range of length scales, (implying
higher Reynolds number and greater turbulence.) On a
petaflops-scale system, a lifted ethylene jet flame simulation
at Re = 10,000 is feasible. While this was a significant
achievement for a turbulent flame simulation, the Reynolds
number is not sufficiently high to rule out artifacts of the
transition between a laminar and turbulent flow. An
accelerated system will allow a 50–100% increase in
Reynolds number (Re = 15,000–20,000) and enable the
simulation of homogeneous, fully developed turbulence
beyond the theoretically predicted transition. Such a
simulation will enable the exploration of turbulent
combustion attributes that exhibit Reynolds number
independence, and hence relevant for engines where the
Reynolds number is higher by orders of magnitude. A higher
chemical complexity will enable the simulation of renewable
and carbon-neutron automobile fuels such as oxygenated
bio-fuels (e.g., dimethyl ether, iso-butanol). The chemical
reaction model for such fuels would require between 60 and
100 chemical species compared to the 22 species ethylene
chemistry that is feasible on non-accelerated petascale
systems.

S3D is a compressible Navier-Stokes flow solver with
reacting flows for the full mass, momentum, energy and
species conservation equations. The code uses detailed
chemistry and molecular transport models to perform direct
numerical simulation (DNS) of combustion. In S3D, the
conservation equations are integrated in time using a low-
storage explicit fourth order Runge-Kutta integrator with
error estimator. Discretization of the equations is achieved
using a structured Cartesian mesh and 8

th
-order finite-

difference methods to evaluate the spatial derivatives. The
three-dimensional spatial domain is decomposed in a regular
structured grid topology. The halo around the subdomains
necessary for spatial differentiation is obtained through non-
blocking MPI communication. S3D is written in Fortran, and
has been exhaustively tested with the PGI compiler. MPI,
ACML, and I/O libraries are used. S3D consumed the
second-largest compute resource on Jaguar over the period
2010-2011, consuming 6% of the total workload.

The S3D benchmark problem for development is a 3-
dimensional DNS of Homogeneous Charge Compression
Ignition (HCCI) combustion in high-pressure stratified
turbulent 52 species n-heptane/air reaction mechanism,
1200

3
 grid points, and 48

3
 grid points per node. HCCI

Engines have the potential for high efficiencies (diesel-like)
but with low soot and NOX emissions. On the Jaguar XT5,
this problem would require approximately 225M core-hours.
Larger chemical mechanisms are being developed for more
complex fuels (e.g., 73 species bio-diesel or 99 species iso-
octane mechanisms) for stretch science goals.

S3D has been transformed into an Hybrid
MPI/OpenMP/OpenACC code. This refactoring consists of a
significant rewrite to identify high-level parallel structures
and the communication was redesigned to achieve overlap of
computation and communication. The application is so
structured that simple instructions at compile time can result
in an executable for a multi-core system using OpenMP for
parallelization on the node or for an accelerated node using
OpenACC to direct the compiler to generate code for the
accelerator. In the later case, all intensive computation is
performed on the accelerator.

The outcomes of S3D refactoring have been positive:
initial results showed it is faster on Cray XT5 by 2x. The
GPU acceleration is achieved with minimal overhead using
OpenACC directives. At this early stage, XK6 performance
(Opteron + GPU) exceeds XE6 performance (dual Opteron)
by a factor of 1.4, and accelerated XK6 exceeds the
performance of non-accelerated XK6 by a factor of 1.5. (See
Table 4.)

B. DENOVO

High-fidelity neutron transport is a necessary component
of nuclear reactor design. Current simulation technology
decomposes the problem into three steps that are connected
in a semi-empirical manner. These steps require extensive
tuning from experimental data to extrapolate correctly
between them. In order to move to ab initio modeling and
simulation, high-fidelity 3-D models and codes are required.
Commercial power reactors consist of thousands of fuel pins
assembled into hundreds of lattice bundles. For boiling water
reactors, each bundle requires approximately 5-10 M CPU-
hours to simulate on the Jaguar XT5. Thus, the XT5 was not
capable of performing full core, 3-D ab initio simulations.
Truly predictive reactor analysis modeling and simulation
will require computing resources beyond petascale.

