
The Effects of Compiler Optimizations on Materials Science and Chemistry
Applications at NERSC

Megan Bowling, Zhengi Zhao, and Jack Deslippe
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA

E-mail: {mbowling, zzhao, jrdeslippe}@lbl.gov

Abstract: Materials science and chemistry applications
consume around 1/3 of the computing cycles each allocation
year at NERSC. To improve the scientific productivity of
users, NERSC provides a large number of pre-compiled
applications on the Cray XE6 machine, Hopper. Depending
on the compiler, compiler flags and libraries used to build
the codes, applications can have large differences in
performance. In this paper, we compare the performance
differences arising from the use of different compilers,
compiler optimization flags and libraries available on
Hopper over a set of materials science and chemistry
applications that are widely used at NERSC. The selected
applications are written in Fortran, C, C++, or a
combination of these languages, and use MPI or other
massage passing libraries as well as linear algebra, FFT, and
global array libraries. The compilers explored are the PGI,
GNU, Cray, and Intel compilers. It should be emphasized
that the compiler optimizations ultimately adopted for
production builds are optimizations where the resulting
binaries pass strict validity checks and can be used for
scientific calculations. These builds do not necessarily
represent the highest optimizations the compilers can reach.

Keywords-component; compilers; optimization; libraries;
performance; applications; FFT; BLAS; LAPACK; LibSci;
ACML

I. INTRODUCTION
Materials science and chemistry applications make up

approximately 1/3 of the NERSC workload [1]. In order
to increase the productivity of our users, NERSC supports
a set of pre-compiled materials science and chemistry
programs that scientists typically use when conducting
research in these fields. This effort is designed to save
time for the researchers as well as to save compute cycles
by ensuring that researchers are using an optimized
version of each code.

Fully optimizing a given application's performance
often requires creating a full profile for a typical run and
modifying the source based on the results. However, in
many cases, significant performance gains can be achieved
by simply optimizing the code over the matrix of possible
compilers, compiler options and libraries available. In this
paper, we explore the performance variability of six
common materials science applications at NERSC with

respect to this matrix of internal and external compile time
options.

NERSC has a set of four different compilers, PGI,
Intel, GNU and Cray, that we will explore on Hopper [2],
NERSC’s Cray XE6 system, each of which could
potentially produce different performance results [3].
Additionally, materials science applications generally rely
heavily on math libraries such as FFTW, BLAS,
LAPACK and ScaLAPACK. NERSC provides several
library options for these routines: FFTW2, FFTW3,
LibSci, ACML and MKL. In this paper, we compare the
performance of VASP [4], Quantum ESPRESSO [5],
NAMD [6], LAMMPS [7], BerkeleyGW [8] and
NWChem [9] with the compilers and libraries listed
above.

II. MATERIAL AND METHODS

A. Hopper, Cray XE6
All compilations were run on Hopper, NERSC’s Cray

XE6 peta-flop system. Files were stored on the local
Lustre scratch file system. Tests were mainly conducted
on Grace, Hopper’s test system, in order to achieve a
greater rate of reproducibility in performance numbers
due to Grace’s reduced level of contention. Grace has 12
nodes, 288 cores only. Those large concurrency tests were
done on Hopper. To reduce the runtime noise, each
benchmark test was run three times, and the best result
was taken for each compiler.

B. Compilers Available on Hopper
There are five different compilers available to build

applications on Hopper: PGI, Intel, Pathscale, Cray and
GNU. In this study, Pathscale was excluded primarily
because future support for Pathscale will be limited on
Hopper. The Cray compiler was also excluded from the
NAMD, LAMMPS, and NWChem builds because there
were irresolvable error messages generated during
compilation or run time.

C. Libraries
NERSC has a set of 13 math libraries to provide the

math routines that are required by the materials science

and chemistry applications in order to perform their
greater function. Table 1 lists the math libraries used in
the optimization of these applications.

