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Abstract— Cray XE6 and XK6 systems can deliver record-
breaking computational power, but only to applications that 
are error free and are optimized to take advantage of the 
performance that the system can deliver. The cycle of 
development, debugging and tuning is a constant task, 
especially when custom application developers implement new 
algorithms, simulate new physical systems, port software to 
leverage higher core count nodes or take advantage of 
accelerators, scale their code to higher and higher node, core, 
or thread counts. Rogue Wave Software offers a powerful set 
of tools to aid in these efforts. ThreadSpotter pinpoints cache 
inefficiencies, educates and guides scientists and developers 
through the cache optimization process while TotalView 
provides scalable, bi-directional, parallel source code and 
memory debugging. 
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I.  DEBUGGING AND OPTIMIZATION CHALLENGES 
Scientists and developers engaging in high performance 

computing have a daunting task. They are faced with 
breaking down a substantial computational problem into 
various smaller units of computation that can proceed 
independently. In the simplest case, they have to think about 
how to break the data down, how that data is going to get 
transmitted to the site of the computation, the computation 
itself and then how it is going to get collected back and 
reassembled. Frequently the problem resists easy 
decomposition -- calculations may depend sensitively on 
inputs that are not easily broken down into discrete units. It 
is always possible to duplicate, share or fetch the data 
required, but that frequently introduces so much overhead 
that it begins to cut into the performance gains that 
parallelism promises to provide. Solving the problem of 
decomposition, so that it performs well, often requires taking 
a calculation that is easily expressed in a few formulas on a 
single sheet of paper and breaking it apart into what could 
work out to hundreds or even thousands of lines of code.  

Problem set decomposition is only part of the challenge 
facing developers working on the latest generation of 
supercomputers. When we think about parallel programing 
in the abstract, we typically think about one kind of 
parallelism at a time – breaking work out across the multiple 
cores of a single node or across multiple nodes of a massive 
cluster. However, in the day-to-day work of developers who 

are striving to take advantage of hardware like the Cray XE6 
or XK6, there are at least two, and sometimes many, 
architectural “dimensions” of potential parallelism in the 
system that scientists or developers need to consider when 
breaking their problem down. With an XK6, developers have 
a cluster with thousands of nodes. Each node can have up to 
32 cores. Each processor is capable of vector computations. 
Tasks can be run on those cores using either process level 
parallelism or thread level parallelism. In addition, the XK6 
boasts many NVIDIA GPUs, each of which is a collection of 
streaming vector multiprocessors capable of several hundred 
concurrent operations.  

We sometimes talk about which form of parallelism is 
“best” for a specific problem. Developers who want to take 
full advantage of the power of leading-edge machines need 
to grapple with several types of parallelism at the same time, 
within the same computation. As a result the code that 
manages breaking down the tasks, moving data, and ensuring 
consistency is much more complicated than idealized MPI-
only or OpenMP-only code examples.  

Bugs can be introduced in any one of those thousands of 
lines of code. They can be logic bugs, typos, race conditions, 
deadlocks, mistakes in packing and unpacking data, or subtle 
numerical effects, such as, those that stem from changes in 
the way that tiny rounding errors accumulate in the system.  

This set of challenges defines the world in which the 
scientist who needs to do supercomputing lives; and they are 
the reason that HPC developers demand the most 
sophisticated and powerful troubleshooting tools available. 
Rogue Wave provides the TotalView debugger in order to 
provide developers a way to easily see exactly what is 
happening inside their applications. TotalView supports all 
the different kinds of parallelism that the Cray XE6 and Cray 
XK6 can provide and shows how they work together in the 
application. Rogue Wave is committed to continue extending 
TotalView to work with the latest network and operating 
system technology from Cray, the latest processors from 
Intel and AMD, and the latest computational accelerating co-
processors from NVIDIA and Intel. With accelerators 
rapidly becoming mainstream, GPU and vector debugging 
capabilities must now become a standard part of any 
debugger used in this environment. Memory is another 
critical resource and one that is easy to lose track of. A full-



featured memory debugger must also become a standard 
feature of an HPC debugger.  