Denovo solves the first-order form of the linear
Boltzmann radiation transport equation using the discrete
ordinates (SN) method and is an important component in the
DOE Innovation Hub entitled Consortium for Advanced
Simulation of Light Water Reactors (CASL) lead by ORNL.
Denovo uses uniform and non-uniform Cartesian grids. The
fundamental solution methods are:

 Arnoldi, power, and Rayleigh-Quotient iteration for
eigenvalue solution;

 Multigrid-preconditioned GMRES or Transport two-
grid preconditioned, Gauss-Seidel over energy;

 DSA-preconditioned GMRES, or BICGSTAB for
within-group transport equations;

 PCG and Super-LU solvers used for diffusion solve in
DSA pre-conditioner; WLA algorithm used to provide
discontinuous updates for Finite Element spatial
schemes.

For reactor calculations, the state (angular-flux moments)
will consist of 500-1,500M cells, 20–250 groups, and 4–36
moments, yielding a solution vector consisting of O(10

12
)

unknowns. Denovo is written in C++ with F95 kernels, and
builds on Jaguar with the PGI and GNU compilers. It uses
the following external libraries, some of which are optional:
MPI, BLAS/LAPACK, GSL, Trilinos, HDF5, Silo, Parallel
SuperLU, BRL-CAD, SPRNG.

The acceleration strategy is to port the energy-angle
sweep to the accelerator. This routine consumes 80% to 99%
of the runtime. The acceleration of this component has
focused on exposing more thread-level parallelism and
locality of memory reference for multiple problem
dimensions. GMRES, the second highest consumer of
runtime, can run on the accelerator via Trilinos, but only for
modest-size problems due to large memory requirements. To
support acceleration of the sweep algorithm, the code has
implemented an alternative parallelism approach for energy
groups. The Koch-Baker-Alcouffe (KBA) wavefront
decomposition sweep pipelining is limited by the number of
angles per octant. We have used the multi-level energy
decomposition to provide more opportunities for
parallelizing the sweep. In this multi-level scheme, the
number of pipelines is the product of groups and angles per
octant, and will provide the GPU with large sections of work
each iteration step, allowing scaling to over 100K cores with
opportunities for enhanced parallelism on accelerators. This
redesigned sweep kernel was rewritten in CUDA/C++ and
now runs on either CPU or GPU.

The outcomes of DENOVO sweep redesign have been
positive: initial results showed CPU-only code is faster on
Cray XT5 by 2x. At this early stage, XK6 performance
(Opteron + GPU) exceeds XE6 performance (dual Opteron)
by a factor of 3.3x. (See Table 4.)

As a development problem, we target neutron transport
simulations on Titan using 256 million spatial grid cells, 256
energy groups to resolve the neutron spectra, and 256
discrete ordinates to resolve the angular dependence of the
radiation field. This will produce a single state vector of
approximately 33TB. To be useful, the steady-state solution
for this system will have to be computed in less than 12 wall-
clock hours. For a stretch science goal on a 20 PFLOPS to 30
PFLOPS Titan, we have targeted 3-D, full reactor core
simulations of fully self-consistent neutron transport on real
engineering reactor models that could be used to address the
challenge problems identified for the CASL project with an
acceptable runtime within one week.

C. LAMMPS

Molecular Dynamics (MD) is a general statistical
mechanics based approach that lets scientists peer into the
motion of individual atoms in a way that is not possible in
laboratory experiments. The various force fields available
allow MD to be used to study a wide variety of chemical,
physical, materials and biological systems, and the force
field computations are generally very amenable for
acceleration. The force fields typically involve bonded, non-
bonded van der Waals, and long-range electrostatic
interactions between atoms. The majority of the simulation

time is in the short-range force-field calculation and many
have a very similar functional form. The nature of these
kernels allows for a straightforward approach to buffering
input and output functions overlapped with computation on
the accelerator. For MD simulations that require the
computation of long-range forces, scaling is typically limited
by particle-mesh approximations to the Ewald summation.
These scale as Mlog(M), where the number of mesh points,
M, is typically on the order of the number of atoms in the
simulation. This algorithm uses a full 3-D FFT and thus,
involves all-to-all communication patterns.

LAMMPS is a molecular dynamics code that is used to
computationally model condensed-matter and biological
systems [17]. LAMMPS solves the classical N-body problem
of atomistic modeling, i.e., numerically solves Newton’s
Second Law. The Velocity Verlet algorithm is the most
commonly employed time integrator. The non-bonded van
der Waals interactions are evaluated within a spherical cutoff
to reduce the computational work. A neighbor list is used to
track the pairs of interacting atoms over successive time
steps. Long-range electrostatics are evaluated using a
Particle-Particle Particle-Mesh (PPPM) solver. In this effort,
we are exploring alternative long-range algorithms better
suited for massively parallel simulations on next generation
architectures. This includes approaches that replace the 3-D
FFT’s with grid-based algorithms that reduce inter-process
communications.