Table 1 NERSC Math Libraries

Library Description
ACML
(AMD core
math
library)

A full implementation of Level 1, 2 and 3
Basic Linear Algebra Subroutines
(BLAS), with key routines optimized for
high performance on AMD Opteron™
processors. A full suite of Linear Algebra
(LAPACK) routines. As well as taking
advantage of the highly-tuned BLAS
kernels, a key set of LAPACK routines
has been further optimized to achieve
considerably higher performance than
standard LAPACK implementations.
A comprehensive suite of Fast Fourier
Transforms (FFTs) in both single-,
double-, single-complex and double-
complex data types. Random Number
Generators in both single- and double-
precision.

FFTW
(Fastest
Fourier
transform in
the west)

FFTW is a C subroutine library for
computing the discrete Fourier transform
(DTF) in one ore more dimensions, of
arbitrary input size, and of both real and
complex data (as well as of even/odd data,
i.e. the discrete cosine/sine transforms).

MKL (Intel
math kernel
library)

MKL contains highly optimized,
extensively threaded math routines for
science, engineering, and financial
applications. Core math functions include
BLAS, LAPACK, ScaLAPACK, Sparse
Solvers, Fast Fourier Transforms, Vector
Math, and more.

LibSci The Cray scientific libraries package is a
collection of numerical routines optimized
for best performance on Cray Systems.
The package includes: Blas, BLACS,
LAPACK, ScaLAPACK, IRT, CRAFFT,
FFT, FFTW2, and FFTW3.

D. Procedure
The builds and tests for each application followed the

same general structure. The compiler optimization flags
for each application were chosen mainly based on the
developer suggested optimization flags, and also referred
to the NERSC recommended compiler optimization flags
[10]. For the large concurrency tests with VASP, we ran
the jobs on Hopper, the production system. To reduce the
noise in the runtime, we ran each test three times, and
used the best performance result among the three runs.

Each run from each application was validated against
a well-trusted result. In the case of the density functional
theory (DFT) codes, we compare the values of the total
energies and individual electron eigenvalues. In the case
of BerkeleyGW, we validated the results using key terms
in the dielectric matrix. Optimized builds that fail to pass
this validation are explicitly marked in the below sections.
Additionally, we test each application build at a range of
MPI tasks to confirm the performance observed from one
set of tests is sustained over the different concurrencies.

III. PRE-COMPILED APPLICATIONS TESTED

A. VASP (Vienna Ab initio Software Package) 5.2.12
VASP [4] is a DFT program that computes

approximate solutions to the coupled electron Kohn-Sham
equations for many-body systems. The code is written in
Fortran 90 and MPI. Plane waves basis sets are used to
express electron characteristics such as electron
wavefunctions, charge densities, and local potentials.
Pseudopotentials are used to describe the interactions
between electrons and ions. The electronic groundstate
electronic configuration is determined using one of two
diagonalization algorithms: RMM-DIIS (inversion) and
Davidson (blocked).

The VASP benchmark was performed using three test
cases provided by NERSC users. The first test system
contains 155 atoms, and we tested the two commonly
used iteration schemes, the RMM-DIIS and the blocked
Davidson schemes. We also tested two BLAS/Lapack
libraries, LibSci and ACML to identify the VASP
performance gain from varying the BLAS/Lapack
libraries. The default BLAS/Lapack library for VASP is
LibSci. We also tested VASP with another two
benchmark cases, which are provided by NERSC users as
well, with the mixed iteration schemes for a system with
660 atoms, and with a hybrid calculation for a system
containing 105 atoms. This is to check if the performance
sustains itself over the different job types, concurrencies
and system sizes. Table 2 shows a list of the compiler
optimization flags used for each compiler.

