Practical Support Solutions for a Workflow-Oriented Cray Environment

Oak Ridge National Laboratory

Years of Excellence in Computational Science

DAK RIDGE LEADERSHIP COMPUTING FACILITY

1992-2012

National Climate-Computing Research Center (NCRC)

- Joint computing initiative between Oak Ridge National Laboratory (ORNL) and the National Oceanic and Atmospheric Administration (NOAA).
- "Gaea" Cray XT6 and XE6 partitions
- Automated workflow = unique challenges

2 OLCF 20

Outline: Unique Support Challenges

- Lustre soft quotas need to be enforced on subsets of end-users; directory size reporting tools needed.
- Geographically remote support and development teams at (3) physical locations.
- Single job failures can cause workflow disruptions and must be investigated; unscheduled file system downtimes are particularly impactful.

Practical Support Solutions

- 1. Lustre reporting: LustreDU
- 2. Remote Support Teams: NCRC System Dashboard
- 3. File System Outages: Lustre-Aware Moab

Issue 1: Lustre Directory Reporting

- Need to generate an overview of file system structure and sizes regularly.
- **du** over a 1-10 PB Lustre file system with (1) MDS returns... in days? In weeks? Never?
- Need a utility that returns on "human" time-scales.

Solution: LustreDU for Nonintrusive Directory Reporting

1. Simple user-facing command line binary

[user@host] (/scratch) \$ lustredu ./somedir Last Collected Date Size File Count Directory 2012-04-10 07:29:33 103.91 KB 1 ./somedir

- 2. Database backend
- 3. Main processes to populate database
 - Runs twice a day, returns in a few hours

LustreDU Internals: Main Process

- Starts with ne2scan output
- Runs on server with access to ne2scan output
- Main process sets in motion numerous asynchronous parallel threads

LustreDU Internals: Network

- Runs alongside master process.
- Network send (left) and receive (right) threads process.

LustreDU Internals: OSS Daemons

- OSS daemon threads: receive (left), send (right),
- **stat()** thread (center) handles fetching of size requests.

LustreDU Internals: Completion Thread

- Completion thread completes FileObject, updates directory records and deletes the FileObject.
- Runs alongside master process.

Outcome

- Interactive directory reporting becomes feasible on human time scales (i.e. seconds)
- End-users have a functional tool for self-monitoring.
- Support teams have a tool for reporting to management.
- Drawback: Data are the state of the file system as of last scan.

Issue 2: Remote Support Teams

- Primary support team is remote from primary admins.
- Other support teams are remote from primary support teams
- Needed system monitoring for nonadmins and users alike.

Solution: System Dashboard

• Provides concise system status to geographically remote support teams.

GAEA DASHBOARD			
Compute Node	Name	Status	Last Change
Login Nodes	gaea1	Up	4/30/12 07:15 PM
	gaea2	Up	2/26/12 01:15 PM
Local Data Transfer Nodes	gaea3	Up	4/9/12 04:45 PM
Remote Data Transfer Nodes	gaea4	Up	2/26/12 01:15 PM
Fast Scratch File Storage	gaea5	Up	3/31/12 02:45 PM
	gaea6	Up	4/9/12 12:50 PM
Long Term File Storage	gaea7	Up	3/31/12 03:25 PM
	gaea8	Up	3/31/12 03:40 PM

System Status Dashboard

- Straightforward loop over system-level Nagios checks
- Catching false positives requires a bit more effort.

14 OLCF 20

Outcome

- System events disseminated to teams and end users in near-real time.
- Support teams and users can try to correlate job failures with system events.

Issue 3: Workflow Disruption From File System Outages

• In the event of a file system outage:

- 10 running jobs crash
- 20 resources are freed
- 30 scheduler starts new jobs
- 40 goto 10

• Leaves the workflow in an unknown state... analogy:

CONFLICT (content) Automatic merge failed; fix conflicts and then commit the result.

Solution: Lustre-Aware Moab

- Combination of FS checks and Lustre File System Checks via Nagios plugins
 - File system mounting checks
 - -health_check
- Nagios Event Handler to communicate with Moab

Lustre-Aware Moab

- How to Integrate into Moab?
- Moab generic consumable resource(s) to associate computational resource(s) and file systems
- Moab *submit filters* to associate jobs to dependent computational resources

Outcome

- Job workflow can respond to unscheduled file system outages before too much damage is done.
- Running jobs are lost, but queued jobs are spared.
 Failed jobs can be resubmitted at given a priority boost to run before those queued.

Questions? carlyleag@ornl.gov