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Abstract—A highly diverse molecular dynamics program
for the study of dense matter in white dwarfs and neutron
stars was ported and run on a Cray XT5m using MPI,
OpenMP and hybrid parallelization. The ultimate goal was to
find the best configuration of available code blocks, compiler
flags and runtime parameters for the given architecture. The
serial code analysis provided the best candidates for parallel
parameter sweeps using different MPI/OpenMP settings. Using
PAPI counters and applying the Vampir toolchain a thorough
analysis of the performance behavior was done. This step led
to changes in the OpenMP part of the code yielding higher
parallel efficiency to be exploited on machines providing larger
core counts. The work was done in a collaboration between PTI
(Indiana University) and ZIH (Technische Universität Dresden)
on hardware provided by the NSF funded FutureGrid project.
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I. INTRODUCTION

The performance analysis of applications that have been
in use for many years always pose special challenges as
these codes tend to include many tweaks that have been
implemented for special purposes and that obfuscate the
view on low level problems. The MD code used by C. J.
Horowitz and his group is no exception in that. It consists
of several versions of the same semantics implemented in
various ways. For example to make use of new language
constructs available in newer Fortran versions. There is also
a version for the MDGRAPE-2 boards available, a hardware
especially designed for molecular dynamics simulations (see
appendix of [1] for further details). Together with a wide
range of compile time flags that influence the arithmetics
of the simulation, this creates several hundred possible
application-runs to look at.

In this paper we present our approach on how to conduct
such an analysis, starting with the serial version of the code
in section III, then using PAPI counters in section IV on
page 4 to gain more insight which led to the inevitable look
at the source code itself (section V). After that, we applied
the Vampir toolchain in section VII to conduct an analysis
of the OpenMP, MPI and hybrid version of the code.

II. BACKGROUND INFORMATION

MD was written to simulate certain physical properties of
neutron stars and white dwarfs (see [2] and [3]). Over the
years the code has been extended and rewritten multiple
times to include different types of interactions (nucleon,
pure-ion, or ion-mixture). There are several different imple-
mentations of the same semantics, for instance the same loop
was reimplemented using the Fortran array syntax available
since Fortran 95. Additionally, special features have been
written over the years such as a cut-off sphere to restrict
interactions to a subset of relatively nearby nucleons/ions.
There was also an attempt to reorder the do-loop in the ion
interaction routine to use blocking techniques. The force
calculation routine has to be chosen at the build stage.
There are two sections of code that each have two or more
variations. One section is labelled A and the other B, and the
variations are numbered. The block size NBS has to be set
as well. All this has to be specified in the make command:�
make MDEF=XRay md mpi BLKA=A0 BLKB=B2 NBS=”NBSX=32 ”
� �
MD can be compiled as a serial, OpenMP, MPI or
MPI+OpenMP program. The variants have different names,
(md, md_omp, md_mpi, md_mpi_omp) and are selec-
ted during compile time as can be seen above.

The program is a classical molecular dynamics simulation
of dense nuclear matter consisting of either fully ionized
atoms or free neutrons and protons. Its main targets are
studies of the dense matter in white dwarf and neutron
stars. Matter in these object is of such high temperature that
they may be treated classically, although distances between
particles in the system are in the order of femtometers. At
such high temperatures, the quantum de Broglie wavelengths
of the particles are much shorter than inter-particle sep-
arations (see [4]). This justifies treating the interaction
potentials between particles as classical two-particle central
potentials.

The electronic structure of white dwarf and neutron star
matter is much simpler than in terrestrial matter. Atoms are
fully ionized and the electrons form a fully degenerated



Fermi gas. The complex electron orbital structure of ordinary
matter no longer exists. Thus electrons do not need to
be modeled explicitly. Their only effect is to provide an
exponential screening of the ordinary Coulomb interaction
between ions, with a screening length λ.