Given this grid-based approach, the parallelization
strategy is spatial domain decomposition. The elements to be
accelerated include the short-range force calculations,
neighbor list builds, and computation of the long-range
electrostatics. Readying LAMMPS for acceleration at large
scales required modifying the code to expose data
parallelism to the GPU and to exploit concurrent CPU/GPU
calculations and data transfer where possible. The OLCF-3
accelerated code builds with OpenCL or CUDA. The OLCF-
3 development efforts for hybrid multicore systems now
allows for (a) acceleration for building neighbor lists, (b)
acceleration of over 21 force-field models, (c) acceleration of
PPPM long-range electrostatics, (d) concurrent CPU/GPU
utilization, and (e) portability to many accelerators and
CPUs.

As a development problem for present purposes, we
target a liquid crystal benchmark, the Gay-Berne potential
[17] for biaxial ellipsoid particles, often used to represent
liquid-crystal mesogens and for aspherical coarse-grain
models. An attractive feature of this benchmark problem is
its high-arithmetic intensity: greater than 99% of the
floating-point operations are available for acceleration. At
this early stage, XK6 performance (Opteron + GPU) exceeds
XE6 performance (dual Opteron) by a factor of 3.2, and
accelerated XK6 exceeds the performance of non-accelerated
XK6 by a factor of 6.5. (See Table 4.)

The stretch science target for the OLCF-3 effort with
LAMMPS is to understand membrane fusion mechanisms,
biological systems of the order of 10

6
–10

9 coarse grain
particles, using computational domains large enough to
remove finite-size effects. Membrane fusion is the merging
of two biological membranes in a controlled manner, and is

an integral part of the normal life cycle of all living
organisms. The requirement for proper solvation, the need to
eliminate artifacts from interactions between periodic
images, and the ability to capture long-wavelength modes all
lead to a minimum requirement of 850,000,000 coarse-

grained particles for these simulations, roughly 1000 in
particle number and spatial extent compared to what could
be performed on XT5 instantiation of Jaguar. The goal is to
perform this simulation in fewer than 5 wall-clock days
using the entire Titan system.

D. WL-LSMS

Nanostructured magnetic materials are well recognized
as providing important opportunities for the control of the
magnetic state and its response to applied fields with positive
impacts on technology. At the center of these opportunities is
the possibility to manipulate the magnetic state at the level of
atoms and electrons, and thereby gain control over
fundamental magnetic interactions. However, these systems
also pose fundamental challenges due to the inhomogeneity
and defects intrinsic to their reduced dimensionality, making
the construction of simplified models, e.g., extended
Heisenberg models, and the extraction of parameters from
experiment or from theory of bulk systems difficult or
impossible. These difficulties are further compounded by the
fact that it is the finite-temperature and field-dependent
response that are most important. At the most fundamental
level, these difficulties and challenges require approaches
that enable us to predict from first principles the finite-
temperature free energy, thermodynamic fluctuations, and
magnetization dynamics, fully accounting for the
complexities of the underlying quantum-mechanical
interactions of the electrons from which finite-temperature
magnetic states then emerge. The density-functional-theory
based Wang-Landau (FP-WL) method we are developing is
just such an approach.

The WL-LSMS application combines classical statistical
mechanics for the atomic moment directions with a
constrained, first-principles calculation of the associated
energies. For the statistical mechanics part, the Wang-
Landau method is used to calculate the thermodynamic
density of states. The first-principles problem is solved using
local spin-density-functional theory formulated in a real
space multiple scattering formalism (LSMS). The main
computational effort (>80%) in the code involves dense
linear algebra for complex numbers (matrix inversion).
Additionally, when the full interaction is considered (i.e., the
―full-potential method‖, systems of coupled ordinary
differential equations on a 1-D grid become important. WL-
LSMS is primarily a Fortran code (mostly F77 some F90),
with C++ for the Wang-Landau driver. The code compiles
with PGI. Libraries used include BLAS, LAPACK, HDF5,
and BOOST. On the XT5 system, parallelization was
achieved over two levels: (1) over Wang-Landau Monte-
Carlo walkers, and (2) over each atom in an individual
LSMS energy calculation by associating each atom with a
separate MPI process.