Table 2 VASP Compiler Flags

Compiler Optimization Flags
PGI O3, -Mvect, -fastsse
Cray -O ipa0
Intel -O3, -fast
GNU -O3, -ffast-math

B. Quantum ESPRESSO (opEn-Source Package for
Research in Electronic Structure, Simulation and
Optimization) 4.3.2

Quantum Espresso [5] is a Fortran 90 material science
program that performs electronic structure calculations

and materials modeling at the nanoscale level. These
atomistic simulations are found using density-functional
theory (DFT), a plane waves (PW) basis set, and
pseudopotentials. Tests were run using the Davidson
(iterative with overlap matrixes) and conjugate gradient
(CG) diagonalization algorithms,

The default FFT library for QE is FFTW3. However,
tests were also run using FFFTW2, which is an internal
library. We tested ACML and LibSci linear algebra
libraries. Table 3 lists the compiler flags that were used
for Quantum ESPRESSO.

Table 3 QE Compiler Flags

Compiler Flags
PGI -O3, -r8, -mp, -Mpreprocess, -fast, -

Mcache_align
Cray -s real64
Intel -O3, -r8, -openmp
GNU -O3, -ffast-math, fdefault-real-8, -

fdefault-double-8, -fopenmp

In the QE benchmark, we perform a self-consistent

field (SCF) calculation on the (8,0) single walled-carbon
nanotube (SWCNT) with an 80 Ry wave-function cutoff
in an 11041 au^3 unit cell. It should be noted that this
calculation is dominated by the FFT step.

C. NAMD (Molecular Dynamics) 2.8
NAMD [6] is a C++ chemistry application that

performs molecular dynamic simulations that compute
atomic trajectories by solving equations of motion
numerically using empirical force fields. The Particle
Mesh Ewald algorithm provides a complete treatment of
electrostatic and Van der Waals interactions.

NAMD uses the single precision FFTW2 libraries
exclusively (no FFTW3 interfaces). Therefore, we limited
our studies to variations in the compiler and the processor
core count. The Benchmark used for NAMD was the
standard APoa1, 92,424-atom system. Table 4 shows the
compiler flags used for NAMD.

Table 4 NAMD Compile Flags

Compiler Flags
PGI -fast
Cray Build Failed
Intel -ip, -02
GNU -03, -ffast-math, -fexpensive-

optimizations, -fomit-frame-pointer
We used the standard benchmark Apoa1 (92,224

atoms, 12A cutoff + PME every 4 steps) in the test. We
measured the time to complete the first 10000 MD steps.
We ran the tests over a range of different core counts.

D. LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) Mar 15, 2012

LAMMPS [7] is a C++ classical large-scale molecular
dynamics code. It computes Newton’s equations of
motion for systems of particles in a liquid, solid, or
gaseous state.

As in the case of NAMD, only the compiler itself was
varied in the tests. Each compiler was tested using the
four LAMMPS benchmark problems. A description of
these algorithms can be seen in Table 5. Table 6 shows
the compiler optimization flags used.

Table 5 LAMMPS Algorithms

Algorithm Description
LJ Atomic fluid, Lennard-Jones potential with

2.5 sigma cutoff (55 neighbors per atom),
NVE integration.

Chain Bead-spring polymer melt of 100-mer
chains, FENE bonds and LJ pairwise
interactions with a 2^(1/6) sigma cutoff (5
neighbors per atom), NVE integration.

EAM Metallic solid, Cu EAM potential with 4.95-
Angstrom cutoff (45 neighbors per atom),
NVE integration.

Rhodo Rhodospin protein in solvated lipid bilayer,
CHARMM force field with a 10 Angstrom
LJ cutoff (440 neighbors per atom), particle-
particle particle-mesh (PPPM) for long-
range Coulombics, NPT integration.

Table 6 LAMMPS Compiler Flags

Compiler Flags
PGI -fastsse,
Cray Build Failed.
Intel -O3, -ip, -unroll0
GNU -O3, -m64, -fexpensive-optimizations,

-ffast-math

E. BerkeleyGW 1.0.x
BerkeleyGW [8] is a Fortran 90 material science

application for calculating the spectroscopic, or excited
state, properties of materials starting from DFT inputs.
We limited our tests to the Epsilon executable, which
computes the dielectric matrix from a set of DFT orbitals.

