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Motivation

 NERSC provides a large number of application codes to
improve scientific productivity of users

— materials science and chemistry applications consumes 1/3 of
computing cycles at NERSC each year

— More than 1200 number of unique users (1/1/2011-5/1/2012) for
more than 15 precompiled applications

* Applications can have large performance difference
depending on compilers and libraries used
— User reports, staff tests, ...

* QOur applications are compiled mainly with PGl compiler for
Fortran codes, and GNU for C/C++ codes without confirming if
they are the optimal compilers for each specific application.

* Optimization across compilers and libraries without modifying
source codes is a low effort optimization

How much of a performance gain could this low-effort
optimization bring to NERSC users?



Different Compiler and Library Options
Explored on Hopper

 Hopper — NERSC'’s peta-flop Cray XE6 System, 153,216 cores, and
6,384 nodes with 24 cores per node
 Compilers available on Hopper
— PGl
— GNU
— Intel
— Pathscale, did not test due to limited support from Cray on Hopper
— Cray, failed to build and/or run some of the applications tested

e Libraries: Libsci, ACML, FFTW2, FFTW3

* Compiled codes on Hopper, and run on Grace -Hopper test system
to reduce the runtime fluctuation due to other users on the system

— Grace has 12 nodes, 288 cores
— Close-to-dedicated machine

* Applications experimented:
— VASP, QE, LAMMPS, NAMD, NWCHEM, BerkeleyGW



NEF VASP (5.2.12)

* Program Description

— VASP is a Fortran code that performs atomic scale
materials modeling.
e Options explored

— Compilers and optimization flags used
e PGI: -fastsse, -03, -Mvect
* |Intel: -O3, -fast
 GNU: -03, -ffast-math
* Cray: -O—ipa0
— Libraries: LibSci, ACML

 Tested with 3 test cases
— Algorithms: DIIS-RMM, Davidson, Hybrid
— Concurrencies: 48, 96, 144; 384,768; 48,72
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VASP runs slightly faster when it is compiled with the
combination of Intel compiler and ACML library.



Quantum Espresso (4.3.2)

* Program Description

— QE is a hybrid MPI/OpenMP Fortran code that performs
atomistic simulations based on electronic structure.
e Options explored:

— Compilers and optimization flags used
* PGI: -fast -03
* Intel: -03
* GNU: -03 -ffast-math
* Cray: default

— Libraries: LibSci/ACML, FFTW/FFTW3

e Tested with:
— Job Types: Davidson, CG
— Concurrencies: 24, 48, 96, 144
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QE runs at a similar speed across different compilers + FFTW3.
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QE runs faster by up to 13.6% if using the internal FFTW2
library and Intel compiler than the current build (PGI+ FFTW3).
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NAMD (2.8)

* Program Description
— NAMD is a C++ molecular dynamics simulator.

e Options explored

— Compilers and optimization Flags used

* PGI: -fastsse -03

* Intel: -02, -ip

* GNU: -03, -ffast-math, -fexpensive-optimization
— Libraries used: FFTW2, TCL; Charm++

* Tested with a standard benchmark
— Job Type: Particle Mesh Ewald (PME)
— Concurrencies: 24, 48, 96, 144
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The GNU compiler was confirmed as the best compiler for

C++ code.
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LAMMPS (Mar 15, 2012)

* Program Description
— LAMMPS is a C++ classical molecular dynamics code.

* Options explored

— Compilers and optimization flags used
* PGI: -fastsse
* Intel: -O3 -ip -unrollO
* GNU: -03 -ffast-math -fexpensive-optimization
* Cray: -Oipa0
— Libraries used: FFTW2

 Tested with
— Four standard benchmark: LJ, Charm, EAM, Rhodo
— 4 cores used for each test
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* To fit Rhodo runtime in the figure, time shown for
Rhodo tests were the real runtime — 600 seconds.

LAMMPS performs best with most of the test cases with GNU
compiler.
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BerkeleyGW (1.0.x)

* Program Description

— BerkeleyGW is a Fortran, parallel computer package that
calculates the quasiparticle properties and the optical
response of materials.

e Options explored

— Compilers and optimization flags used
* PGI: -fast
* Intel: -fast
* GNU: -03 -ffast-math -fexpensive-optimizations
* Cray: default
— Libraries: LibSci/ACML, FFTW2/FFTW3

* Tested with
— Job Type: Epsilon
— Concurrencies: 24, 48, 96, 144
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 Benchmark:
— A (8,0) single walled-carbon nanotube, with a

80 Ry. wavefunction cutoff, 12 Ry. dielectric
cutoff, and 240 empty states.
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BerkeleyGW runs slowest with GNU compiler
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The Intel compiler outperformed the PGI compiler with LibSci +

FFTW3 configuration by 1.2%.
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NWChem (6.1)

* Program Description
— NWChem is a computational chemistry software designed for
parallel, high performance compute systems.

e Variables Tested
— Compiler Optimization Flags
* PGI: -fastsse, -03, -Kieee, -Mipa
* Intel: -O3, -prefetch, -unroll
* GNU: -03, -ffast-math, -mfpmath=sse
— Libraries used: Libsci, GA
 Tested with 3 standard benchmark cases from NWChem
distribution

— Benchmark: tce_polar_ccsd_big.nw, tce_active_ccsdt.nw,
dft_semidirect.nw

— Concurrencies: 4, 8, 24 cores.
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Test cases

* The Intel compiler showed the best performance on two
benchmark cases, and the GNU compiler showed the best
performance on one benchmark case.

 The highest performance increase, 34%, was seen with the
Intel compiler compared to P(;-(!



Resul

Program Default | Best Default Library Best Performance
Compller Compiler Library Increase

VASP Cray LibSci LibSci 11.2%
QE PGI Intel LibSci + FFTW3 LibSci + 13.6%
FFTW

NAMD GNU GNU FFTW - 0.0%
LAMMPS GNU GNU/Intel FFTW - 0.0%
BerkeleyGW PGl PGl/Intel FFTW2 FFTW3 1.2%
NWChem PGI Intel BLAS/ScalLAPACK - 34.2%

PGl 11.9.0 libsci 11.0.03

GNU 4.6.2 acml 4.4.0

Intel 12.1.2.273 FFTW2 2.1.5.3; 1.2 (internal)

Cray cce/8.0.1 FFTW3 3.2.2.1
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Answer to the charging question

* Different applications have different optimal compilers

No performance gain was found for the two C++ codes tested, NAMD
and LAMMPS, we have confirmed that the GNU compiler is the
optimal compiler for them.

Intel compiler is arguably the optimal compiler for NWChem and
brings 12%~34% of performance increase compared to the current PGl
build.

Combination of Intel compiler and Internal FFTW brings QE up to
13.5% of performance gain compared to the current build

Cray compiler is the optimal compiler for VASP which allows VASP to
run faster by 5%~11% reliably with various tests.

BerkeleyGW performs slightly faster (~1%) with Intel compiler than
with PGl compiler.

Need further tests in all use cases (algorithms, job types,

concurrencies) to confirm and conclude the optimal compiler
for each application.
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