A. MD Implementation Details

The interactions between particles are central forces
between point particles. This is a rather simple approach
compared to two-, three-, and four-particle bonded interac-
tions in molecular systems. There is no complicated particle
geometry or orientation. That way, to calculate the total force
on an i-particle one simply adds the forces due to all j-
particles. This can be done for all i-particles in a doubly
nested ij-loop (see figure 1).

For ordinary molecules, the non-bonded interactions are
of such short range that one can impose a cut-off radius
small enough that each atom interacts with only a few others
(10x-100x). In the systems simulated here, each ion interacts
with practically all others in the system. This is a drawback,
since most molecular systems have a short-range cut-off.
Although the Coulomb interaction is exponentially screened
with screening length λ, it is still a long range interaction,
but not an infinite-like unscreened Coulomb interaction (see
[3] and [4]), and each ion interacts with thousands of others.

In fact, early versions of MD did not have any cut-off
implemented in the interaction routines as interactions of all
particle pairs were computed. This certainly simplified the
programming, making the algorithm just the simple particle-
particle (PP) algorithm. The algorithm had a time complexity
to calculate all the forces of O(N2). Experiments showed
that a cut-off radius could be introduced, but it is still rather
large as other physics constraints set the simulation box
size to a size that almost exactly circumscribes the cut-off
sphere. Thus MD version 6.1.0 used here still includes the
PP algorithm.

The structure of the code is simple. It first reads in a
parameter file runmd.in and an initial particle configura-
tion file md.in. The parameter file is a Fortran name list,
which defines parameters in a keyword=value format. The
md.in file is an unformatted file whose first record is a
simulation time stamp, and whose second record contains
positions and velocities.

After reading the runmd.in and md.in files the initial
configuration and all parameters are set up. The program
then calculates the initial set of accelerations, and enters
a time-stepping loop afterwards. The loop is actually a
triply nested do-loop. Time steps are divided into ngroup
measurement groups. Each group consists of ntot measure-
ments. Measurements are done every nind time steps. Thus
the code has the basic structure shown in figure 1. The forces
are calculated in the newton module in a pair of nested do-
loops. The outer loop iterates over target particles, the inner
loop over source particles. The targets are assigned to MPI

�
do 100 i g =1 , ngroup

i n i t i a l i z e group i g s t a t i s t i c s
do 40 j =1 , n t o t

do i =1 , n ind
! computes f o r c e s
! u p d a t e s x and v
c a l l newton

enddo
c a l l v t o t

enddo
compute group i g s t a t i s t i c s

40 c o n t in u e
100 c o n t in u e
� �

Figure 1. Simplified version of the main loop

processes in a round-robin fashion. Within each MPI pro-
cess, the work is shared among OpenMP threads. Profiling
shows that most of the time is pent in the subroutines called
in the newton module. The function newton is different
depending on the type of particles acted upon. These can
be nucleon-nucleon (where a nucleon is either a proton
or neutron) for simulations of nucleons, pure-ion (where a
single ion species is simulated), or mixed ion interactions.
The code takes advantage of Newton’s third law, so that
only n ∗ (n − 1)/2 interactions have to be calculated. As
stated above, these particle-particle-interactions have been
implemented in a multitude of ways over the years and
are located in different files PP01, PP02 and PP03. PP01
is the original implementation with no splitting into the
Ax, Bx or NBS blocks mentioned above and is used as
a baseline when benchmarking the other implementations.
PP02 implements the versions in use by the physicists today
and features 3 different implementations for the Ax block, 3
implementations for the Bx block and no manual blocking
(NBS). PP03 has 3 Ax blocks, 8 Bx blocks and can be
blocked using the NBS value that has to be given at compile
time together with the A and B values. The code blocks
are selectable using preprocessor macros. The blocks B0
and B1 for instance only differ in that B1 uses the newer
array syntax available since Fortran 90. Whether or not these
version yield the same performance will be determined in
section III.

