The Effects of Compiler Optimizations
on Materials Science and Chemistry
Applications at NERSC

Megan Bowling, Zhengji Zhao, and
Jack Deslippe

SR, U.S. DEPARTMENT OF Office of

ENERGY Science

National Energy Research
Scientific Computing Center

Lawrence Berkeley
BERKELEY LAB Nt IL borator y

Motivation

 NERSC provides a large number of application codes to
improve scientific productivity of users

— materials science and chemistry applications consumes 1/3 of
computing cycles at NERSC each year

— More than 1200 number of unique users (1/1/2011-5/1/2012) for
more than 15 precompiled applications

* Applications can have large performance difference
depending on compilers and libraries used
— User reports, staff tests, ...

* QOur applications are compiled mainly with PGl compiler for
Fortran codes, and GNU for C/C++ codes without confirming if
they are the optimal compilers for each specific application.

* Optimization across compilers and libraries without modifying
source codes is a low effort optimization

How much of a performance gain could this low-effort
optimization bring to NERSC users?

Different Compiler and Library Options
Explored on Hopper

 Hopper — NERSC'’s peta-flop Cray XE6 System, 153,216 cores, and
6,384 nodes with 24 cores per node
 Compilers available on Hopper
— PGl
— GNU
— Intel
— Pathscale, did not test due to limited support from Cray on Hopper
— Cray, failed to build and/or run some of the applications tested

e Libraries: Libsci, ACML, FFTW2, FFTW3

* Compiled codes on Hopper, and run on Grace -Hopper test system
to reduce the runtime fluctuation due to other users on the system

— Grace has 12 nodes, 288 cores
— Close-to-dedicated machine

* Applications experimented:
— VASP, QE, LAMMPS, NAMD, NWCHEM, BerkeleyGW

NEF VASP (5.2.12)

* Program Description

— VASP is a Fortran code that performs atomic scale
materials modeling.
e Options explored

— Compilers and optimization flags used
e PGI: -fastsse, -03, -Mvect
* |Intel: -O3, -fast
 GNU: -03, -ffast-math
* Cray: -O—ipa0
— Libraries: LibSci, ACML

 Tested with 3 test cases
— Algorithms: DIIS-RMM, Davidson, Hybrid
— Concurrencies: 48, 96, 144; 384,768; 48,72

Time (s)

400
350 : :
RMM-DIIS iteration scheme

300 -
250

H PGl
200 -

M |ntel
150 -

HGNU
100 - B Cray

50 A

48 Cores 96 Cores 144 Cores

Number of cores

Test case 1:
— NERSC user provided test case:
— A 155 atom system

— The time to complete first 20
electronic steps were measured

Time (s)

Cray compiler out
compilers with mediu

600

500

400 -

300 -

200 -

100 -

O -

Davidson iteration scheme

H PGl

48 Cores

H |ntel

S GNU

B Cray

96 Cores 144 Cores

Number of cores

Intel
GNU
PGI

Cray

Performance gain relative
to PGI compiler (%)

-12%

-6% ~ +1%
default
5.8%

VASP runs faster by 5.8% when switching to Cray compiler.

800
700 - RMM-DIIS +Davidson
iteration scheme
< 600 -
e
S 500 -
3
& 400 - H PGl
QEJ 300 H ntel
= 200 HGNU
M Cra
100 - y
0 -
384 768
Number of cores
Test case 2

— NERSC user provided
— A 660 atom system

— Time for first 4 electronic steps

Cray compiler ou
compilers for lar

Compiler

Intel
PGI
GNU

Cray

Faster than the default
compiler by (%)

-5%
default
4%

11%

VASP with Cray compiler runs faster by up to 11% for the larger

test case. .

Compiler performanc

on job t
1200
1000 -
- 800 -
-
400 - = GNU
200 - ® Cray
0 - Faster than PGI
18 2 % compiler by (%)
Number of cores
Intel -6%
Test case 3 Cray, GNU 0%
— Provided by NERSC users
— Hybrid calculation for a 105 atom system PGI default

VASP with Cray compiler runs at the same speed as PGl compiler
for the hybrid jobs

7

o ACML performs slightly
with Intel and GNU com

140
120
100
Z 5 Compiler Performance gain of
£ 60 = PG (Compiler + ACML)
" 20 = Intel relative to (the same
o S Compiler + LibSci)
o PGI +ACML -2.2%
o e Intel +ACML 7.3%
Libraries
GNU +ACML 0.8%
Test case 1:

. Cray+ACML N/A
— NERSC user provided test case:

— A 155 atom system

— The time to complete first 4
electronic steps were measured

VASP runs slightly faster when it is compiled with the
combination of Intel compiler and ACML library.