The main computational effort in LSMS is concentrated
in a single subroutine that inverts a single block of a double

complex dense matrix. This kernel makes extensive use of a
few BLAS Level 3 and LAPACK routines. Therefore, the
strategy for acceleration is to leverage developments in
accelerated linear algebra libraries, e.g., cuBLAS, CULA, or
libSci_acc. Other important elements, necessary to enhance
the parallelism expressed on the accelerator, are to (1) utilize
OpenMP in the CPU sections of the code, and (2) restructure
the code by moving communications outside of the energy
loop. The outcomes of our WL-LSMS refactoring have been
positive. At this early stage, XK6 performance (Opteron +
GPU) exceeds XE6 performance (dual Opteron) by a factor
of 1.6, and accelerated XK6 exceeds the performance of non-
accelerated XK6 by a factor of 3.1. (See Table 4.)

The scientific target for the Titan simulations is to
calculate both the magnetization and the free energy for
magnetic materials. 5 million CPU-hours are required on the
Cray XT5 today to calculate only the free energy for a single
250-atom iron supercell. Determining the magnetization for
this supercell in addition to the free energy would require
more than 50 million CPU-hours on the XT5, making the
calculation intractable. The aim of the WL-LSMS Titan port
is to reduce this cost back to the present cost of a one-
dimensional density of states calculation, i.e., 5M core-hours.

E. CAM-SE

Coupled models of the physical climate system have
been the traditional projection tools used in climate research
studies. These models have historically been used to predict
the consequences of climate change given assumptions about
the carbon cycle and emissions of greenhouse gases, sulfate
aerosols, black carbon, and other atmospheric constituents.
These models need to be further developed and evaluated to
provide more robust and reliable, multi-decadal, probabilistic
predictions at the regional scale of climate variability and
change. Examples include extensions to the physical climate
system that provide an accurate description of evolving
chemical and biogeochemical processes that affect
atmospheric composition. Improvements to existing
modeling frameworks will be essential for estimating
impacts on natural systems and important components of the
socioeconomic infrastructure related to energy, water, and
carbon. The atmospheric component will require
unprecedented large horizontal and vertical resolution, and
the dynamical core will require numerical approximation
techniques that can exploit both fine and coarse-grained
parallelism.

HOMME (High-Order Method Modeling Environment)
is a promising framework for solving the atmospheric
primitive equations in spherical geometry. It has already
been integrated into the CESM (Community Earth Systems
Model), a comprehensive Earth system model used
nationwide by climate researchers. CAM (Community
Atmosphere Model) is the atmospheric component of
CESM, and includes sub-components that predict the time
evolution of the large-scale flow (the dynamical core), and
physical parameterizations that predict the effects of sub-grid
scale phenomena. HOMME is one of the supported
dynamical cores in CAM, and the combined model is called

CAM-SE (Community Atmosphere Model – Spectral
Element).

HOMME is one of the most scalable dynamical cores
currently under development. It uses an improved
formulation of the spectral-element method that locally
conserves both mass and energy and maintains numerical
stability with an isotropic hyper-viscosity term (i.e., a fourth-
order derivative term). Many previous generation dynamical
cores needed to apply special techniques to solve the so-
called ―pole problem,‖ (specific to latitude-longitude grids)
where converging meridians near the north and south poles
otherwise cause numerical instabilities. To eliminate the pole
problem, HOMME uses an equal-angle, cubed-sphere grid to
discretize the horizontal dimension, as the element areas are
very nearly equal across the entire gird. This is a more
scalable approach than traditional filter-based methods,
because non-scalable polar filters are no longer needed. In
the vertical dimension, CAM-SE uses a pressure-based,
terrain-following coordinate system. CAM-SE allows for full
two-dimensional domain decomposition and is the first
version of CAM that exactly conserves dry mass without the
use of mass fixers and conserves energy.

The baseline parallelism in HOMME, prior to
refactoring, is across spectral elements using MPI. Maximum
parallelism is achieved with one MPI task per element. A
data transpose is performed every model time step to transfer
data from HOMME data structures to physical
parameterization data structures. In the physics packages,
vertical columns of data are treated independently without
communication in the horizontal directions. CAM-SE runs
on a variety of architectures and compiler environments.
Examples include PGI and Pathscale compilers on the
ORNL XT5 system, xlf90 on the IBM Power and Blue Gene
systems, and the Lahey compiler on generic Linux clusters.