B. Cray XT5mTM

All the measurements are done on XRay, a Cray XT5m
provided by the FutureGrid project NSF grant 0910812 [5].
The XT5m is a 2D mesh of nodes. Each node has two
sockets each having four cores of type AMD Opteron 23
”Shanghai” (45 mm). There are 84 compute nodes with a
total of 672 available cores running at 2.4 GHz.

The batch scheduler interfaces with the Cray resource
scheduler (APLS). When there is a job submission, ALPS
calculates the available resources and makes the reservation
upon request from the batch scheduler. ALPS is a gang



scheduler, this means that there is only one job per node
allowed. A requests like:�
ap run −n 1 . / md . exe
� �
will leave the other seven cores on the scheduled node
empty. The following request will be schedule to the next
node regardless of whether it could fill up the empty cores on
the scheduled node or not. This is beneficial while running
the serial jobs as they are all scheduled to individual nodes
automatically and thus do not interfere with each other.

XRay has a PAPI module xt-papi/3.6.2.2 that is
provided by Cray. The compiler used is pgi/9.0.4, also
provided as a module. Additionally the appropriate XT PE
driver xtpe-shanghai adds ”-tp shanghai-64” to
the compiler flags.

III. SERIAL ANALYSIS

In the first step, we look at the performance of the serial
version of MD. To narrow down the number of possible
candidates for a parallel analysis, we compare all the avail-
able code versions, test different compiler flags and look at
the weak scaling capabilities using main input parameters
such as the particle count. The input dataset we will use
consists of a mix of ions (oxygen, neon, carbon). This means
that the functions dealing with pure-ion or nucleon-nucleon
interactions will not be part of the analysis, which is also true
for the OpenMP and MPI analysis. For a small input dataset
of only 5k particles (5120), we will simulate 1280 carbon
ions, 3740 oxygen ions and 100 neon ions. Higher particle
counts are scaled accordingly. The runtime parameters for
the algorithm depicted in figure 1 are as follows:�
! Parame ter s :

s i m t y p e = ’ ion−m i x t u r e ’ , ! s i m u l a t i o n t y p e
t s t a r t = 0 . 0 0 , ! s t a r t t i m e
d t = 2 5 . 0 0 , ! t i m e s t e p ( fm / c )

! Warmup :
nwgroup = 2 , ! groups
nws teps = 50 , ! s t e p s per group

! Measurement :
ngroup = 2 , ! groups
n t o t = 2 , ! per group
n ind = 25 , ! s t e p s be tween
t n o r m a l i z e = 50 , ! temp normal .
ncom = 50 , ! c e n t e r−of−mass

! mot ion c a n c e l .
� �
While such a 5k particle measurement only takes 5 minutes,
running the same simulation with 27k particles takes roughly
an hour. Scientifically useful data can be obtained with
55k particles or more. This takes 10h hours on XRay to
complete. The default optimization flag used is -O3. We
also measured -O2 as this is the compiler-default. To make
use of the SSE registers -fastsse is used. On fairly recent
PGI compilers this equals -fast, which in turn includes the
following flags:
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Figure 3. Overview of the runtimes for the code-blocks combinations
in the PP01 and PP02 source file in scientific use right now for an input
dataset of 55k particles. NBS was set to 0.

