Practical Support Solutions for a Workflow-Oriented Cray Environment

Adam G. Carlyle, Ross G. Miller, Dustin B. Leverman, William A. Renaud, Don E. Maxwell
National Center for Computational Sciences (NCCS)
Oak Ridge National Laboratory (ORNL)
Oak Ridge, Tennessee, USA
{carlylag, rgmiller, leverman, brenaud, maxwellde}@ornl.gov

Abstract—The National Climate-Computing Research Cen-
ter (NCRC), a joint computing center between Oak Ridge
National Laboratory (ORNL) and the National Oceanic and At-
mospheric Administration (NOAA), employs integrated work-
flow software and data storage resources to enable production
climate simulations on the Cray XT6/XE6 named ’Gaea”.
The use of highly specialized workflow software and a nec-
essary premium on data integrity together create a support
environment with unique challenges. This paper details recent
support efforts to improve the NCRC end-user experience and
to safeguard the corresponding scientific workflow.

Monitoring and reporting of disk usage on Lustre filesystems
can be a resource-intensive task, and can affect meta-data
performance if not done in a centralized and scalable way.
LustreDU is a non-intrusive tool that was developed at ORNL to
address this issue by providing an end-user utility that queries a
database which is populated daily for reporting disk utilization
on directories in the NCRC Lustre file systems.

The NCRC system is housed at ORNL, and has sets of
geographically remote end-users at (3) separate sites, with a
corresponding support staff team at each location. Conveying
system status information to each remote center in a timely
manner became important early into the project. The NCRC
System Dashboard is a web interface and a set of corresponding
system checks created by ORNL support staff to concisely and
expediently inform those operational teams remote from the
main data center of changes in system status.

Filesystem issues and outages cause disruption to the auto-
mated workflow employed by NCRC end-users. Lustre-aware
Moab is our response to this issue. By integrating knowledge
of the filesystem state into the system’s job scheduler, the
workflow can be paused when a file system issue is detected.
When the issue is resolved, affected jobs can be rerun,
effectively rolling back the workflow’s progression to a valid
state.

Keywords-Cray; Gaea; NCRC; ORNL; NOAA; Lustre;
Moab;

I. INTRODUCTION

NCRC, and its associated primary computational resource,
Gaea, supports NOAA’s research and development com-
munity across the country and stands as the first remote
production computing facility in NOAA’s history.[1] As
such, Gaea must support end-users with unique usage pat-
terns. Production climate simulations run on Gaea, yet post-
processing runs and ultimate archival of datasets are run at
the end-users’ home research center(s).

To automate this process, end-users on Gaea employ
workflow software that manages the execution of climate
research simulations as well as the movement of data across
multiple file systems. In more typical HPC usage patterns,
the occasional failed job has little impact; on Gaea, a
single failed job can interrupt the overall workflow since
the execution of simulations is necessarily serial in nature.
Individual job failures must all be investigated. The resource
manager queue state must be maintained and reconstructed
after system outages. Geographically remote support teams
must be notified concisely of system status changes in
real time to be able to correlate hardware issues to user
impact. The nature of the usage pattern mandates a modified
approach to support on Gaea.

II. LUSTREDU

To facilitate the enforcement of soft quotas on Gaea’s
Lustre[2] file systems, regular snapshots of file system
utilization must be generated. LustreDU[3] is a previously
non-production tool ORNL developed for this task, and
put into production for the first time on Gaea. In general,
monitoring and reporting of disk usage on Lustre filesystems
is a resource-intensive task. Too many simultaneous du
commands to the filesystem can overwhelm the meta-data
server and can affect performance. Regular bookkeeping
of the file system is important for a number of reporting
tasks, but must be done in a centralized and scalable way.
LustreDU was developed with this in mind. It provides an
end-user utility which queries a frequently-updated database
for the purpose of reporting disk utilization on directories in
the NCRC Lustre file systems.

