
Debugging and Optimizing Scalable Applications on the Cray

Chris Gottbrath
Rogue Wave Software

Boulder, CO
Chris.Gottbrath@roguewave.com

Abstract— Cray XE6 and XK6 systems can deliver record-
breaking computational power, but only to applications that
are error free and are optimized to take advantage of the
performance that the system can deliver. The cycle of
development, debugging and tuning is a constant task,
especially when custom application developers implement new
algorithms, simulate new physical systems, port software to
leverage higher core count nodes or take advantage of
accelerators, scale their code to higher and higher node, core,
or thread counts. Rogue Wave Software offers a powerful set
of tools to aid in these efforts. ThreadSpotter pinpoints cache
inefficiencies, educates and guides scientists and developers
through the cache optimization process while TotalView
provides scalable, bi-directional, parallel source code and
memory debugging.

Keywords-- Debugging

I. DEBUGGING AND OPTIMIZATION CHALLENGES
Scientists and developers engaging in high performance

computing have a daunting task. They are faced with
breaking down a substantial computational problem into
various smaller units of computation that can proceed
independently. In the simplest case, they have to think about
how to break the data down, how that data is going to get
transmitted to the site of the computation, the computation
itself and then how it is going to get collected back and
reassembled. Frequently the problem resists easy
decomposition -- calculations may depend sensitively on
inputs that are not easily broken down into discrete units. It
is always possible to duplicate, share or fetch the data
required, but that frequently introduces so much overhead
that it begins to cut into the performance gains that
parallelism promises to provide. Solving the problem of
decomposition, so that it performs well, often requires taking
a calculation that is easily expressed in a few formulas on a
single sheet of paper and breaking it apart into what could
work out to hundreds or even thousands of lines of code.

Problem set decomposition is only part of the challenge
facing developers working on the latest generation of
supercomputers. When we think about parallel programing
in the abstract, we typically think about one kind of
parallelism at a time – breaking work out across the multiple
cores of a single node or across multiple nodes of a massive
cluster. However, in the day-to-day work of developers who

are striving to take advantage of hardware like the Cray XE6
or XK6, there are at least two, and sometimes many,
architectural “dimensions” of potential parallelism in the
system that scientists or developers need to consider when
breaking their problem down. With an XK6, developers have
a cluster with thousands of nodes. Each node can have up to
32 cores. Each processor is capable of vector computations.
Tasks can be run on those cores using either process level
parallelism or thread level parallelism. In addition, the XK6
boasts many NVIDIA GPUs, each of which is a collection of
streaming vector multiprocessors capable of several hundred
concurrent operations.

We sometimes talk about which form of parallelism is
“best” for a specific problem. Developers who want to take
full advantage of the power of leading-edge machines need
to grapple with several types of parallelism at the same time,
within the same computation. As a result the code that
manages breaking down the tasks, moving data, and ensuring
consistency is much more complicated than idealized MPI-
only or OpenMP-only code examples.

Bugs can be introduced in any one of those thousands of
lines of code. They can be logic bugs, typos, race conditions,
deadlocks, mistakes in packing and unpacking data, or subtle
numerical effects, such as, those that stem from changes in
the way that tiny rounding errors accumulate in the system.

This set of challenges defines the world in which the
scientist who needs to do supercomputing lives; and they are
the reason that HPC developers demand the most
sophisticated and powerful troubleshooting tools available.
Rogue Wave provides the TotalView debugger in order to
provide developers a way to easily see exactly what is
happening inside their applications. TotalView supports all
the different kinds of parallelism that the Cray XE6 and Cray
XK6 can provide and shows how they work together in the
application. Rogue Wave is committed to continue extending
TotalView to work with the latest network and operating
system technology from Cray, the latest processors from
Intel and AMD, and the latest computational accelerating co-
processors from NVIDIA and Intel. With accelerators
rapidly becoming mainstream, GPU and vector debugging
capabilities must now become a standard part of any
debugger used in this environment. Memory is another
critical resource and one that is easy to lose track of. A full-

featured memory debugger must also become a standard
feature of an HPC debugger.