�
−O2 −Munro l l =c : 1 −Mnoframe −Mlre −M a u t o i n l i n e
−Mvect= s s e −M s c a l a r s s e −Mcache a l ign −Mflushz
� �
Figure 2 shows an overview over all combinations. Blocking
with NBS was measured for a blocking factor of 2, 8, 16,
32, 64, 128, and 256. Measurements are sorted starting on
the left from PP01 and A0+B0 code-block in lexicographical
order. The x-axis is runtime in seconds, so smaller is better.
The graph shows little difference between -O2 and -O3,
but the -fastsse seems to have greater impact when
used in combination with blocking. The blocking is mapped
directly to the SSE registers. A blocking factor higher
than 8 does not yield better performance. Only looking
at the PP03 versions it seems that the A0 versions are
faster than the A1 and A2 blocks when compared to its
corresponding Bx block. Additionally, there seems to be a
huge gain in using B3 an higher. Nonetheless the shortest
execution time is achieved when using a combination of the
PP02 file. All basic principles are also present in the PP02
file and PP03 consists of several attempts to re-implement
the same semantics present in PP02 using more modern
programming techniques of Fortran 95. As these seem to
have no significant impact and as the fastest version is
present in PP02, we will concentrate the analysis on PP02.
Figure 3 shows that the A0 block seems to be more efficient
than A1 or A2. The -O3 flag only affects the A2 block
differently than the -O2 flag. The annotated assembler in
figure 4 and 5 shows that the SSE registers are already used
by default although for -O2 and -O3 they are merely used
as a fast type of ”normal” 64 bit registers without making
use of its 128 bits. This is also true for the -fastsse flag
as the high quadword of the registers remains unchanged and
only directives using 64 bit operands are used. The ”sd” in
mul, add, sub, and sqrt means scalar double-precision and
only uses the first 64 bit of a register. The ”lpd” stands for
low packed double precision and also means that the high
quadword of the register remain unchanged by the operation.
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Figure 2. Overview of the runtimes for all code-block combinations with an ion-mix input dataset of 55k particles. The naming scheme for the measurements
is ”source-code-file A-block B-block blockingfactor”

�
## do 90 j=i+1,n−1
## !−−−−−− Block A −−−−−−
## # if defined (A0)
## r2=0.0d0

movsd %xmm2, %xmm1
movq %r12, %rdx
movq %r15, %rcx
movl $8, %eax
.align 16

.LB2 555:
## lineno : 138
� �
Figure 4. Code example showing that SSE registers are used when -O3
is used

�
## do 90 j=i+1,n−1
## !−−−−−− Block A −−−−−−
## # if defined (A0)
## r2=0.0d0
## do k=1,3
## xx(k)=x(k, i)−x(k,j )

movlpd .BSS2+48(%rip),%xmm2
movlpd .C2 291(%rip),%xmm0
mulsd %xmm2,%xmm2
addsd %xmm1,%xmm2
movlpd %xmm2,344(%rsp)
sqrtsd %xmm2,%xmm2
movlpd %xmm2,448(%rsp)
mulsd md globals 10 +120(%rip),%xmm2
subsd %xmm2,%xmm0
.p2align 4,,1
� �

Figure 5. With -fast more heavy usage of SSE registers can be observed

The -fastsse flag yields slightly better results with the
exception of B2. This effect is further explained in section V.
The largest impact on runtime seems to origin from the
usage of the B2 block. In case of -fastsse, this cuts
down execution time by half from 30.000 seconds to less
then 15.000. Trying to understand why the code blocks have
these different performance characteristics we next tried to
apply the VampirTrace framework to the code. As MD is
MPI and OpenMP parallel, VampirTrace automatically used
its internal source-to-source compiler Opari to instrument
the OpenMP pragmas. This boosted the runtime from 40
seconds to over 4000 seconds for 1k particles. While the
traces were of no direct value as they did not resemble
the codes real behavior due to the large overhead it was
an indicator that OpenMP usage might have performance
issues as the overhead induced by VampirTrace is normally
in the range of single digit percentage. See [6] for a thorough
overhead analysis using the SPEC MPI 1.0 suite as example.

In order to understand the differences in runtime of the
code blocks we manually implement PAPI counters as a next
step.

