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Abstract: Materials science and chemistry applications 
consume around 1/3 of the computing cycles each allocation 
year at NERSC. To improve the scientific productivity of 
users, NERSC provides a large number of pre-compiled 
applications on the Cray XE6 machine, Hopper. Depending 
on the compiler, compiler flags and libraries used to build 
the codes, applications can have large differences in 
performance. In this paper, we compare the performance 
differences arising from the use of different compilers, 
compiler optimization flags and libraries available on 
Hopper over a set of materials science and chemistry 
applications that are widely used at NERSC. The selected 
applications are written in Fortran, C, C++, or a 
combination of these languages, and use MPI or other 
massage passing libraries as well as linear algebra, FFT, and 
global array libraries. The compilers explored are the PGI, 
GNU, Cray, and Intel compilers. It should be emphasized 
that the compiler optimizations ultimately adopted for 
production builds are optimizations where the resulting 
binaries pass strict validity checks and can be used for 
scientific calculations. These builds do not necessarily 
represent the highest optimizations the compilers can reach. 
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I.  INTRODUCTION  
Materials science and chemistry applications make up 

approximately 1/3 of the NERSC workload [1]. In order 
to increase the productivity of our users, NERSC supports 
a set of pre-compiled materials science and chemistry 
programs that scientists typically use when conducting 
research in these fields. This effort is designed to save 
time for the researchers as well as to save compute cycles 
by ensuring that researchers are using an optimized 
version of each code. 

Fully optimizing a given application's performance 
often requires creating a full profile for a typical run and 
modifying the source based on the results. However, in 
many cases, significant performance gains can be achieved 
by simply optimizing the code over the matrix of possible 
compilers, compiler options and libraries available. In this 
paper, we explore the performance variability of six 
common materials science applications at NERSC with 

respect to this matrix of internal and external compile time 
options. 

NERSC has a set of four different compilers, PGI, 
Intel, GNU and Cray, that we will explore on Hopper [2], 
NERSC’s Cray XE6 system, each of which could 
potentially produce different performance results [3]. 
Additionally, materials science applications generally rely 
heavily on math libraries such as FFTW, BLAS, 
LAPACK and ScaLAPACK. NERSC provides several 
library options for these routines: FFTW2, FFTW3, 
LibSci, ACML and MKL. In this paper, we compare the 
performance of VASP [4], Quantum ESPRESSO [5], 
NAMD [6], LAMMPS [7], BerkeleyGW [8] and 
NWChem [9] with the compilers and libraries listed 
above. 

II. MATERIAL AND METHODS 

A. Hopper, Cray XE6 
All compilations were run on Hopper, NERSC’s Cray 

XE6 peta-flop system. Files were stored on the local 
Lustre scratch file system. Tests were mainly conducted 
on Grace, Hopper’s test system, in order to achieve a 
greater rate of reproducibility in performance numbers 
due to Grace’s reduced level of contention. Grace has 12 
nodes, 288 cores only. Those large concurrency tests were 
done on Hopper. To reduce the runtime noise, each 
benchmark test was run three times, and the best result 
was taken for each compiler.    

B. Compilers Available on Hopper 
There are five different compilers available to build 

applications on Hopper: PGI, Intel, Pathscale, Cray and 
GNU. In this study, Pathscale was excluded primarily 
because future support for Pathscale will be limited on 
Hopper. The Cray compiler was also excluded from the 
NAMD, LAMMPS, and NWChem builds because there 
were irresolvable error messages generated during 
compilation or run time.   

C. Libraries 
NERSC has a set of 13 math libraries to provide the 

math routines that are required by the materials science 



and chemistry applications in order to perform their 
greater function. Table 1 lists the math libraries used in 
the optimization of these applications. 