A. LustreDU Command Line Utility

To the end-user, LustreDU is a simple tool, invoked from
the command line, that lists the aggregated size of Lustre
directories passed to it as a command line option as in Figure
I:

[user@host] (/scratch) § lustredu ./somedir
Last Collected Date Size File Count Directory
2012-84-18 ©07:29:33 183.91 KB 1 ./somedir

Figure 1. Typical LustreDU Command Line Tool Invocation

The command line tool is comprised of a handful of C++
classes to handle command line options, backend database
interaction, and directory permission verification pre-output.
Unlike du, LustreDU places minimal load on the Lustre
meta-data server, querying it only to check that the user has
permissions to view the next directory size to be output. The
actual data to be output is queried directly from a mySQL
database that is updated regularly by the LustreDU main
process threads.

B. LustreDU Code Internals Overview

Internally, the LustreDU system consists of two programs:
a master program that handles the majority of the work
and a daemon that runs on each Lustre Object Storage
Server (OSS) and responds to queries for object sizes. This
is a client-server architecture, but in reverse: there’s one
client and multiple servers. Neither the master program
nor the daemons use the Lustre API, although they do get
information from files in the /proc/fs/lustre hierarchy.

The LustreDU system doesn’t store information about
each individual file. That would take too much space and we
don’t need that level of detail. Instead, it stores information
on a per-directory basis. Specifically, for each directory, it
stores the UID and GID for that directory and the total num-
ber and total size of all files contained in the directory and its
children. With the exception of the file size information, all
of this data comes from the Lustre Metadata Server (MDS)
and we actually get it by running Nick Cardo’s ne2scan
utility.[4]

The only data that isn’t available on the MDS is the
file size. Lustre doesn’t store the size of any files. Instead,
it stores the size of each individual object in a file and
calculates the total file size as needed. Those object sizes
are stored on the OSS.

In general, the master process reads the output of
ne2scan line by line. From each line, it gets the full
pathname, UID, GID and the ID’s of the objects that make
up that file. It then queries each Lustre Object Storage Target
(OST) for the size of that object. When it has received all
the object sizes, it calculates the total size of the file.

Of course, the detailed explanation is rather more com-
plicated than this. The daemon is simpler than the master
program, so we’ll discuss it first.

C. LustreDU Daemon Processes

As previously stated, each daemon listens on a network
port for object ID’s, looks up the object in the filesystem
and returns the size. Each OSS has multiple OST’s, and
requests for objects on any of them can arrive in any order. In
order to allow for asynchronous operation, the server process
creates one thread for each OST plus one thread for receiving
network requests and a final thread for sending the network
replies.

The basic data flow is shown in Figure 2 and described
below:

1) A file size request is received from the network. The
listener thread examines the request and determines
which OST it is for. It places the request in a queue
for that OST and increments a semaphore.

2) The thread that is waiting on that semaphore wakes up
and decrements the semaphore. It then looks up the
requested file size, places it on an output queue for
the network send thread and increments that queue’s
semaphore.

3) The network send thread wakes up, decrements its
semaphore, pops the size value off the queue and sends
it back to the client.

Each OST thread uses the libext2fs API to open
and navigate the OST as if it contains a regular filesystem
(which, of course, it does). Lustre objects are just files in
this filesystem, and finding one object’s size is as simple as
performing a stat operation on the file.

A
wait for semaphore semaphore
— —
recv() wake wake
R ¢
query is pop query pop size off
received off queue of queue
N l J l l
(R (locate) send size
parse query ObjID A| back to
L Y, __inFS) master
push onto (h ¥
semaphore
L—{ relevant |B]itatfg — lp
slee;
OST queue L the il) P
push size
T"| onto send
queue
semaphore
sleep

Figure 2. LustreDU OSS Daemon Threads Logic: Network Receive (left),
OST Thread (center), Network Send (right)

D. LustreDU Master Process

The master program is a bit more complicated, mainly
because there are far more threads and queues to man-
age. There are (2) threads for each OSS—(1) for network
sends and (1) for receives—plus (1) thread for reading the
ne2scan file and (1) for writing the output.! The system’s
master process logic is presented graphically in Figure 3,

I The largest filesystem at NCCS uses 96 OSS’s which means the master
program will use a total of 194 threads.