We varied the processor cores, compilers and libraries
across runs. BerkeleyGW’s default FFT library is set to
FFTW2, with FFTW3 as an option. We tested both the
LibSci and ACML linear algebra libraries. No internal
program variables were tested. Table 7 shows a list of the
compiler flags used.

In the BerkeleyGW benchmark calculation we
consider again the (8,0) SWCNT with a 80 Ry.

wavefunction cutoff, 12 Ry. dielectric cutoff and 240
empty states.

Table 7 BerkeleyGW Compiler Flags

Compiler Optimization Flags
PGI -fast
Cray default
Intel -fast
GNU -O3, -ffast-math, -fexpensive-optimizations

F. NWChem 6.1
NWChem [9] is a chemistry application that provides

tools for scientists and is designed to be scalable and
functional on high performance, parallel compute
systems. It is a Fortran code, and its parallelization is
implemented with Global Array mainly. It can perform
quantum mechanic functions, classical functions, hybrid
functions, potential energy surface analysis, and
electronic structure analysis.

We tested with three test cases chosen from the
standard NWChem distribution, dft_semiddirect.nw,
tce_active_ccsdt.nw, and tce_polar_ccsd_big.nw. The
first performs density functional theory, and the last two
perform coupled cluster calculations. We tested the
performance difference when using different compilers.
The code is linked to the ScaLAPACk and BLAS routines
from LibSci. Table 8 shows a list of the compiler
optimization flags used.

Table 8 NWChem Compiler Flags

Compiler Flags
PGI -Kieee, -fast, -fastsse, -O3, -Mipa=fast
Cray Build Failed
Intel -O3, -prefetch, -unroll
GNU -O3, -mfpmath-sse, -ffast-math

IV. RESULTS

A. VASP
We ran VASP that were compiled with different

compilers over three selected test cases provided by
NERSC users (as described in the previous section). To
check the compiler performance consistency over
different use scenarios, we ran VSAP over different
problem sizes, job types, iteration schemes and the
number of processor cores. Figures 1-3 show the test
results for the three test cases, respectively. The default
build of VASP on Hopper used the PGI compiler and was
linked to the LibSci library. Fig. 1a) was computed using
the DIIS-RMM algorithm and Fig. 1b) was computed
using the Davidson algorithm.

Figure 1. a) VASP compiler performance results found by varying
processor cores for the DIIS-RMM algorithm on Grace using a test case
containing 155 atoms.

Figure 1. b) VASP compiler performance results found by varying
processor cores for the Davidson algorithm on Grace using a test case
containing 155 atoms.

Figures 1a) and 1b) show that the Cray compiler
consistently outperforms other compilers and is faster
than the default compiler, PGI, by up to 5.8% for this
small~medium sized VASP runs. Fig. 2 shows that the
Cray compiler outperforms other compilers again and has
up to 11.2% of speedup compared to the PGI compiler for
this larger test case. And, for the third test case, with the
hybrid calculation, the Cray compiler and PGI compiler
have the same performance. Among all three tests, the
Intel compiler was the slowest. It is slower by up to 12%
compared to the PGI compiler.

Fig. 4 shows the performance results when VASP was
built using the ACML and LibSci libraries. VASP runs
slightly faster with ACML library compared to LibSci for
VASP. However, the differences across compilers is
significantly greater than the differences between
libraries.

Figure 2. VASP compiler performance results found by varying
processor cores for the mixed iteration scheme (DIIS-RMM+Davidson
algorithm) on hopper using a larger test case containing 660 atoms. The
data shown here were the best run results over 3 repeated runs to reduce
the run time noise due to contension from other users on Hopper.

Figure 3. VASP compiler performance results found by varying
processor cores for a hybrid calculation on Grace using a test case
containing 105 atoms.