The acceleration strategy involves first identifying
computationally expensive parts of HOMME. The
performance profile was relatively flat, and none of the
computationally expensive parts of the calculations in the
code were in libraries. However, with the addition of Mozart
chemistry, the tracer advection now spikes in its contribution
to run time due to 106 tracer species. Also, the addition of
Mozart chemistry is useful to help quantify aerosol effects on
uncertainties concerning climate sensitivities and to project
changes in air quality with climate change. Hybrid
OpenMP/MPI parallelism is implemented in all of CAM-SE,
i.e., in the physical parameterizations and in the HOMME
dynamical core. Porting the physics packages is largely not
an option because they usually exhibit strong vertical
dependencies that are difficult to thread over vertical indices.
In order to keep CUDA FORTRAN kernels separate from
the rest of the code, they are grouped together into a module.
When acceleration is turned on at compile time, the GPU
kernels are called in place of the original routines. The
current port of these key kernels in CAM-SE has used
CUDA FORTRAN. Over the long term, increased use of
compiler directives, e.g., OpenACC, will be desirable to
enhance portability and sustainability of the code.

Refactoring CAM-SE has lead to code that is more
efficient and more scalable on homogeneous multi-core

(CPU) architectures as a result replacing the vertical remap
algorithm entirely and optimization of others for memory
utilization. Initial results showed CPU-only code is faster on
Cray XT5 by 1.7x, and the GPU-accelerated code is 3.7x
faster than the original baseline overall. Using the new, re-
factored code, ―apples-to-apples‖ comparison of XK6
performance (Opteron + GPU) exceeds XE6 performance
(dual Opteron) by a factor of 1.5, and accelerated XK6
exceeds the performance of non-accelerated XK6 by a factor
of 2.6. (See Table 4.)

Incorporation of the HOMME dynamical core into a
CESM simulation including Mozart tropospheric chemistry
with 106 constituents at high spatial resolution (14 km
horizontal grid) is the scientific simulation goal for the Titan
port. To meet accepted throughput goals, a 100-year climate
simulation with this collection of parameters must achieve
3.3 simulated years per wall-clock day.

VII. CONCLUSION

2013 promises to be a landmark year for OLCF, as we
anticipate making Titan, a new scalable, GPU/CPU hybrid
multicore supercomputer available to our user community.
This paper describes the Titan system architecture, the
process of upgrading Jaguar, our recommended GPU/CPU
hybrid programming strategy, and early performance results
on the first phase of the upgraded Jaguar for a few, selected
applications.

The bulk of users running on Titan will access this
resource through the Innovative and Novel Computational
Impact on Theory and Experiment (INCITE) program [21], a
merit-based, peer-reviewed allocation program, which is
jointly managed by OLCF and the Argonne Leadership
Computing Facility. Titan will make an unprecedented
contribution to the INCITE program in 2013, making
available more than 20 PFLOPS and approximately 2 billion
core-hours (i.e., 67 million node-hours) of computing
capability.

Recognizing this sharp and large increase in capability,
INCITE issued a Request for Information (RFI) to potential
research teams to gain an early look at the demand for these
new leadership-computing resources in advance of the Call
for Proposals closing on 27 June 2012. The RFI responses
reflect the diverse array of agencies that look to INCITE to
achieve advances across the scientific spectrum: responses
represent potential users from the Department of Energy
(DOE) laboratories; academia; international respondents; and
U.S. industry. One finding of the RFIs: the availability of
INCITE’s new capabilities, such as accelerated, hybrid
computing in a high-performance, scalable network, is
drawing new, high-impact communities, such as Genetics
and Drug Discovery, to leadership computing, which have
not historically participated in computing at the leadership
scale.

With the advent of Titan in 2013, and a burgeoning
interest in new scientific disciplines, the leadership-
computing program promises to make a big impact in 2013.
Whether that impact is to clean energy, scientific discovery,
or industrial innovation, nearly every sector of computational
research stands to benefit.

ACKNOWLEDGMENT

We are very happy to acknowledge the excellent work of
the OLCF-3 acceptance team and each of the six CAAR
teams without whom the results presented here would not be
possible. We would like to thank the leadership and staff of
the Swiss National Supercomputing Centre, CSCS for their
assistance in accessing their Cray XE6 platform, Monte
Rosa. We also thank Julia White, INCITE program manager,
for her thoughtful review and editing of the paper. This
research was funded by the U.S. Department of Energy and
used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] Bland, A.S.; Kendall, R.A.; Kothe D.B.; Rogers, J.H.; Shipman,

G.M.;,‖Jaguar: The world’s most powerful computer,‖ Cray Users
Group (CUG) 2009 Proceedings.

[2] Dongarra, J.; Mueur, H.; Simon, H.; Strohmaier, E.;, ―Top500‖;
http://top500.org/lists/2011/11.