 
Table 1 NERSC Math Libraries 
 
Library Description 
ACML 
(AMD core 
math 
library) 

A full implementation of Level 1, 2 and 3 
Basic Linear Algebra Subroutines 
(BLAS), with key routines optimized for 
high performance on AMD Opteron™ 
processors. A full suite of Linear Algebra 
(LAPACK) routines. As well as taking 
advantage of the highly-tuned BLAS 
kernels, a key set of LAPACK routines 
has been further optimized to achieve 
considerably higher performance than 
standard LAPACK implementations.  
A comprehensive suite of Fast Fourier 
Transforms (FFTs) in both single-, 
double-, single-complex and double-
complex data types.  Random Number 
Generators in both single- and double-
precision.  
 

FFTW 
(Fastest 
Fourier 
transform in 
the west) 

FFTW is a C subroutine library for 
computing the discrete Fourier transform 
(DTF) in one ore more dimensions, of 
arbitrary input size, and of both real and 
complex data (as well as of even/odd data, 
i.e. the discrete cosine/sine transforms).  

MKL (Intel 
math kernel 
library) 

MKL contains highly optimized, 
extensively threaded math routines for 
science, engineering, and financial 
applications. Core math functions include 
BLAS, LAPACK, ScaLAPACK, Sparse 
Solvers, Fast Fourier Transforms, Vector 
Math, and more. 

LibSci The Cray scientific libraries package is a 
collection of numerical routines optimized 
for best performance on Cray Systems. 
The package includes: Blas, BLACS, 
LAPACK, ScaLAPACK, IRT, CRAFFT, 
FFT, FFTW2, and FFTW3. 

   

D. Procedure 
The builds and tests for each application followed the 

same general structure. The compiler optimization flags 
for each application were chosen mainly based on the 
developer suggested optimization flags, and also referred 
to the NERSC recommended compiler optimization flags 
[10]. For the large concurrency tests with VASP, we ran 
the jobs on Hopper, the production system. To reduce the 
noise in the runtime, we ran each test three times, and 
used the best performance result among the three runs.   

Each run from each application was validated against 
a well-trusted result. In the case of the density functional 
theory (DFT) codes, we compare the values of the total 
energies and individual electron eigenvalues. In the case 
of BerkeleyGW, we validated the results using key terms 
in the dielectric matrix. Optimized builds that fail to pass 
this validation are explicitly marked in the below sections. 
Additionally, we test each application build at a range of 
MPI tasks to confirm the performance observed from one 
set of tests is sustained over the different concurrencies. 

III. PRE-COMPILED APPLICATIONS TESTED 

A. VASP (Vienna Ab initio Software Package) 5.2.12 
VASP [4] is a DFT program that computes 

approximate solutions to the coupled electron Kohn-Sham 
equations for many-body systems. The code is written in 
Fortran 90 and MPI. Plane waves basis sets are used to 
express electron characteristics such as electron 
wavefunctions, charge densities, and local potentials. 
Pseudopotentials are used to describe the interactions 
between electrons and ions. The electronic groundstate 
electronic configuration is determined using one of two 
diagonalization algorithms: RMM-DIIS (inversion) and 
Davidson (blocked).  

The VASP benchmark was performed using three test 
cases provided by NERSC users. The first test system 
contains 155 atoms, and we tested the two commonly 
used iteration schemes, the RMM-DIIS and the blocked 
Davidson schemes.  We also tested two BLAS/Lapack 
libraries, LibSci and ACML to identify the VASP 
performance gain from varying the BLAS/Lapack 
libraries. The default BLAS/Lapack library for VASP is 
LibSci. We also tested VASP with another two 
benchmark cases, which are provided by NERSC users as 
well, with the mixed iteration schemes for a system with 
660 atoms, and with a hybrid calculation for a system 
containing 105 atoms. This is to check if the performance 
sustains itself over the different job types, concurrencies 
and system sizes.  Table 2 shows a list of the compiler 
optimization flags used for each compiler. 
 