IV. PAPI MEASUREMENTS

The code is altered to allow for a PAPI counter to be
set during compile time. Inside the newton subroutine (see
figure 1) the PAPI counter is measured for each call to the
acceleration subroutine. The acceleration subroutine consists
of a case statement that switches between the nucleon,
pure-ion, and ion-mixture simulation type. By wrapping the
subroutine we get a PAPI-value at each simulation time step
t + δt. The values are written to a file and summed up at
the end of the simulation run. Creating different binaries
for the different PAPI counters allows us to run all the
binaries with the same input dataset in one batch-job. This
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Figure 6. Floating point add instructions
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Figure 7. Floating point mult instructions

way the environment is completely identical for all measured
counters and thus the values can be compared.

All PAPI counters are measured using 27k particles to cut
down on runtime. 18 different counters were measured for
all 9 PP02 blocks using -O2, -O3, and -fast. As it turns
out, for the measurements we did on XRay and judging by
the raw numbers read from the counters, the floating point
counters seem relate as follows:�
PAPI FAD INS+PAPI FML INS=PAPI FP INS=PAPI FP OPS
� �

Figure 8 shows the number of floating point instructions
for each code block. For all compiler flags, B0 and B1
always have exactly the same value. Despite the fact that
all blocks calculate the same result, B2 seems to need only
54%(A0), 57%(A2), 58%(A1) of the instructions compared
to B0/B1. In case of A2 the values for the compiler flags
are completely identical regardles of the used compiler
flag. Figures 6 and 7 show that the difference between the
compiler flags origins solely from the add instructions. At
the same time the FPU is idle 2% of the total cycles for
B0/B1 but 7% for B2 as figure 9 shows. The number of
branch instructions of B2 is lower compared to the other
B blocks (figure 10), but the absolute number of miss
predictions is higher (figure 11). Looking at the branch miss
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Figure 8. Number of floating point instructions for a 27k particle run
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Figure 9. FPU idle times in percent of PAPI measured total cycles

prediction rate (PAPI BR MSP / PAPI BR INS) shows a
nearly twice as high value for B2 compared to B0 or B1.
The L1 hit ratio is also marginally better for B0/B1 (99.95%)
compared to B2 (99.85%). Normally, more branch miss
predictions, lower cache hit ratio, and more FPU idle time
indicate a lower performance but here this is connected to
less floating point instructions and a lower total runtime.
To explain this behavior a look into the source code is
inevitable.
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Figure 10. Branch Instructions
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Figure 12. Branch miss prediction rate in percent

V. SOURCE CODE ANALYSIS

With the knowledge gained from using the PAPI counters
it is now possible to relate the performance to the code
blocks shown in figure 13 and 14.

Each of the blocks does something different compared
to the other that can be used to categorize the sections.
A0 uses branching with an if statement whereas A1 uses
more arithmetic calculations without the ”if”. A2 omits the
”do” by using the array syntax. This has the positive side
effect that the variable r2 does not have to be set to zero
initially. B0 uses a do-loop compared to B1 that does exactly
the same, but uses the array syntax. B2 is different in that
it features a ”if” that checks whether the target particle is
inside the cut-off sphere or skips the calculation otherwise.

Branching with an if statement in A0 is faster than doing
all the arithmetics like A1 and A2 do (see figure 3). The
additional assignment of r2 in front of the small loop is the
reason for A1 of being 3-9% slower than A2, whose only
other difference is the usage of a different syntax. That the
different syntax leads to nearly the same performance can be
observed by looking at B0 and B1. These blocks only differ
in that B0 uses a loop whereas B1 uses the array syntax.
After accounting for the measuring inaccuracy, B0 is less
than 1% faster than B1. The A2 block produces slightly