Unfortunately, an HPC developer is not done once their 
application generates correct results. They need to make sure 
that their program scales up and makes efficient use of the 
computational resources it consumes to generate results. 
Rogue Wave offers a powerful cache memory optimization 
tool called ThreadSpotter. ThreadSpotter pinpoints 
opportunities in the code to take better advantage of cache 
memory and multi-core parallelism. 

II. DEBUGGING ON THE CRAY WITH TOTALVIEW 
This section will review some of the main capabilities 

that TotalView provides developers and scientists working 
with Cray supercomputers. It will specifically highlight 
features and capabilities that are new in the TotalView 
release 8.10 which Rogue Wave is launching at the Cray 
Users Group (CUG) 2012. 

A. Scalable debugging 
TotalView provides users with robust and rich parallel 

and multithreaded debugging functionality. TotalView 
integrates with the batch queue systems and MPI launcher 
programs, such as APRUN, and makes it easy to launch a 
large parallel program under the debugger while providing a 
single debugging session where developers can view and 
control their entire parallel application. TotalView can scale 
across thousands of nodes and can easily be attached to an 
already running job, even a hung job without any 
premeditation.  

Sometimes bugs will only be visible with a very specific 
dataset or only happen above a certain scale. If this is the 
case, users may want to attach the debugger to a full-scale 
program without necessarily starting the debugger on every 
single process that is part of that application. TotalView 
supports this mode of use with a subset attach feature.  

As mentioned above, modern HPC applications usually 
involve many forms of parallelism. The TotalView debugger 
handles the kind of parallel hybrid application that couples 
MPI multi-process parallelism together with OpenMP or 
Pthreads to provide multi-threading. TotalView allows 
developers to focus on any thread of their parallel task, 
supports the definition of both process and thread groups, 
and offers features like barriers, stepping and breakpoints 
that are optimized to work with parallel applications made up 
of sets of multithreaded processes.  

B. Accelerators 
Cray XK6 systems have nodes that are accelerated with 

NVIDIA Fermi GPU co-processors. HPC developers who 
want to take advantage of the favorable performance per watt 
and raw performance of those GPU accelerators need to 
adapt their application while carefully considering how to 
work this additional dimension of parallelism into their 
programs and generate special computational kernels that are 
compiled to run on the GPU. There are two ways to build 
such applications: either using the CUDA language 
extension or the Cray Compiler Edition OpenACC compiler 
directives. TotalView has full support for CUDA debugging 

with CUDA 3.2, 4.0 and 4.1. Rogue Wave has specifically 
tested TotalView’s CUDA functionality in Cray XK6 
environments.  

OpenACC was announced at SC’11 as a new open 
standard for providing accelerator directives by a consortium 
of vendors including NVIDIA and Cray. At the time of the 
announcement there were not any OpenACC 
implementations available for users. Cray moved quickly to 
provide OpenACC compiler support and Rogue Wave has 
been able to provide Cray customers with a working solution 
for debugging applications compiled with Cray CCE 8’s 
OpenACC feature in TotalView 8.10. The support is 
officially designated: “Early Access Release – Not 
Supported,” but users are encouraged to test it and provide 
feedback while Rogue Wave does more testing and 
productizes this exciting new capability.  

C. Reverse Debugging 
One of the most complex things about troubleshooting is 

that by the time the program has crashed, hung, or generated 
an incorrect result, the program has already made whatever 
logic error that caused the crash, hang or incorrect result. The 
logic error causing the bug might be in the same routine as 
the point where the program hangs, crashes or outputs a 
recognizably incorrect result. However, more often the root 
cause is somewhere else in the code and has the effect of 
setting the program into an invalid state or corrupting some 
bit of internal data. That invalid state or corrupt data may 
appear to be harmless in the short term but later cause the 
program to misbehave in a recognizable way, which I will 
call the “fallout”.  