Figure 4. VASP copiler performance results found using different
libraries for the Davidson algorithm at 96 cores. The first benchmark
case with 155 atoms was used for this test.

It should be noted that it was difficult to compile
VASP code with the Cray compiler. We had to modify
many palces in the source codes to fix the syntax errors
reported by the Cray compiler while other compilers,
GNU, Intel and PGI compilers, were all fine with the
same syntax used in the code.

B. QE
The results of our test on QE can be seen in Figures 5-

7. The default build of QE on Hopper used the PGI
compiler, and used the FFTW3 library. In all tests, we
allowed for full convergence of the electron charge
density. Figures marked a) were run using the Davidson
algorithm and Figures marked b) were run using the CG
algorithm.

Figure 5. a) QE compiler performance results found by varying the
processor cores for the Davidson Algorithm on Grace.

Figure 5. b) QE compiler performance results found by varying the
processor cores for the CG algorithm on Grace.

In Figures 5a) and 5b) there is a clear plateau in the
performance results when the processor core count is
greater than 48. However, the results between compilers
were too similar to provide distinct conclusions.

Figures 6 a) and b) show that one obtains significantly
better performance with the older internal version of
FFTW than with the newer FFTW3 version on Hopper
(module fftw/3.2.2.1)

Figure 6. a) QE compiler performance results found using different
libraries for the Davidson algorithm at 96 cores..

Figure 6. b) QE compiler performance results found using different
libraries for the CG algorithm at 24 cores.

C. NAMD
The results of NAMD tests using the standard

benchmark Apoa1 (92L atoms, PME) can be seen in Fig.
7. The current build of NAMD on Hopper used the

Figure 7. NAMD Compiler performance results found by varying the
processor cores for the NAMD standard benchmar Apoa1 on Grace.

GNU compiler and used the single precision FFTW2 from
Cray provided library (module fftw/2.1.5.3). We found
that the GNU compiler is the optimal compiler for

NAMD (C++ code). Note, the code failed to compile with
Cray compiler.

D. LAMMPS

The results of LAMMPS test can be seen in Fig. 8.
The tests were run multiple times using the four different
benchmark test cases provided in the LAMMPS standard
distribution.

Figure 8. LAMMPS compiler performance results found by testing the
four benchmark algorithms at 4 cores. Note that the run time for Rhodo
shown in the figure is the actual runtim of Rhodo -600 seconds to fit the
Rhodo time into the same figure of other test cases.

It was observed that, for the LJ, Chain, and EAM test
cases, the GNU compiler performs slightly better than
Intel compiler, but for the test case Rhodo, the intel
compiler performs slightly better than GNU compiler.
The PGI compiler performs the worst in all test cases.

E. BerkeleyGW
The results of BerkeleyGW tests can be seen in

Figures 9 and 10. The default compiler on Hopper was
PGI and the default library was FFTW2. The library tests
were run using 96 processor cores. From Fig. 8, we can
see the expected decrease in computational time as we

Figure 9. BGW compiler performance results found by varying the
processor cores for the Epsilon executable on Grace.

Figure 10. BGW compiler performance results found using different
libraries for the Epsilon algorithm at 96 cores.

increase the number of processor cores. The compiler
performance does not vary with core count with PGI and
Intel consistently giving the best results.

The best overall performance was obtained using the
Intel and PGI compilers with the FFTW3 library.

F. NWChem
Figures 11-13 show the results of the NWChem tests.

Figure 11. NWChem compiler performance results found by varying the
processor cores for the dft_semidirect test case on Grace.

Figure 12. NWChem compiler performance results found by varying the
processor cores for the tce_active_ccsdt test case on Grace.

Figure 13. NWChem compiler performance results found by varying the
processor cores for the tce_polar_ccsd_big test case on Grace.