�
# i f d e f i n e d ( A0 )

r2 =0 .0 d0
do k =1 ,3

xx ( k )= x ( k , i )−x ( k , j )
i f ( xx ( k ) . g t . + h a l f l ( k ) ) xx ( k )= xx ( k)− x l ( k )
i f ( xx ( k ) . l t .− h a l f l ( k ) ) xx ( k )= xx ( k )+ x l ( k )
r2 = r2 +xx ( k )∗ xx ( k )

enddo
# e l i f d e f i n e d ( A1 )

r2 =0 .0 d0
do k =1 ,3

xx ( k )= x ( k , i )−x ( k , j )
xx ( k )= xx ( k)− a i n t ( xx ( k )∗ h a l f l i ( k ) ) ∗ x l ( k )
r2 = r2 +xx ( k )∗ xx ( k )

enddo
# e l i f d e f i n e d ( A2 )

xx ( : ) = x ( : , i )−x ( : , j )
xx=xx−a i n t ( xx∗ h a l f l i )∗ x l
r2 =xx ( 1 )∗ xx ( 1 ) + xx ( 2 )∗ xx ( 2 ) + xx ( 3 )∗ xx ( 3 )

# e l s e
� �
Figure 13. Block A of the PP02 file for the ion-mix interactions�

# i f d e f i n e d ( B0 )
r = s q r t ( r2 )
f c = exp(−xmuc∗ r ) ∗ ( 1 . / r +xmuc ) / r2
do k =1 ,3

f i ( k ) = f i ( k ) + z i i ( j )∗ f c ∗xx ( k )
f j ( k , j ) = f j ( k , j ) − z i i ( i )∗ f c ∗xx ( k )

enddo
# e l i f d e f i n e d ( B1 )

r = s q r t ( r2 )
f c = exp(−xmuc∗ r ) ∗ ( 1 . / r +xmuc ) / r2
f i ( : ) = f i ( : ) + z i i ( j )∗ f c ∗xx ( : )
f j ( : , j ) = f j ( : , j ) − z i i ( i )∗ f c ∗xx ( : )

# e l i f d e f i n e d ( B2 )
i f ( r2 . l e . r c u t o f f 2 ) then

r = s q r t ( r2 )
f c =exp(−xmuc∗ r ) ∗ ( 1 . / r +xmuc ) / r2
f i ( : ) = f i ( : ) + z i i ( j )∗ f c ∗xx ( : )
f j ( : , j ) = f j ( : , j ) − z i i ( i )∗ f c ∗xx ( : )

e n d i f
# e l s e
� �

Figure 14. Block B of the PP02 file for the ion-mix interactions

better code with the -O3 than when compiled with -O2.
The reason for this is not entirely known. But as the effect
is the same for all the three runs that use the A2 block,
we guess that the array syntax might allow the compiler to
apply additional optimizations not possible otherwise.

By far the largest impact on runtime is achieved by
using the cut-off sphere that restricts the number of particles
that has to be acted upon. Block B2 uses this cut-off
sphere, which is a radius around the source particle. Only
for target particles inside the sphere, particle interactions
are calculated. Although the additional if statement at the
beginning leads to higher branch miss predictions (see figure
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Figure 15. Parallel efficiency of the two code versions running as a pure
OpenMP application

11 and 12) and a lower cache hit ratio as pointed out in
section IV, the cut-off-sphere used in the B2 block results
in lesser particle-particle interactions having to be calculated
compared to the B0 and B1 blocks. Comparing the runtime
of figure 3 with the number of floating point instructions
needed in figure 8 one can see a direct correlation between
the two and the impact of the cut-off sphere.

To sum up, in this case, calculation does not beat branch-
ing. But that might change for future hardware and different
input datasets. Additionally, using a cut-off sphere changes
the mathematics of the simulation. If used wisely, the effects
will not alter the scientific outcome but computationally the
code does something different.

VI. SOURCE CODE OPTIMIZATION

In section III we tried to apply the Vampir toolchain to
the code but this made the application run 100 times slower
than usual. With the knowledge from the PAPI counters and
our analysis of the source code it is now possible to find
the reason for this unusual overhead. Running the MPI-only
version had only a 3% overhead. So the focus is on the
OpenMP pragmas. The trace shows that most of the time
spent inside OpenMP is actually spent in thread management
instead of computation. Although the reality is distorted
by the fact that VampirTrace also uses these functions to
create the necessary trace data to log the threads, which
further adds to the overhead, this behavior indicates that the
workload per thread is to small and performance is impeded.