Figure 4, and Figure 5. In general, the process is the
following:

1) The main thread reads a line of text from ne2scan. It
parses the line for data on the file’s name, UID, GID,
mtime and the object IDs that make up the file. This
parsed information is stored temporarily in an instance
of a class called FileObject.

2) Each object ID is added to a request queue for the
proper OSS along with a pointer to the associated
FileObject instance and the semaphore for that
queue is incremented.

3) The network send thread for that queue wakes up,
decrements the semaphore, sends the request and goes
back to sleep.

4) When the reply comes back, the receive thread (which
has been blocked on the recwv call), wakes up, re-
trieves the pointer to the FileObject and adds the
size value from the reply to the total size value in the
object.

5) If this is the last reply for this FileObject, then
the pointer to the object is placed on a queue for
completed requests.

6) When the FileObject appears on the completion
queue, a final thread wakes up, parses the object and
updates the table of directory information. After this,
the FileObject is deleted.

7) When the main thread finishes parsing the ne2scan
files, it waits for all other threads to finish their tasks.
Once this happens, the main thread pushes all of the
directory information up to a database.?

E. LustreDU Design Analysis

The reason the software uses all these threads, semaphores
and queues is so that everything can run asynchronously.
There is no way to predict which set of OST nodes any given
file will use. Also, since this is running on a live filesystem,
the OSS nodes are under load and the time required for one
of them to respond to a size request can, and does, vary. It
was considered unacceptable to hold up processing of files
on other OSS nodes just because one OSS was slower to
respond. The master program is therefore designed to read
the ne2scan file as fast as possible in an effort to keep the
network send queues full.

The same philosophy applies when data is received from
the network. The order that the object size replies arrive
in doesn’t matter; if an OSS node or OST node happens to
be slow to respond, other instances of FileObject can be
processed by the completion thread. This architecture allows
for fairly good load balancing without explicitly reordering
or otherwise scheduling any of the network requests. In fact,
on the filesystems at the NCCS, the main bottleneck seems

2Writing the information out to a text file is also supported, but not used
in production.

begin
process
(cron)
)
(7 (Fbe)
read block: other
ne2scan ——| threads
Fﬁze—J finish
() shutdown
create
FileObj other
threads
I S e S
populate a
FileObj update
. database
(no size)
queue up
. end process
size request
more
ne2scan

lines?

Figure 3. LustreDU Master Process Logic

to be the speed at which the ne2scan input file can be
read.

As implied above, data are held in memory until all input
has been processed. This is somewhat memory intensive,
but necessary for decent performance. For each directory,
the output will contain the total number and size for all
files stored beneath that directory in the filesystem hierarchy.
This means that for every file that is processed, the master
program has to work its way back up the hierarchy, updating
the size and file count for each directory as it goes. If this
data were not kept in memory, the master program would
have to perform a database update for each file it processes,
effectively slowing down processing speed to the point of
impracticality.

In order to ensure that the memory footprint of the process
doesn’t grow too large, each queue does have a maximum
size. If a queue fills up, any thread that attempts to add
another item will simply block until the queue has drained.
The system is designed so that no single thread both adds
and removes data from a particular queue, so deadlock is
not an issue.

There are a number of implementation details that are
not mentioned herein: discovering OSS IP addresses, map-
ping OSS node names to IDs, starting up and shutting
down all threads, navigating the filesystem hierarchy on
the OST nodes, and a description of the set of mutexes
and semaphores that protect various data structures that
are accessed by multiple threads. Though these details are
important (and add significantly to the size of the codebase)

A

semaphore wait on
— — —
wake recv() call
S
pop request reply
off queue comes back
l (" g)
) locate
send
assoc.
request) .
FL—J FileObj
'SR
semaphore update
sleep total size
last reply
for this

FileObj?

place on

completion | Z
queue

Figure 4. LustreDU Master Process Network Threads Logic: Send (left)
and Receive (right)

semaphore

wake

!

pop FileObj
off queue

update
directory
info

delete
FileObj

1

semaphore

sleep

Figure 5. LustreDU Master Process Completion Thread Logic

they are beyond the scope of this discussion.