Unfortunately, an HPC developer is not done once their
application generates correct results. They need to make sure
that their program scales up and makes efficient use of the
computational resources it consumes to generate results.
Rogue Wave offers a powerful cache memory optimization
tool called ThreadSpotter. ThreadSpotter pinpoints
opportunities in the code to take better advantage of cache
memory and multi-core parallelism.

II. DEBUGGING ON THE CRAY WITH TOTALVIEW
This section will review some of the main capabilities

that TotalView provides developers and scientists working
with Cray supercomputers. It will specifically highlight
features and capabilities that are new in the TotalView
release 8.10 which Rogue Wave is launching at the Cray
Users Group (CUG) 2012.

A. Scalable debugging
TotalView provides users with robust and rich parallel

and multithreaded debugging functionality. TotalView
integrates with the batch queue systems and MPI launcher
programs, such as APRUN, and makes it easy to launch a
large parallel program under the debugger while providing a
single debugging session where developers can view and
control their entire parallel application. TotalView can scale
across thousands of nodes and can easily be attached to an
already running job, even a hung job without any
premeditation.

Sometimes bugs will only be visible with a very specific
dataset or only happen above a certain scale. If this is the
case, users may want to attach the debugger to a full-scale
program without necessarily starting the debugger on every
single process that is part of that application. TotalView
supports this mode of use with a subset attach feature.

As mentioned above, modern HPC applications usually
involve many forms of parallelism. The TotalView debugger
handles the kind of parallel hybrid application that couples
MPI multi-process parallelism together with OpenMP or
Pthreads to provide multi-threading. TotalView allows
developers to focus on any thread of their parallel task,
supports the definition of both process and thread groups,
and offers features like barriers, stepping and breakpoints
that are optimized to work with parallel applications made up
of sets of multithreaded processes.

B. Accelerators
Cray XK6 systems have nodes that are accelerated with

NVIDIA Fermi GPU co-processors. HPC developers who
want to take advantage of the favorable performance per watt
and raw performance of those GPU accelerators need to
adapt their application while carefully considering how to
work this additional dimension of parallelism into their
programs and generate special computational kernels that are
compiled to run on the GPU. There are two ways to build
such applications: either using the CUDA language
extension or the Cray Compiler Edition OpenACC compiler
directives. TotalView has full support for CUDA debugging

with CUDA 3.2, 4.0 and 4.1. Rogue Wave has specifically
tested TotalView’s CUDA functionality in Cray XK6
environments.

OpenACC was announced at SC’11 as a new open
standard for providing accelerator directives by a consortium
of vendors including NVIDIA and Cray. At the time of the
announcement there were not any OpenACC
implementations available for users. Cray moved quickly to
provide OpenACC compiler support and Rogue Wave has
been able to provide Cray customers with a working solution
for debugging applications compiled with Cray CCE 8’s
OpenACC feature in TotalView 8.10. The support is
officially designated: “Early Access Release – Not
Supported,” but users are encouraged to test it and provide
feedback while Rogue Wave does more testing and
productizes this exciting new capability.

C. Reverse Debugging
One of the most complex things about troubleshooting is

that by the time the program has crashed, hung, or generated
an incorrect result, the program has already made whatever
logic error that caused the crash, hang or incorrect result. The
logic error causing the bug might be in the same routine as
the point where the program hangs, crashes or outputs a
recognizably incorrect result. However, more often the root
cause is somewhere else in the code and has the effect of
setting the program into an invalid state or corrupting some
bit of internal data. That invalid state or corrupt data may
appear to be harmless in the short term but later cause the
program to misbehave in a recognizable way, which I will
call the “fallout”.

Since the error and the fallout may be widely separated,
troubleshooting can quickly evolve into a very complex
process of trying to work out a hypothesis of what the root
cause might be based on the state of the system when it
crashes or generates invalid data. Then the developer must
come up with a way to drive the application (usually after a
restart) to the precise point of execution where that
hypothesis can be tested and the logic error pinned down.

Troubleshooting would be radically simplified if it were
possible to capture the detailed trajectory of the program’s
execution and work backwards from the fallout to the cause -
after the fact. TotalView now makes it possible for
developers to apply just that approach. The ReplayEngine
feature, available on the Cray XE and XK, records program
execution for later replay. It then gives the user the ability to
simply step backwards and forwards through the recorded
history, watching the branches the program takes and which
variables are changed as the program executes. This makes it
possible to easily follow clues, such as corrupted data, that
may exist at the site of the fallout and work backwards to
whatever logic error put that corrupt data into place.