The current build of NWChem on Hopper used the PGI
compiler. The program was linked to the optimized math
libraries BLAS and SCALAPACK from LibSci.. For each
test case, the Intel compiler delivers the best performance
results. GNU also gave better performance results than
PGI, however, it did not perform as well as Intel except
on one occasion (see tce_polar_ccsd_big at 8 cores).
Overall, Intel outperformed the other two compilers on
the majority of the tests run for this application.

Once again, it should be noted, that compiling
NWChem code with the Cray compiler was very difficult.
After numerous changes in the configure script, makefiles
and source codes, we were able to build the NWChem
code. Unfortunately, the binary failed to run, throwing an
error indicating invalid Fortran binding of C codes. We
noticed that the difficulty of using Cray compiler comes
from the fact that many existing software packages do not
support Cray compilers in their configure scripts and
makefiles. In addition, Cray compiler has a more strict
syntax check (i.e. follows the standard more rigorously),
and hence fails to compile common but non-standard
syntax that builds with other compilers. This makes
compiling existing software packages significantly more
difficult with Cray compilers. However, there is a benefit
to rigorous syntax checking in the Cray compiler: we
were able to identifiy a bug in the NWChem code.

V. CONCLUSION
We find that varying the compiler, compiler options

and libraries can indeed make significant differences in
performance in materials science and chemistry
applications on Hopper. Total wall-times typically vary
around 10% between optimized builds from each
compiler. The best compiler and library option is not
universal across the class of applications studied. We
summarized the results in Table 13. The last column in
the Table shows the performance increase compared to
the current build.

Table 13 Summaries of Results

Default Best Result
Program

Compiler Library Compiler Library
Perf.

Increase

VASP
5.2.12

PGI
11.9.0

LibSci
11.0.03

Cray
8.0.1

LibSci 11.2%

QE
4.3.2

PGI
11.9.0

FFTW3
3.2.2.1

Intel
12.1.2.273

FFTW
1.2

13.6%

NAMD
2.8

PGI
11.9.0

FFTW
2.1.5.3

GNU
4.6.2

- 0.0%

LAMMPS
03/15/2012

PGI
11.9.0

FFTW
2.1.5.3

Intel
12.1.2.273

GNU
4.6.2

- 0.0%

BGW
1.0.x

PGI
11.9.0

FFTW2
2.1.5.3

Intel
12.1.2.273

PGI
11.9.0

FFTW3
3.2.2.1

1.2%

NWChem
6.1

PGI
11.9.0

libsci
11.0.03

Intel
12.1.2.273

- 34.2%

ACKNOWLEDGMENT
The first author would like to thank Katie Antypas

who mentored her during her internship, and David
Turner, Mike Stewart and other User Services Group
members at NERSC who helped her to get started at
NERSC. The work of the first author was supported by
the Center for Science and Engineering Education at
Lawrence Berkeley National Laboratory and the Student
Undergraduate Laboratory Internship of the U.S
Department of Energy. The work of the second and third
authors were supported by the ASCR Office in the DOE,
Office of Science, under contract number DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

REFERENCES

[1] Francesca Verdier, Code analysis in AY 2011, An internal

communication at NERSC.
[2] http://www.nersc.gov/users/computational-systems/hopper/
[3] M. Stewart, Y. He, “Benchmark Performance of Different

Compilers on a Cray XE6” in Cray User Group 2011, Fairbanks,
AK, 2011, pp. 1-6.

[4] http://www.vasp.at/
[5] http://www.quantum-espresso.org
[6] http://www.ks.uiuc.edu/Research/namd/
[7] http://lammps.sandia.gov/
[8] Jack Deslippe, Georgy Samsonidze, David A. Strubbe, Manish

Jain, Marvin L. Cohen, and Steven G. Louie, "BerkeleyGW: A
Massively Parallel Computer Package for the Calculation of the
Quasiparticle and Optical Properties of Materials and
Nanostructures," Comput. Phys. Commun. 183, 1269 (2012)

[9] http://www.nwchem-sw.org/
[10] http://www.nersc.gov/users/software/compilers/