The new code version differs from the original in that
the omp parallel do on the j-loop is replaced by an
omp parallel region around the i-loop, and the j-loop
is parallelized explicitly, with no OpenMP directives. This is
done by enclosing the entire ij-loop section in an 3rd loop
over threads. Each iteration of this outer loop is assigned
to an OpenMP thread, which then calculates the j-loop
iterations it is responsible for.

Figure 15 shows that even the single thread performance
benefits from the change to 3 loops. The serial version of the
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Figure 16. Parallel efficiency of the MPI version
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Figure 17. Parallel efficiency of the hybrid version using MPI and OpenMP

old code needed 14504 seconds for a 1 Core, 55k particles
run. Due to the OpenMP overhead this increased to 15622
seconds running 1 OpenMP thread. With the new version
the OpenMP overhead is lower and this now takes 14602
seconds to complete.

While the old version drops below 90% efficiency with 8
threads, the new version starts at 99.3% with a single thread,
peaks at 3 threads with 99.5% and achieves 99.2% with 8
threads. This is the maximum number of threads on the Cray
XT5m. Newer hardware architectures with more cores like
the AMD bulldozer will benefit from this more heavily.

The graph for the parallel efficiency of the MPI-only
version, figure 16, has two values for 8 MPI processes. Intra-
node MPI is shown first, the second value was measured
using 8 nodes with 1 process per node. Up to 128 processes,
the efficiency is above one due to cache effects. Using all
672 available cores on XRay running the MPI-only version,
efficiency drops below 80%. This behavior can be explained
by looking at the traces in the next section.

To maximize the performance on the given hardware,
OpenMP and MPI are combined. We start with 8 cores on
one node using 4 OpenMP threads and 2 MPI processes to
resemble the dual socket quad core hardware. This yields
98.2% which is 1% less than the pure OpenMP version



shown in figure 15. All subsequent measurements were
therefore taken using MPI inter-node and OpenMP intra-
node. So the 64 core run uses 8 nodes and 672 core run
uses all available 84 nodes. Using the full machine and
the optimized OpenMP code, an efficiency of 97.2% can
be achieved compared to 79.2% for the MPI-only version.

VII. TRACING AND VISUALIZATION

VampirTrace increases the runtime by ∼7% with the new
code instead of a factor of ∼100. This makes a analysis
with Vampir feasible. Vampir shows only a part of the trace
file of the MPI-only version in figure 18. Only a few of
the 672 available processes are shown here. The selected
part is approximately 3.3 seconds of the 27 seconds long
trace, starting from the middle of the run as shown in the
navigation bar at the top right. The function summary on
the right shows that most of the time is spent in a function
called accel_ion_mix, the function which includes the
code block shown in figure 13 and 14. It is colored blue.
The larger red section on the left, in the top left window,
is a MPI_barrier used to sync between the two groups.
The number of groups (ngroup) is a variable set in the
runtime parameters, see section III. Each acceleration step
is followed by a MPI_Allreduce, the small red bars. The
communication is marked with the black lines connecting
the communications partners with each other. Every nind
steps, the function vtot_ion_mix calculates the average
potential energy per ion. This is the purple bar at the
right which concludes the 25 iterations that were set in the
configuration, see section III. As can be seen from the trace,
the all reduce-call is the only MPI routine used (except the
single call to MPI_barrier). The energy per particle is
distributed using the MPI_Allreduce which combines the
values from all processes and distributes the result back to
all processes. PAPI counters show 400 Mflop/s in floating
point performance (red line) as well as a drop to zero (blue
line) near where the MPI call is active and a not-instant
recovery back to 400 Mflop/s.