Since the error and the fallout may be widely separated, 
troubleshooting can quickly evolve into a very complex 
process of trying to work out a hypothesis of what the root 
cause might be based on the state of the system when it 
crashes or generates invalid data. Then the developer must 
come up with a way to drive the application (usually after a 
restart) to the precise point of execution where that 
hypothesis can be tested and the logic error pinned down.  

Troubleshooting would be radically simplified if it were 
possible to capture the detailed trajectory of the program’s 
execution and work backwards from the fallout to the cause - 
after the fact. TotalView now makes it possible for 
developers to apply just that approach. The ReplayEngine 
feature, available on the Cray XE and XK, records program 
execution for later replay. It then gives the user the ability to 
simply step backwards and forwards through the recorded 
history, watching the branches the program takes and which 
variables are changed as the program executes. This makes it 
possible to easily follow clues, such as corrupted data, that 
may exist at the site of the fallout and work backwards to 
whatever logic error put that corrupt data into place.  

1) ReplayEngine 
ReplayEngine works by recording, at a low level, the 

execution trajectory through the program and then guiding 
the program through that same trajectory again when the user 
wants to examine in detail any part of recorded history. 
ReplayEngine has been heavily optimized and relies 
primarily on recognizing the moments where the program 



encounters a non-deterministic input. For example, if the 
program reads from a network device, then the value that it 
reads depends on the state of the device and will almost 
certainly not be the same at some other arbitrary point in 
time. ReplayEngine stores such data for subsequent replay. 
When the user wishes to replay the program through that part 
of the execution trajectory ReplayEngine isolates the process 
and places it in a controlled sandbox, such that the network 
read doesn’t actually happen. When the program plays back 
to the point where it wants to read from the network device it 
is told that the network device contains a copy of the data 
that was stored during record. Similar techniques are used 
around thread context switches, file IO, and system calls. 
Other tricks are used to create snapshots of program 
execution that can easily be employed as the starting point 
for replay operations. This careful orchestration of the 
process during recoding and replay happens “behind the 
scenes.” From the developers’ perspective, when they are 
using TotalView’s ReplayEngine, they simply have the 
ability to run their program either forwards or backwards.  

2) ReplayEngine on the Cray XE 
Rogue Wave has made several important advances to our 

ReplayEngine technology since the last release of 
TotalView. First, it has been adapted it to work with the Cray 
Gemini interconnect (used in Cray XE and XK series 
supercomputers). This involved working closely with Cray 
to develop a technique to track the data flowing into an 
individual MPI process over the network. In the simplified 
example above I talked about the process of reading from the 
network device. However these kinds of explicit interactions 
between the process and the network device are a source of 
latency that Cray and other vendors actively work to reduce. 
Most vendors use zero-copy direct memory transfer 
technologies to reduce latency. These techniques write data 
directly into designated regions of the program memory 
without interrupting the program. Working with Cray we are 
now able to identify the active DMA regions of the program 
memory. ReplayEngine is now able to monitor the times 
when the program reads new data from those regions and 
store that data in its non-deterministic input log. 
ReplayEngine has similar functionality for the Mellanox and 
Voltaire Infiniband networks used on a variety of other Intel 
and AMD Linux-based clusters.  

3) Replay On Demand 
Secondly, Rogue Wave added the capability to activate 

ReplayEngine during the middle of a debugging session. 
Previous versions of TotalView had a limitation in that the 
ReplayEngine feature was an “all or nothing” decision that 
needed to be made at the outset of the debugging session. 
With TotalView 8.10, the flexibility has been increased such 
that developers can be in the middle of a debugging session 
and decide to begin recording execution for later reverse 
debugging. There is a new “activate recording” button that 
they can use to initiate recording at will. A frequent situation 
that customers want to be able to handle is that they have a 
program that does significant work to “initialize” data. They 
want to be able to run past initialization to a point where 
their program is starting to do something “interesting,” from 
the perspective of the bug that is in question, and start the 

recording there. A simple way to do that with TV 8.10 is to 
fire up the program under TotalView, set a breakpoint where 
things start to get interesting, run the program (at full speed, 
no recording and no slowdown from the recording) to the 
point of interest. At this point recording can be enabled and 
the user can run from there to the crash. During this second 
stage the execution will be recorded with some amount of 
overhead involved. Then the user can very simply work 
backwards from the crash to the root cause within the 
recorded history.  