Table 2 VASP Compiler Flags 
 
Compiler Optimization Flags 
PGI O3, -Mvect, -fastsse   
Cray -O ipa0  
Intel -O3, -fast 
GNU  -O3, -ffast-math 

 

B. Quantum ESPRESSO (opEn-Source Package for 
Research in Electronic Structure, Simulation and 
Optimization) 4.3.2 

Quantum Espresso [5] is a Fortran 90 material science 
program that performs electronic structure calculations 



and materials modeling at the nanoscale level. These 
atomistic simulations are found using density-functional 
theory (DFT), a plane waves (PW) basis set, and 
pseudopotentials. Tests were run using the Davidson 
(iterative with overlap matrixes) and conjugate gradient 
(CG) diagonalization algorithms, 

The default FFT library for QE is FFTW3. However, 
tests were also run using FFFTW2, which is an internal 
library. We tested ACML and LibSci linear algebra 
libraries. Table 3 lists the compiler flags that were used 
for Quantum ESPRESSO. 

 
Table 3 QE Compiler Flags 
 
Compiler Flags 
PGI -O3, -r8, -mp, -Mpreprocess, -fast, -

Mcache_align 
Cray -s real64 
Intel -O3, -r8, -openmp 
GNU  -O3, -ffast-math, fdefault-real-8, -

fdefault-double-8, -fopenmp 
 
In the QE benchmark, we perform a self-consistent 

field (SCF) calculation on the (8,0) single walled-carbon 
nanotube (SWCNT) with an 80 Ry wave-function cutoff 
in an 11041 au^3 unit cell. It should be noted that this 
calculation is dominated by the FFT step. 

C. NAMD (Molecular Dynamics) 2.8 
NAMD [6] is a C++ chemistry application that 

performs molecular dynamic simulations that compute 
atomic trajectories by solving equations of motion 
numerically using empirical force fields. The Particle 
Mesh Ewald algorithm provides a complete treatment of 
electrostatic and Van der Waals interactions.  

NAMD uses the single precision FFTW2 libraries 
exclusively (no FFTW3 interfaces). Therefore, we limited 
our studies to variations in the compiler and the processor 
core count.  The Benchmark used for NAMD was the 
standard APoa1, 92,424-atom system. Table 4 shows the 
compiler flags used for NAMD. 

 
Table 4 NAMD Compile Flags 
 
Compiler Flags 
PGI -fast  
Cray Build Failed 
Intel -ip, -02 
GNU  -03, -ffast-math, -fexpensive-

optimizations, -fomit-frame-pointer 
We used the standard benchmark Apoa1 (92,224 

atoms, 12A cutoff + PME every 4 steps) in the test.  We 
measured the time to complete the first 10000 MD steps. 
We ran the tests over a range of different core counts. 

D. LAMMPS (Large-scale Atomic/Molecular Massively 
Parallel Simulator) Mar 15, 2012 

LAMMPS [7] is a C++ classical large-scale molecular 
dynamics code. It computes Newton’s equations of 
motion for systems of particles in a liquid, solid, or 
gaseous state.  

As in the case of NAMD, only the compiler itself was 
varied in the tests. Each compiler was tested using the 
four LAMMPS benchmark problems. A description of 
these algorithms can be seen in Table 5. Table 6 shows 
the compiler optimization flags used. 
 
Table 5 LAMMPS Algorithms 
 
Algorithm Description 
LJ Atomic fluid, Lennard-Jones potential with 

2.5 sigma cutoff (55 neighbors per atom), 
NVE integration. 

Chain Bead-spring polymer melt of 100-mer 
chains, FENE bonds and LJ pairwise 
interactions with a 2^(1/6) sigma cutoff (5 
neighbors per atom), NVE integration. 

EAM Metallic solid, Cu EAM potential with 4.95-
Angstrom cutoff (45 neighbors per atom), 
NVE integration. 

Rhodo Rhodospin protein in solvated lipid bilayer, 
CHARMM force field with a 10 Angstrom 
LJ cutoff (440 neighbors per atom), particle-
particle particle-mesh (PPPM) for long-
range Coulombics, NPT integration. 