This is due to the fact that after each MPI_Allreduce
call, which does not do any floating point arithmetic, the
accel_ion_mix subroutine finishes and the code jumps
back to the inner loop shown in figure 1 on page 2. Whenever
newton is called, the coordinates need to get updated and
new velocities and acceleration at time t + δt have to be
calculated. This happens at 200-300 Mflop/s. The stack
levels are shown in the process timeline at the lower right of
figure 18. There the ”gap” between two accel_ion_mix
calls can be seen.

When the normalization function is called which in turn
calls the subroutine vtot (purple part at the end) to cal-
culate the average kinetic energy per particle that causes a
very high floating point ratio.

According to this, the limiting factor for the MPI version
of the code is the MPI_Allreduce which is needed to

Table I
MPI-ONLY, PP02 A0 B2 RUN, ALL PROCESSES, ACCUMULATED

EXCLUSIVE TIME PER FUNCTION

672 cores 8 cores
function name time in s % time in s %
accel ion mix 13293.4 72.7 11735.0 97.9
MPI Allreduce 1885.8 10.3 44.1 0.4
sync 939.4 5.1 0.1 0
newton 937.2 5.1 4.9 0.0
MPI Bcast 807.1 4.4 8.2 0.1
vtot ion mix 189.6 1.0 188.2 1.6
MPI Init 112.8 0.6 0.1 0
MPI Barrier 107.5 0.6 1.2 0

synchronize the processes after each step so that the particle-
particle interactions are calculated using updated values.
This does not provide room for improvement other than not
using global communication but point-to-point messages, or
different MPI communicators, to update processes inside the
cut-off-sphere. This has not been done so far.

Vampir can sum up the PAPI counters of all 672 processes
and present them as a graph over time aligned to the
function calls. For the 672 core MPI-only run, floating point
performance is at 400 Mflop/s on average with peaks at
800 Mflop/s, see figure 13 and 14). The optimized OpenMP
version reaches 700 Mflop/s on average with peaks up to
1.1 Gflop/s.

Not using the cut-off sphere leads to more calculations per
thread/core and thus to a higher value for the floating point
counter. As, for the cut-off sphere to work, an additional
if statement has to be used. The 4

5 saved in calculation in
the acceleration subroutine lead to a factor 2 in speedup.
This correlates to half the floating point instructions needed
(compare figure 8 and 3) in the overall simulation run
compared to not using a cut-off sphere. Please note that
PAPI explicitly states for the PAPI_FP_OPS counter to
count speculative adds and multiplies and that this counter
is variable and higher than theoretical.

Table I shows all functions that need 100 seconds or
more in the 672 core full machine run. Compared is a
run using 8 nodes and 1 process per node. 15.9% of the
runtime is needed for MPI routines compared to only 0.5%
for the 8 core run. Especially the time needed for collective
operations like the MPI_Allreduce will grow faster with
a rising number of cores. This indicates that MPI is indeed
the limiting factor in scaling the application to larger core
counts.

VIII. CONCLUSION

The analysis of MD found the best serial version. Using
PAPI and analyzing the source code revealed that the reason
for the A0 B2 block being nearly two times faster than the
original code version is due to the fact that using a cut-
off sphere, the number of particle-particle interactions is
reduced to 19%, leading to a runtime decrease although
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Figure 18. Vampir showing the MPI-only version running on all 672 cores.

the performance counter indicated a higher utilization of
the hardware for other code blocks. First attempts to apply
the Vampir framework showed heavy overhead induced by
tracing OpenMP. We moved the OpenMP parallelization
from the inner to the outer loop to increase workload per
thread and to decrease OpenMP overhead. This improved the
parallel efficiency and even the single threaded performance
due to the change from 2 to 3 loops. A preliminary study on
an dual socket, dual chip 16-threads AMD Interlagos system
showed a 97.6% parallel efficiency up to 32 cores.

The changes to the source code will be included in future
versions of the Spec OpenMP benchmark.
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