[3] Camp, W.J.; Tomkins, J.L.; ―Thor’s hammer: The first version of the
Red Storm MPP architecture,‖ Proceedings of the SC 2002
Conference on High Performance Networking and Computing,
Baltimor, MD, November 2002.

[4] Brightwell, R.; Predretti, K.T.; Underwood, K.D.; Hudson, T.;
―SeaStart Interconnect: balanced bandwidth for scalable
performance,‖ IEEE Micro, vol. 26, issue 3, pp. 41-57, May-June
2006.

[5] Butler, M.; Barnes, L.; Sarma, D. D.; Gelinas, B.;, ―Bulldozer: An
approach to multitreaded compute performance,‖ IEEE Micro, vol.
31, issue 2, pp. 6-15, March-April 2011 doi: 10.1109/MM.2011.23.

[6] Nickolls, J.; Dally, W.; ―The GPU computing era,‖ IEEE Micro, vol.
30, issue 2, pp. 56-69, March-April 2010 doi: 10.1109/MM.2010.41.

[7] NVIDIA M2090: http://www.nvidia.com/docs/IO/43395/Tesla-
M2090-Board-Specification.pdf.

[8] NVIDIA GeForce GTX 680 whitepaper:
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-
680-Whitepaper-FINAL.pdf.

[9] Alverson, R.; Roweth, D.; Kaplan, L.; , "The Gemini system
interconnect," High Performance Interconnects (HOTI), 2010 IEEE
18th Annual Symposium on , vol., no., pp.83-87, 18-20 Aug. 2010
doi: 10.1109/HOTI.2010.23.

[10] [Cray, Inc.; ―Hardware overview for Cray XE6 and Cray XK6 series
systems‖; H40-6081-D; pp. 90.

[11] Bronevetsky, G., Gyllenhaal, J., & de Supinski, B. 2008, in Lecture
Notes in Computer Science, Vol. 5004, OpenMP in a new era of
parallelism, ed. R. Eigenmann & B. de Supinski (Springer Berlin /
Heidelberg), pp. 13–25.

[12] http://www.openacc-standard.org/

[13] Monte Rosa: http://user.cscs.ch/hardware/rosa_cray_xe6/index.html.

[14] Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E.
R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J.,
Podhorski, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale
direct numerical simulations of turbulent combustion using S3D.
Computational Science and Discovery 2, 131.

[15] Evans, T. M., Stafford, A. S., Slaybaugh, R. N., & Clarno, K. T.
(2010). Denovo: A New Three-Dimensional Parallel Discrete
Ordinates Code in SCALE. Nuclear Technology, 171, 171–200.

[16] Wayne Joubert, ―Developing a 3-D Sweep Radiation Transport Code
for Large-scale GPU Systems,‖ presented at SIAM Conference on
Computational Science and Engineering, Reno, NV, Feb 28 – Mar 4
2011.

[17] Brown, W.M., Wang, P. Plimpton, S.J., Tharrington, A.N.
Implementing Molecular Dynamics on Hybrid High Performance
Computers - Short Range Forces. Computer Physics
Communications. 2011. 182: p. 898-911.

[18] Eisenbach, M., ―Future Proofing WL-LSMS: Preparing for First
Principles Thermodynamics Calculations on Accelerator and
Multicore Architectures‖, CUG 2011 Proceedings (2011) and
references therein.

[19] Dennis, J.M., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P.H.,
Mirin, A.A., St-Cyr, A., Taylor, M.A., and Worley, P.A., "CAM-SE:
A scalable spectral element dynamical core for the Community
Atmosphere Model", Int. J. High Perform. Comput. Appl. 74—89
(2012).

[20] Pernice. M., and Philip, B., "Solution of equilibrium radiation
diffusion problems using implicit adaptive mesh refinement", SIAM
J. Sci. Comp., 27 (2006).

[21] The INCITE program is open to U.S.- and non-U.S.-based
researchers and research organizations needing large allocations of
computer time, supporting resources, and data storage to pursue
transformational advances in science, engineering, and computer
science. Applications undergo a two-phase review process to identify
projects with the greatest potential for impact and a demonstrable
need for leadership-class systems to deliver solutions to grand
challenges. To submit an application, please visit
http://hpc.science.doe.gov for details about the proposal requirements.

http://top500.org/lists/2011/11
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.pdf
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.pdf
http://www.openacc-standard.org/
http://user.cscs.ch/hardware/rosa_cray_xe6/index.html