 
Table 6 LAMMPS Compiler Flags 
 
Compiler Flags 
PGI -fastsse,  
Cray Build Failed. 
Intel -O3, -ip, -unroll0 
GNU  -O3, -m64, -fexpensive-optimizations,  

-ffast-math 
 

E. BerkeleyGW 1.0.x 
BerkeleyGW [8] is a Fortran 90 material science 

application for calculating the spectroscopic, or excited 
state, properties of materials starting from DFT inputs. 
We limited our tests to the Epsilon executable, which 
computes the dielectric matrix from a set of DFT orbitals. 

We varied the processor cores, compilers and libraries 
across runs. BerkeleyGW’s default FFT library is set to 
FFTW2, with FFTW3 as an option. We tested both the 
LibSci and ACML linear algebra libraries. No internal 
program variables were tested. Table 7 shows a list of the 
compiler flags used. 

In the BerkeleyGW benchmark calculation we 
consider again the (8,0) SWCNT with a 80 Ry. 



wavefunction cutoff, 12 Ry. dielectric cutoff and 240 
empty states. 

 
Table 7 BerkeleyGW Compiler Flags 

 
Compiler Optimization Flags 
PGI -fast  
Cray default 
Intel -fast 
GNU  -O3, -ffast-math, -fexpensive-optimizations 
  

F. NWChem 6.1 
NWChem [9] is a chemistry application that provides 

tools for scientists and is designed to be scalable and 
functional on high performance, parallel compute 
systems. It is a Fortran code, and its parallelization is 
implemented with Global Array mainly. It can perform 
quantum mechanic functions, classical functions, hybrid 
functions, potential energy surface analysis, and 
electronic structure analysis.  

We tested with three test cases chosen from the 
standard NWChem distribution, dft_semiddirect.nw, 
tce_active_ccsdt.nw, and tce_polar_ccsd_big.nw. The 
first performs density functional theory, and the last two 
perform coupled cluster calculations. We tested the 
performance difference when using different compilers. 
The code is linked to the ScaLAPACk and BLAS routines 
from LibSci. Table 8 shows a list of the compiler 
optimization flags used.  
 
Table 8 NWChem Compiler Flags 

 
Compiler Flags 
PGI -Kieee, -fast, -fastsse, -O3, -Mipa=fast 
Cray Build Failed 
Intel -O3, -prefetch, -unroll 
GNU  -O3, -mfpmath-sse, -ffast-math 
 

IV. RESULTS 

A. VASP  
We ran VASP that were compiled with different 

compilers over three selected test cases provided by 
NERSC users (as described in the previous section). To 
check the compiler performance consistency over 
different use scenarios, we ran VSAP over different 
problem sizes, job types, iteration schemes and the 
number of processor cores. Figures 1-3 show the test 
results for the three test cases, respectively.  The default 
build of VASP on Hopper used the PGI compiler and was 
linked to the LibSci library. Fig. 1a) was computed using 
the DIIS-RMM algorithm and Fig. 1b) was computed 
using the Davidson algorithm. 

 

 
Figure 1.  a) VASP compiler performance results found by varying 
processor cores for the DIIS-RMM algorithm on Grace using a test case 
containing 155 atoms. 

 
Figure 1.  b) VASP compiler performance results found by varying 
processor cores for the Davidson algorithm on Grace using a test case 
containing 155 atoms. 

Figures 1a) and 1b) show that the Cray compiler 
consistently outperforms other compilers and is faster 
than the default compiler, PGI, by up to 5.8% for this 
small~medium sized VASP runs. Fig. 2 shows that the 
Cray compiler outperforms other compilers again and has 
up to 11.2% of speedup compared to the PGI compiler for 
this larger test case. And, for the third test case, with the 
hybrid calculation, the Cray compiler and PGI compiler 
have the same performance. Among all three tests, the 
Intel compiler was the slowest. It is slower by up to 12% 
compared to the PGI compiler. 