III. NCRC SYSTEM STATUS

Geographically remote end-users and support staff are
often interested in knowing the status of a system through
some means other than direct access. An end-user or man-
ager may need to know of system outages when direct
system access is not possible. Or, an end-user may have
experienced a login failure, and the root cause of the issue,
whether local to one’s site or due to an outage on the remote

site, is unclear. Phone calls and emails can provide necessary
answers, but these mechanisms may not provide sufficiently
timely user feedback, particularly if the inquiry is made after
normal business hours to a center that is not continuously
staffed. Ideally, the end-user would have readily available
system status information that is automatically updated.

NCRC employs the Nagios[5] software package to mon-
itor many aspects of system status. While this information
could conceivably be made available to users, it contains
many additional tests that are of interest to system adminis-
trators, yet do not have a direct impact on system availability.
Even tests of interest, such as response to ping commands,
are broken down component-by-component. This has a num-
ber of drawbacks from an end-user perspective: it requires
that end-users view many data points; it requires that end-
users understand how various system components relate
to one another; and it requires that end-users understand
how these component interactions translate into overall
system availability. The vast majority of end-users (and non-
sysadmins, for that matter) do not have this level of insight.

Fortunately, it is a relatively straightforward task to
analyze these variables programmatically, and to pro-
vide end-users with a status dashboard summarizing
overall system availability in a succinct way. NCRC
provides such a dashboard on NCRC webpage at:
http://www.ncrc.gov/dashboard. Geographically remote sup-
port staff team members use the dashboard as a remote mon-
itoring tool to correlate system outages with issue reports
coming from their particular site’s end-users.

A. The Main Script

A perl-based status script is the main driver of the
system’s logic and consists of several parts. The main
driver program is a Perl script named getstat.pl. This
script uses a collection of Perl modules, one per system
being tested. The system module files provide routines to
list all hosts that make up the system as well as routines
to determine system status and return that information to
getstat.pl. This does mean that as the number of
systems tested grows we have an ever-increasing number
of module files. This can easily lead to getstat.pl
becoming littered with calls to each individual system. This
is mitigated by an additional middleware module named
Downtime.pm. This module provides the same routines
as the system-specific modules but takes one additional
parameter, system name, which it uses to call the appro-
priate back-end module. Thus, getstat .pl simply loops
through a list of system names repeatedly calling routines
in Downtime.pm. This provides much more concise code
than calling individual system-specific modules.

After determining the current status of each system,
one must determine if the state has changed. The status
script makes use of an SQLite3 database to store states.
This is done in lieu of a simple state file in order to

maintain an archive of system state changes. This becomes
especially useful if we need to perform any troubleshooting
post-incident. The table stores tuples of system, state, and
timestamp, so determining the currently displayed state
for a system is a trivial SQL SELECT operation. If the
state as determined by the current iteration of the script
doesn’t match the most recent state in the database, a state
change has occurred; we push the new information onto the
database.

The ultimate job of the status script is to provide a
summary of states in a way that can be easily processed
by a website. At the time of this writing, the mechanism
by which the website parses the data is being changed.
The older method worked by consulting a different file for
each system, obtaining the file’s timestamp for the last state
change, and comparing that file’s MDS5 checksum against
known checksums for each state to place it concisely in
time. This is being replaced by a much more straightforward
method. The status script will write a single file containing
system, state, timestamp tuples that will be parsed by the
website and then displayed. Once the site has determined
the state of a system (regardless of the method it uses), it
applies a CSS tag appropriate for the detected state.

B. Dealing With False Positives

There are times when the Nagios tests (on which the script
relies) return false positives. Typically, these are corrected
the next time the script runs. In the absence of logic to handle
this situation, this would have the unfortunate side effect
of displaying an incorrect time for the state change, i.e., a
state change would be reported, although one never truly
happened. This occurrence, dubbed a flip-flop is alleviated
in the script. Each system has an assigned flip-flop threshold
(in seconds). Any state change from one state to another state
and then back to the original state within that threshold is
deemed a false positive. When the script updates the states
for display on the dashboard, this error is corrected.