Quantum Espresso (4.3.2)

* Program Description

— QE is a hybrid MPI/OpenMP Fortran code that performs
atomistic simulations based on electronic structure.
e Options explored:

— Compilers and optimization flags used
* PGI: -fast -03
* Intel: -03
* GNU: -03 -ffast-math
* Cray: default

— Libraries: LibSci/ACML, FFTW/FFTW3

e Tested with:
— Job Types: Davidson, CG
— Concurrencies: 24, 48, 96, 144

Time (Mintes:Seconds)

Performance of com
similar when FFTW3

19:12:00 33:36:00
16:48:00 - . — ¥ 28:48:00 -
] Davidson algirithn/FFTW3 g CG algorithm/FFTW3

14:24:00 o

3 24:00:00 -
12:00:00 - b 16:12:00 -
9:36:00 - H PGl g o H PGl
7:12:00 - H |ntel é 14:24:00 1 H |ntel
4:48:00 - " GNU E 9:36:00 1 " GNU
2:24:00 - H Cray = 4:48:00 - B Cray
0:00:00 - 0:00:00 -

24 Cores 48 Cores 96 Cores 144 Cores 24 Cores 48 Cores 96 Cores 144 Cores
Number of cores Number of cores

Test case:

Compiler | Faster than the default
_ compiler by (%)
— a(8,0) single walled-carbon

nanotube,.an 80 Ry _ el default
wavefunction cutoff in an
11041 au”3 unit cell. Intel 0.5%
— A self-consistent field GNU -0.2%
calculation
Cray 0.3%

QE runs at a similar speed across different compilers + FFTW3.
10

Time (Minutes:Seconds)

The optimal combination
compiler with LibSci and

Davidson algirithn/FFTW2 CG algorithm/FFTW2
10:48:00 33:36:00
9:36:00 @ 28:48:00
8:24:00 g
O 24:00:00 -
7:12:00 - 3
6:00:00 - _— § 19:12:00 - ..
AQ- 4 =
4:48:00 Hntel £ 14:24:00 " Intel
3:36:00 - =
W GNU ~ 9:36:00 - = GNU
2:24:00 - “E’
| | o— AQ- 4 | |
1:12:00 - Cray = 4:48:00 Cray
0:00:00 - 0:00:00 -
LibSci + FFTW LibSci + FFTW3 ACML + FFTW3 LibSci + FFTW LibSci + FFTW3 ACML + FFTW3
Libraries Libraries

QE runs faster by up to 13.6% if using the internal FFTW2
library and Intel compiler than the current build (PGI+ FFTW3).

11

NAMD (2.8)

* Program Description
— NAMD is a C++ molecular dynamics simulator.

e Options explored

— Compilers and optimization Flags used

* PGI: -fastsse -03

* Intel: -02, -ip

* GNU: -03, -ffast-math, -fexpensive-optimization
— Libraries used: FFTW2, TCL; Charm++

* Tested with a standard benchmark
— Job Type: Particle Mesh Ewald (PME)
— Concurrencies: 24, 48, 96, 144

Y- .ol GNU compiler perfo

70

Compiler | Faster than GNU
compiler by (%)

g LI Tc] -22%
= H |ntel
“e\u Intel -5%
B Cray
GNU default
24 Cores 48 Cores 96 Cores 144 Cores Cray Fa | |ed tO bu ||d

Number of cores

Test case:
A standard benchmark, APoal, 92,424 atoms (PME)

The GNU compiler was confirmed as the best compiler for

C++ code.
13

LAMMPS (Mar 15, 2012)

* Program Description
— LAMMPS is a C++ classical molecular dynamics code.

* Options explored

— Compilers and optimization flags used
* PGI: -fastsse
* Intel: -O3 -ip -unrollO
* GNU: -03 -ffast-math -fexpensive-optimization
* Cray: -Oipa0
— Libraries used: FFTW2

 Tested with
— Four standard benchmark: LJ, Charm, EAM, Rhodo
— 4 cores used for each test

GNU and Intel Compil
Performance with

| Compiler | Faster than GNU
compiler by (%)
H PGl

E 150
S " Intel PGI -5% ~ -20%
. HGNU
N Intel -10% ~ +2%
] Chain EAM Rhodo* GNU default
Algorithm
Cray Failed to build

* To fit Rhodo runtime in the figure, time shown for
Rhodo tests were the real runtime — 600 seconds.

LAMMPS performs best with most of the test cases with GNU
compiler.