Fig. 4 shows the performance results when VASP was 
built using the ACML and LibSci libraries. VASP runs 
slightly faster with ACML library compared to LibSci for 
VASP. However, the differences across compilers is 
significantly greater than the differences between 
libraries. 



 
Figure 2.  VASP compiler performance results found by varying 
processor cores for the mixed iteration scheme (DIIS-RMM+Davidson 
algorithm) on hopper using a larger test case containing 660 atoms. The 
data shown here were the best run results over 3 repeated runs to reduce 
the run time noise due to contension from other users on Hopper. 

 

 
Figure 3.  VASP compiler performance results found by varying 
processor cores for a hybrid calculation on Grace using a test case 
containing 105 atoms. 

 
Figure 4.  VASP copiler performance results found using different 
libraries for the Davidson algorithm at 96 cores. The first benchmark 
case with 155 atoms was used for this test.  

It should be noted that it was difficult to compile 
VASP code with the Cray compiler. We had to modify 
many palces in the source codes to fix the syntax errors 
reported by the Cray compiler while other compilers, 
GNU, Intel and PGI compilers, were all fine with the 
same syntax used in the code.  

B. QE 
The results of our test on QE can be seen in Figures 5-

7. The default build of QE on Hopper used the PGI 
compiler, and used the FFTW3 library. In all tests, we 
allowed for full convergence of the electron charge 
density. Figures marked a) were run using the Davidson 
algorithm and Figures marked b) were run using the CG 
algorithm.  

 

 
Figure 5.  a) QE compiler performance results found by varying the 
processor cores for the Davidson Algorithm on Grace. 

 

 
Figure 5.  b) QE compiler performance results found by varying the 
processor cores for the CG algorithm on Grace. 

In  Figures 5a) and 5b) there is a clear plateau in the 
performance results when the processor core count is 
greater than 48. However, the results between compilers 
were too similar to provide distinct conclusions. 

Figures 6 a) and b) show that one obtains significantly 
better performance with the older internal version of 
FFTW than with the newer FFTW3 version on Hopper 
(module fftw/3.2.2.1) 

 
 



 
Figure 6.  a) QE compiler performance results found using different 
libraries for the Davidson algorithm at 96 cores.. 
 

 
Figure 6.  b) QE compiler performance results found using different 
libraries for the CG algorithm at 24 cores. 

C. NAMD 
The results of NAMD tests using the standard 

benchmark Apoa1 (92L atoms, PME) can be seen in Fig. 
7. The current build of NAMD on Hopper used the 
 

 
Figure 7.  NAMD Compiler performance results found by varying the 
processor cores for the NAMD standard benchmar Apoa1 on Grace. 

GNU compiler and used the single precision FFTW2 from 
Cray provided library (module fftw/2.1.5.3). We found 
that the GNU compiler is the optimal compiler for 

NAMD (C++ code). Note, the code failed to compile with 
Cray compiler.  

D. LAMMPS 
 

The results of LAMMPS test can be seen in Fig. 8. 
The tests were run multiple times using the four different 
benchmark test cases provided in the LAMMPS standard 
distribution.  

 

 
Figure 8.  LAMMPS compiler performance results found by testing the 
four benchmark algorithms at 4 cores. Note that the run time for Rhodo 
shown in the figure is the actual runtim of Rhodo -600 seconds to fit the 
Rhodo time into the same figure of other test cases. 

It was observed that, for the LJ, Chain, and EAM test 
cases, the GNU compiler performs slightly better than 
Intel compiler, but for the test case Rhodo, the intel 
compiler performs slightly better than GNU compiler. 
The PGI compiler performs the worst in all test cases.   
 