D. Memory Debugging  
TotalView includes a full-featured heap memory 

debugging tool called MemoryScape. MemoryScape gives 
HPC developers a view into how their program is making 
use of memory buffer space allocated with the malloc() 
interface. In C or C++ the programmer explicitly manages 
this heap memory. This requires programmers to be alert in 
order to avoid errors such as memory leaks and array bounds 
violations - especially when memory is being allocated and 
used in more than one thread. While this memory buffer 
space is managed directly by the Fortran runtime, Fortran 
programmers can still benefit from being aware of what heap 
usage is occurring and where memory is being consumed 
within the program heap. MemoryScape can directly detect 
memory leaks, even at the point where only a single 
allocation has been leaked. This advanced memory 
debugging can also be used to find heap memory buffer 
overruns (sometimes called array bounds violations), which 
otherwise subject programs to instability and random 
crashes. Finally MemoryScape is a very capable tool for 
optimizing memory usage. It can show a graphical display to 
tell how different processes of a parallel job are using 
memory. Then, for any specific process, it can break down 
memory usage by object file (library), source code file, 
function, line number, and function call backtrace. This 
allows developers to identify places in their program where 
they use more memory than anticipated and where the 
problem can be decomposed differently or some other trade 
off can be made to make more efficient use of memory.  

E. Three Ways to Debug on a Cray 
Users typically interact with Cray supercomputers 

through the batch resource management system such as 
OpenPBS. There are three ways that users can use 
TotalView in this context. 

1) APRUN 
The first way is to launch the program directly with 

APRUN from the interactive node. The downside to this 
approach is that the user has to issue the command and then 
wait for the job to be scheduled and the debugger to appear, 
which could happen quickly or slowly depending on the 
availability of the supercomputer.  

2) TVScript 
The second way is to plan a sequence of desired 

debugging operations and then submit a batch queue request 
that instructs TotalView in a non-interactive fashion. When 
the batch queue job is done, users receive a report with the 
results of the debugging operations. This approach makes 



use of the TVScript feature. TVScript is a simplified 
asynchronous “driver” script that takes a program and 
performs a series of debug operations (like “run to this 
breakpoint and print X”) on it. TVScript gathers the results 
of those debug operations and makes them available to the 
user through a trace output file.  

3) Remote Display Client 
The third way is to use the Rogue Wave Remote Display 

Client (RDC) to log into the supercomputer from a user’s 
desktop. The RDC is able to interact with the batch 
management system and handle the submission of job 
requests.  The Remote Display Client workflow is similar to 
the interactive batch session method except that the RDC 
provides a secure and fast graphical connection between the 
supercomputer and the user’s desktop. This connection is 
designed for long distance, high latency networks, and can 
be used, for example, to run an interactive debugging session 
across the Atlantic Ocean. 

III. OPTIMIZING ON THE CRAY WITH THREADSPOTTER 
Debugging isn’t the only challenge that Cray users face. 

They are also likely looking to extend their models with 
more comprehensive calculations (multi-physics), 
encompass larger problem domains, longer problem 
timescales, or increase the numerical resolution of 
simulations. Supercomputing is about solving problems that 
are too large to be calculated any other way - so almost by 
definition, datasets and runtimes are large. Therefore the best 
practice for an HPC developer is to spend some amount of 
their effort optimizing their application.  

One of the challenges that users frequently confront on 
supercomputers is getting the data to and from the processor 
in an effective way. The processor can often consume and 
produce data at a bandwidth that is an order of magnitude 
higher than the bandwidth between the main memory and the 
processor. In order to effectively use the processor, a series 
of caches are utilized and frequently used data is placed there 
for easy access. The data transfer bandwidth between cache 
and core is sufficiently high that if the program can place the 
data that it needs in the cache, then the processor can 
perform arithmetic operations on each clock cycle and have 
data available for the next cycle.  