The state of a system component at any given time can
be up, down, or degraded within the context of the System
Status code. To properly perform flip-flop detection, we
must know about (3) such states; The current state (n), the
previous state (n—1), and the state previous to that (n—2).
Since we maintain a state archive, including timestamps,
in the database, this amounts to a straightforward query.
Flip-flop detection becomes a simple operation of comparing
the state (n) to (n—-2), and if they match, checking if the
difference between the (2) timestamps is within the flip-flop
threshold. If this is the case, state (n—1) is dismissed as a
false positive.

C. Direct Staff Notifications

As the script runs, it generates a log detailing each
iteration: which systems were checked, which ones were

begin

process
(cron)

add’l
systems?

—— > end process

check
state (n)
no
query yes
valid state
(n—1) query
valid state
(n —2)
update no
state db yes
: T
display mark
state (n—1)
(n—2) as flip-flop
-
display
state (n)
-

Figure 6. NCRC System Status Logic

degraded and/or down, and the reasons any individual com-
ponents were determined to be down. It also generates
other output data (e.g., lists of state changes) and error data
(e.g. execution failed for some reason). These STDOUT and
STDERR data are then sent to staff so they can easily stay
apprised of the changes that are being made without having
to constantly monitor the status website.

IV. LUSTRE-AWARE MOAB

Unscheduled file system outages can be a particularly
frustrating scenario for end-users of HPC resources. In the
event of an unscheduled file system outage, the following
series of events has been known to occur:

1) User submits a job to the batch scheduling system,
where it waits, often for non-trivial amounts of time.

2) At some point prior to job execution, a shared file
system on which a job depends goes down.

3) The job dies immediately upon starting, due to lack
of appropriate underlying file system.

4) Compute resources that would have been in use by the
job are quickly freed.

5) Another job from the queue starts on the freed com-
pute resources, and also immediately dies.

6) The problem escalates until the batch scheduling
queue is manually paused my an admin.

To address this issue, we have developed a way of pro-
grammatically creating a reservation for specific file system
resources in Moab in the event that a file system becomes
degraded or goes offline.

A. Lustre File System Checks

Detecting issues with a Lustre file system can be a
challenge. It is difficult to detect problems in general, but
even when problems are successfully detected, discerning
whether or not the issue warrants a work stoppage is a
similarly difficult exercise. When a file system issue does
warrant a work stoppage, batch scheduling manager (Moab)
reservations are typically created on any computational
resource effected by the offending file system; this prevents
any new jobs from the queue from starting execution. The
primary piece of monitoring software that we use to detect
issues with the file systems is Nagios, which allows us to
write custom plugins and event handlers to detect and react
to system problems.

A Nagios plugin is basically a script or binary that,
when executed on the Nagios server, causes another script
or binary to be executed on a Nagios client. There are a
few transmission protocols available for this purpose; we
employ the Simple Network Management Protocol (SNMP)
herein. The client-side Nagios script, in turn, returns some
piece of useful information to the server. This information
includes a return code corresponding to a component state
(ok, warning, critical, or unknown) and a description that
yields more detail about the exact state of the check being
queried.

A Nagios event handler is a script that is executed in
the event of a monitored component state change. Event
handlers can be programmed to react differently if we are
in a soft or hard error state. File system issues that return
non-ok Nagios checks initially cause a soft error state.
This continues until Nagios returns a number of consec-
utive non-ok statuses that is greater than some threshold
(max_check_attempts) set by the admin. Once the
number of consecutive non-ok checks surpasses the thresh-
old, the check enters a hard error state.

B. Nagios Check Plugins

The Lustre-aware Moab system uses (2) plugin-based
checks to assess file system health. One check examines a
configuration file which contains a list of: (a) all Lustre block
devices in the given file system and, (b) the corresponding
systems on which those devices should be mounted. This
check effectively ensures that the appropriate block devices
are mounted on the appropriate computational systems.