1) ReplayEngine
ReplayEngine works by recording, at a low level, the

execution trajectory through the program and then guiding
the program through that same trajectory again when the user
wants to examine in detail any part of recorded history.
ReplayEngine has been heavily optimized and relies
primarily on recognizing the moments where the program

encounters a non-deterministic input. For example, if the
program reads from a network device, then the value that it
reads depends on the state of the device and will almost
certainly not be the same at some other arbitrary point in
time. ReplayEngine stores such data for subsequent replay.
When the user wishes to replay the program through that part
of the execution trajectory ReplayEngine isolates the process
and places it in a controlled sandbox, such that the network
read doesn’t actually happen. When the program plays back
to the point where it wants to read from the network device it
is told that the network device contains a copy of the data
that was stored during record. Similar techniques are used
around thread context switches, file IO, and system calls.
Other tricks are used to create snapshots of program
execution that can easily be employed as the starting point
for replay operations. This careful orchestration of the
process during recoding and replay happens “behind the
scenes.” From the developers’ perspective, when they are
using TotalView’s ReplayEngine, they simply have the
ability to run their program either forwards or backwards.

2) ReplayEngine on the Cray XE
Rogue Wave has made several important advances to our

ReplayEngine technology since the last release of
TotalView. First, it has been adapted it to work with the Cray
Gemini interconnect (used in Cray XE and XK series
supercomputers). This involved working closely with Cray
to develop a technique to track the data flowing into an
individual MPI process over the network. In the simplified
example above I talked about the process of reading from the
network device. However these kinds of explicit interactions
between the process and the network device are a source of
latency that Cray and other vendors actively work to reduce.
Most vendors use zero-copy direct memory transfer
technologies to reduce latency. These techniques write data
directly into designated regions of the program memory
without interrupting the program. Working with Cray we are
now able to identify the active DMA regions of the program
memory. ReplayEngine is now able to monitor the times
when the program reads new data from those regions and
store that data in its non-deterministic input log.
ReplayEngine has similar functionality for the Mellanox and
Voltaire Infiniband networks used on a variety of other Intel
and AMD Linux-based clusters.

3) Replay On Demand
Secondly, Rogue Wave added the capability to activate

ReplayEngine during the middle of a debugging session.
Previous versions of TotalView had a limitation in that the
ReplayEngine feature was an “all or nothing” decision that
needed to be made at the outset of the debugging session.
With TotalView 8.10, the flexibility has been increased such
that developers can be in the middle of a debugging session
and decide to begin recording execution for later reverse
debugging. There is a new “activate recording” button that
they can use to initiate recording at will. A frequent situation
that customers want to be able to handle is that they have a
program that does significant work to “initialize” data. They
want to be able to run past initialization to a point where
their program is starting to do something “interesting,” from
the perspective of the bug that is in question, and start the

recording there. A simple way to do that with TV 8.10 is to
fire up the program under TotalView, set a breakpoint where
things start to get interesting, run the program (at full speed,
no recording and no slowdown from the recording) to the
point of interest. At this point recording can be enabled and
the user can run from there to the crash. During this second
stage the execution will be recorded with some amount of
overhead involved. Then the user can very simply work
backwards from the crash to the root cause within the
recorded history.

D. Memory Debugging
TotalView includes a full-featured heap memory

debugging tool called MemoryScape. MemoryScape gives
HPC developers a view into how their program is making
use of memory buffer space allocated with the malloc()
interface. In C or C++ the programmer explicitly manages
this heap memory. This requires programmers to be alert in
order to avoid errors such as memory leaks and array bounds
violations - especially when memory is being allocated and
used in more than one thread. While this memory buffer
space is managed directly by the Fortran runtime, Fortran
programmers can still benefit from being aware of what heap
usage is occurring and where memory is being consumed
within the program heap. MemoryScape can directly detect
memory leaks, even at the point where only a single
allocation has been leaked. This advanced memory
debugging can also be used to find heap memory buffer
overruns (sometimes called array bounds violations), which
otherwise subject programs to instability and random
crashes. Finally MemoryScape is a very capable tool for
optimizing memory usage. It can show a graphical display to
tell how different processes of a parallel job are using
memory. Then, for any specific process, it can break down
memory usage by object file (library), source code file,
function, line number, and function call backtrace. This
allows developers to identify places in their program where
they use more memory than anticipated and where the
problem can be decomposed differently or some other trade
off can be made to make more efficient use of memory.