Rogue Wave offers the ThreadSpotter cache memory 
optimization tool to help users quickly identify program 
bottlenecks that may be preventing them from taking 
advantage of available processing power. Because reading 
and writing main memory is more costly in terms of system 
power, optimizing cache memory usage can also reduce the 
power and cooling cost for the supercomputer, while 
improving performance.  

ThreadSpotter can identify and prioritize a number of 
different kinds of problems for the user. It sorts issues in 
terms of how much impact they will have on performance, so 
that the user can start with the issues that have a higher 
reward first. For each problem identified, ThreadSpotter 
provides a statistical analysis, detailed information about 
what lines of code and ultimately what read or write 
instructions are involved. For each category of issue, 
ThreadSpotter provides helpful advice about how the issues 

can be addressed. Sometimes it will recommend changes to 
loop order; other times it might recommend breaking up data 
structures, or it might advise telling the processor to fetch the 
data from main memory without disrupting data already 
resident in the cache.  

A. Three Examples of Cache Memory Issues 
1) Cache Utilization 

When memory is placed into the cache hierarchy, it 
comes in the form of cache lines. These are typically 128 
byte chunks of memory, and a whole cache line will be 
fetched if any byte that is part of it needs to be read. In the 
ideal scenario, when a line is placed in the cache, each byte 
will be read many times before the cache line is flushed. In 
the least favorable scenario, the program might touch only 
one byte out of the 128, and then perform other actions that 
ultimately cause the cache line to be flushed without the 
other data contained on that line ever being touched. Poor 
cache line utilization can easily lead to a pronounced 
memory bottleneck. ThreadSpotter can identify locations 
where poor cache utilization happens, and happens 
frequently enough to have an impact on performance.   

2) Cache Reuse 
Each cache has a limited number of cache lines it can 

store at a time. Frequently, programs will be written in such 
a way that they repeatedly access a data set of a certain size. 
If that size is smaller than the cache, then the cache will 
generally be able to hold that memory, and the processor can 
proceed with very few cache misses. However, if the overall 
dataset is larger than the cache, then the order the operations 
occur become critically important. Generally, there will be 
multiple ways to arrange the calculation, some of which will 
place repeated accesses together, so that the cache can be 
highly effective at reducing the need for reading and writing 
to main memory. Other mathematically equivalent ways of 
structuring the calculation will spread repeated accesses out, 
causing much more traffic to the main memory. 
ThreadSpotter will highlight regions with poor cache usage 
and provide advice for how the programmer can approach 
improving the behavior. 

3) Cache Coherency 
The cache architecture is usually engineered to provide 

all of the cores within the processor with a consistent view of 
memory at all times. If there is more than one cache (as is 
almost always the case), then this requires a cache coherency 
mechanism. Cache coherency works but increases the 
overhead of memory access. If the same data is written to 
repeatedly from different cores, then many of those write 
operations may require the extra steps to ensure coherency, 
which will slow down the calculation. ThreadSpotter can 
identify locations in the code where such accesses are 
occurring frequently enough to have an impact on 
performance. ThreadSpotter can identify places where 
different cores are not touching the same data, but are 
nonetheless incurring coherency overhead. This can occur 
when different processor cores are updating two different 
data elements that happen to reside on the same cache line. 

Because discovering bottlenecks by hand is labor 
intensive, it is especially valuable to have a tool, like 



ThreadSpotter, available to quickly check the application and 
discover if poor cache optimization is an issue. If not, then 
the developer can move on and look at other forms of 
optimization such as load balancing, tuning MPI 
communication, etc.  

IV. CONCLUSION 
This paper highlighted some of the challenges facing 

developers working on Cray supercomputers and described 
two powerful tools that Rogue Wave provides to make such 

development easier (TotalView debugger and ThreadSpotter 
cache optimizer) . Recent improvements to the TotalView 
debugger on the Cray XE and XK environments include 
support for ReplayEngine on the Cray XE, support for 
CUDA on the Cray XK, and support for the OpenACC 
pragma-based language extensions in the Cray CCE.  

 
  

 
 
 
 

   
 