The other check simply looks at
/proc/fs/lustre/health_check on the Lustre
Metadata Server (MDS) node and Lustre Object Storage
Server (OSS) nodes to verify that health_check is not
reporting any issues. In the absence of issues, the plugin
returns ok; otherwise it returns critical. This check will
catch any issues that inhibit the functioning of the previous
check, e.g., a request exceeds its processing timeout limit
(slowness); a Lustre block device has erroneously entered
a read-only state; the script encounters a Lustre source bug
(LBUG).

It was important to ensure that the system’s plugins
could handle all possible return states appropriately. Situ-
ations arise wherein the management network goes down,
effectively preventing the Nagios server from contacting a
Lustre host; however, Lustre is still potentially functional on
another network (e.g., a separate Infiniband network). In this
case, one would not want the plugin to return critical, but
rather unknown, to prevent a work stoppage on a computa-
tional resource for which the true state is still unclear. There
are numerous other checks and software packages to assist
in determining the health of Lustre file systems, but these
were not included in the Lustre-aware Moab system due
to their limited utility when considering the implementation
of a work stoppage, i.e., not all checks that return critical
warrant the creation of a queue reservation.

C. Nagios Event Handler

If either of these specific (2) Lustre file system checks
goes into a hard-critical state, the custom event handler
sends an SNMP trap to the Moab server to create a batch
scheduling reservation for any computational resource that
mounts the compromised file system. By only taking action
while in a hard-critical state, we avoid work stoppages
during the occasional false positive.

D. Moab Integration

The Lustre-aware Moab system takes advantage of the
consumable generic resource Moab feature in order to
provide a targeted work stoppage. In practice, each indi-
vidual filesystem is given a consumable generic resource.
Each filesystem can then be individually targeted for work
stoppage based upon the specific needs of each job. Jobs that
are not dependent upon a currently-problematic filesystem
can continue running without interruption. Similarly, new
jobs that that are not dependent upon a currently-problematic
filesystem can begin execution as usual. This has obvious
advantages over interrupting all jobs and preventing all new
jobs from starting.

Another key part of the system takes advantage of the
submit filter Moab feature which provides the ability to
modify job attributes before jobs begin. Each job is mod-
ified at submit time to require the appropriate consumable
generic resource(s) based upon the filesystem(s) mounted

on the requested compute resource. In other words, if a
job requested cluster A, and cluster A only has filesystem B
mounted, only the consumable generic resource filesystem B
would be added to the job requirements via the submit filter.
Moab does provide the ability to request multiple consum-
able generic resources to accommodate multiple filesystems
being mounted on a particular compute resource.

SNMP traps are the mechanism by which the Nagios
server communicates filesystem issues to Moab. The Moab
server was equipped with a locally-developed custom SNMP
MIB and trap configuration which contained (2) new events
createReservation and removeReservation. Us-
ing the particular filesystem data passed via the SNMP trap,
the requested event calls a script which takes appropriate
action on the Moab server to create or remove a reservation
against the consumable generic resource. Optionally, on
a createReservation event, the script can requeue
currently running jobs on any compute resources containing
the consumable generic resource. While this option is not
currently being used in production, the other features are;
new jobs are being prevented from starting until filesys-
tem issues are cleared and the Nagios server sends a
removeReservation event.

V. CONCLUSION

The automated workflow software employed by Gaea
end-users, combined with the public scrutiny to which
climate research data are sometimes subjected, create a
high premium on data integrity which mandates a unique
support environment to protect NCRC research outcomes.
ORNL and NOAA staff have created and implemented a
series of useful tools as a response to these needs that
are generally useful even outside of workflow-oriented HPC
environments. As the need for more sophisticated workflow
components grows into the foreseeable future, the support
solutions required will need to evolve as well.

REFERENCES

[1] F. Indiviglio and D. Maxwell. The NCRC Grid Scheduling
Environment. Cray User Group, 2011.

[2] Nagios. http://www.lustre.org.

[3] R. Miller, et al. Monitoring Tools for Large Scale Systems.
Cray User Group, 2010.

[4] N.P. Cardo and C. Whitney. Reaping the Benefits of Metadata.
Lustre User Group, 2010.

[5] Nagios. http://www.nagios.org.