15

BerkeleyGW (1.0.x)

* Program Description

— BerkeleyGW is a Fortran, parallel computer package that
calculates the quasiparticle properties and the optical
response of materials.

e Options explored

— Compilers and optimization flags used
* PGI: -fast
* Intel: -fast
* GNU: -03 -ffast-math -fexpensive-optimizations
* Cray: default
— Libraries: LibSci/ACML, FFTW2/FFTW3

* Tested with
— Job Type: Epsilon
— Concurrencies: 24, 48, 96, 144

600

500 -

400 -

Time (s)

200 -

100 -

300 A

FFTW?2 is used

H PGl

H ntel
HGNU

B Cray

48 Cores 96 Cores 144 Cores

Number of cores

 Benchmark:
— A (8,0) single walled-carbon nanotube, with a

80 Ry. wavefunction cutoff, 12 Ry. dielectric
cutoff, and 240 empty states.

Intel and PGI compi
performance wit

Compiler

PGI

Intel
GNU
Cray

Faster than the

default compiler by
(%)

default
0%
-13%
-8%

BerkeleyGW runs slowest with GNU compiler

17

NERSC

Time (Seconds)

Epsilon Algorithm

400
96 cores used

H PGl
H |ntel
HGNU

B Cray

LibSci + FFTW2 LibSci + FFTW3 ACML + FFTW2

Libraries

The LibSci + FFTW3
showed the be

Compiler with
LibSci+FFTW3

PGI

Intel
GNU
Cray

Performance gain
of (Compiler +
LibSci+FFTW2)

relative to (the
same Compiler +
LibSci)

0%

1.2%

-12.5%

-3%

The Intel compiler outperformed the PGI compiler with LibSci +

FFTW3 configuration by 1.2%.

18

NWChem (6.1)

* Program Description
— NWChem is a computational chemistry software designed for
parallel, high performance compute systems.

e Variables Tested
— Compiler Optimization Flags
* PGI: -fastsse, -03, -Kieee, -Mipa
* Intel: -O3, -prefetch, -unroll
* GNU: -03, -ffast-math, -mfpmath=sse
— Libraries used: Libsci, GA
 Tested with 3 standard benchmark cases from NWChem
distribution

— Benchmark: tce_polar_ccsd_big.nw, tce_active_ccsdt.nw,
dft_semidirect.nw

— Concurrencies: 4, 8, 24 cores.

Intel compiler is arguab
compiler for NW

8 cores used Compiler | Faster than PGl
c00 compiler by (%)

o default
ig 300 H PGl
200 Intel Intel 12% ~ 34%
HGNU
100 GNU -9% ~ 28%
0
dft_semi tce_active tce_polar Cray BUlIt, but failed to run

Test cases

* The Intel compiler showed the best performance on two
benchmark cases, and the GNU compiler showed the best
performance on one benchmark case.

 The highest performance increase, 34%, was seen with the
Intel compiler compared to P(;-(!

Resul

Program Default | Best Default Library Best Performance
Compller Compiler Library Increase

VASP Cray LibSci LibSci 11.2%
QE PGI Intel LibSci + FFTW3 LibSci + 13.6%
FFTW

NAMD GNU GNU FFTW - 0.0%
LAMMPS GNU GNU/Intel FFTW - 0.0%
BerkeleyGW PGl PGl/Intel FFTW2 FFTW3 1.2%
NWChem PGI Intel BLAS/ScalLAPACK - 34.2%

PGl 11.9.0 libsci 11.0.03

GNU 4.6.2 acml 4.4.0

Intel 12.1.2.273 FFTW2 2.1.5.3; 1.2 (internal)

Cray cce/8.0.1 FFTW3 3.2.2.1

21

Answer to the charging question

* Different applications have different optimal compilers

No performance gain was found for the two C++ codes tested, NAMD
and LAMMPS, we have confirmed that the GNU compiler is the
optimal compiler for them.

Intel compiler is arguably the optimal compiler for NWChem and
brings 12%~34% of performance increase compared to the current PGl
build.

Combination of Intel compiler and Internal FFTW brings QE up to
13.5% of performance gain compared to the current build

Cray compiler is the optimal compiler for VASP which allows VASP to
run faster by 5%~11% reliably with various tests.

BerkeleyGW performs slightly faster (~1%) with Intel compiler than
with PGl compiler.

Need further tests in all use cases (algorithms, job types,

concurrencies) to confirm and conclude the optimal compiler
for each application.

Acknowledgment

 The Center for Science and Engineering Education at
Lawrence Berkeley National Laboratory and the Student

Undergraduate Laboratory Internship of the U.S Department
of Energy.

e Katie Antypas who mentored Megan during her internship

* David Turner, Mike Stewart and other members of User
Services Group who helped Megan to get started at NERSC

About the authors

Megan Bowling was supported by the Center for Science and
Engineering Education at Lawrence Berkeley National
Laboratory and the Student Undergraduate Laboratory
Internship of the U.S Department of Energy.

Jack Deslippe is a HPC consultant Zhengji Zhao
at NERSC. He is the main) .
\ i developer of the BerkeleyGW Zhengji Zhao is a HPC
Jack Deslippe code. consultant at NERSC

’/?‘9’”'\ ® U.S. DEPARTMENT OF Ofﬂce of

ENERGY science

~
A
reeeree] M
Lawrence Berkeley

(I AN\ National Laboratory

24