E. BerkeleyGW 
The results of BerkeleyGW tests can be seen in 

Figures 9 and 10. The default compiler on Hopper was 
PGI and the default library was FFTW2. The library tests 
were run using 96 processor cores. From Fig. 8, we can 
see the expected decrease in computational time as we  
 

 
Figure 9.  BGW compiler performance results found by varying the 
processor cores for the Epsilon executable on Grace. 



 
Figure 10.  BGW compiler performance results found using different 
libraries for the Epsilon algorithm at 96 cores. 

increase the number of processor cores. The compiler 
performance does not vary with core count with PGI and 
Intel consistently giving the best results.  

The best overall performance was obtained using the 
Intel and PGI compilers with the FFTW3 library.  

 

F. NWChem 
Figures 11-13 show the results of the NWChem tests.  
 

 
Figure 11.  NWChem compiler performance results found by varying the 
processor cores for the dft_semidirect test case on Grace. 

 

 
Figure 12.  NWChem compiler performance results found by varying the 
processor cores for the tce_active_ccsdt test case on Grace. 

 
Figure 13.  NWChem compiler performance results found by varying the 
processor cores for the tce_polar_ccsd_big  test case on Grace. 

The current build of NWChem on Hopper used the PGI 
compiler. The program was linked to the optimized math 
libraries BLAS and SCALAPACK from LibSci.. For each 
test case, the Intel compiler delivers the best performance 
results. GNU also gave better performance results than 
PGI, however, it did not perform as well as Intel except 
on one occasion (see tce_polar_ccsd_big at 8 cores). 
Overall, Intel outperformed the other two compilers on 
the majority of the tests run for this application.   

Once again, it should be noted, that compiling 
NWChem code with the Cray compiler was very difficult. 
After numerous changes in the configure script, makefiles 
and source codes, we were able to build the NWChem 
code. Unfortunately, the binary failed to run, throwing an 
error indicating invalid Fortran binding of C codes.  We 
noticed that the difficulty of using Cray compiler comes 
from the fact that many existing software packages do not 
support Cray compilers in their configure scripts and 
makefiles. In addition, Cray compiler has a more strict 
syntax check (i.e. follows the standard more rigorously), 
and hence fails to compile common but non-standard 
syntax that builds with other compilers. This makes 
compiling existing software packages significantly more 
difficult with Cray compilers.  However, there is a benefit 
to rigorous syntax checking in the Cray compiler: we 
were able to identifiy a bug in the NWChem code. 
 

V. CONCLUSION 
We find that varying the compiler, compiler options 

and libraries can indeed make significant differences in 
performance in materials science and chemistry 
applications on Hopper. Total wall-times typically vary 
around 10% between optimized builds from each 
compiler.  The best compiler and library option is not 
universal across the class of applications studied. We 
summarized the results in Table 13. The last column in 
the Table shows the performance increase compared to 
the current build.   
 



Table 13 Summaries of Results 
 

Default Best Result 
Program 

Compiler Library Compiler Library 
Perf. 

Increase  

VASP 
5.2.12 

PGI  
11.9.0 

LibSci 
11.0.03 

Cray 
8.0.1 

LibSci 11.2% 

QE  
4.3.2 

PGI 
11.9.0 

FFTW3 
3.2.2.1 

Intel 
12.1.2.273 

FFTW 
1.2 

13.6% 

NAMD 
2.8 

PGI 
11.9.0 

FFTW 
2.1.5.3 

GNU 
4.6.2 

- 0.0% 

LAMMPS 
03/15/2012 

PGI 
11.9.0 

FFTW 
2.1.5.3 

Intel 
12.1.2.273 

GNU 
4.6.2 

- 0.0% 

BGW 
1.0.x 

PGI 
11.9.0 

FFTW2 
2.1.5.3 

Intel 
12.1.2.273 

PGI 
11.9.0 

FFTW3 
3.2.2.1 

1.2% 

NWChem 
6.1 

PGI 
11.9.0 

libsci 
11.0.03 

Intel 
12.1.2.273 

- 34.2% 
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