E. Three Ways to Debug on a Cray
Users typically interact with Cray supercomputers

through the batch resource management system such as
OpenPBS. There are three ways that users can use
TotalView in this context.

1) APRUN
The first way is to launch the program directly with

APRUN from the interactive node. The downside to this
approach is that the user has to issue the command and then
wait for the job to be scheduled and the debugger to appear,
which could happen quickly or slowly depending on the
availability of the supercomputer.

2) TVScript
The second way is to plan a sequence of desired

debugging operations and then submit a batch queue request
that instructs TotalView in a non-interactive fashion. When
the batch queue job is done, users receive a report with the
results of the debugging operations. This approach makes

use of the TVScript feature. TVScript is a simplified
asynchronous “driver” script that takes a program and
performs a series of debug operations (like “run to this
breakpoint and print X”) on it. TVScript gathers the results
of those debug operations and makes them available to the
user through a trace output file.

3) Remote Display Client
The third way is to use the Rogue Wave Remote Display

Client (RDC) to log into the supercomputer from a user’s
desktop. The RDC is able to interact with the batch
management system and handle the submission of job
requests. The Remote Display Client workflow is similar to
the interactive batch session method except that the RDC
provides a secure and fast graphical connection between the
supercomputer and the user’s desktop. This connection is
designed for long distance, high latency networks, and can
be used, for example, to run an interactive debugging session
across the Atlantic Ocean.

III. OPTIMIZING ON THE CRAY WITH THREADSPOTTER
Debugging isn’t the only challenge that Cray users face.

They are also likely looking to extend their models with
more comprehensive calculations (multi-physics),
encompass larger problem domains, longer problem
timescales, or increase the numerical resolution of
simulations. Supercomputing is about solving problems that
are too large to be calculated any other way - so almost by
definition, datasets and runtimes are large. Therefore the best
practice for an HPC developer is to spend some amount of
their effort optimizing their application.

One of the challenges that users frequently confront on
supercomputers is getting the data to and from the processor
in an effective way. The processor can often consume and
produce data at a bandwidth that is an order of magnitude
higher than the bandwidth between the main memory and the
processor. In order to effectively use the processor, a series
of caches are utilized and frequently used data is placed there
for easy access. The data transfer bandwidth between cache
and core is sufficiently high that if the program can place the
data that it needs in the cache, then the processor can
perform arithmetic operations on each clock cycle and have
data available for the next cycle.

Rogue Wave offers the ThreadSpotter cache memory
optimization tool to help users quickly identify program
bottlenecks that may be preventing them from taking
advantage of available processing power. Because reading
and writing main memory is more costly in terms of system
power, optimizing cache memory usage can also reduce the
power and cooling cost for the supercomputer, while
improving performance.

ThreadSpotter can identify and prioritize a number of
different kinds of problems for the user. It sorts issues in
terms of how much impact they will have on performance, so
that the user can start with the issues that have a higher
reward first. For each problem identified, ThreadSpotter
provides a statistical analysis, detailed information about
what lines of code and ultimately what read or write
instructions are involved. For each category of issue,
ThreadSpotter provides helpful advice about how the issues

can be addressed. Sometimes it will recommend changes to
loop order; other times it might recommend breaking up data
structures, or it might advise telling the processor to fetch the
data from main memory without disrupting data already
resident in the cache.

A. Three Examples of Cache Memory Issues
1) Cache Utilization

When memory is placed into the cache hierarchy, it
comes in the form of cache lines. These are typically 128
byte chunks of memory, and a whole cache line will be
fetched if any byte that is part of it needs to be read. In the
ideal scenario, when a line is placed in the cache, each byte
will be read many times before the cache line is flushed. In
the least favorable scenario, the program might touch only
one byte out of the 128, and then perform other actions that
ultimately cause the cache line to be flushed without the
other data contained on that line ever being touched. Poor
cache line utilization can easily lead to a pronounced
memory bottleneck. ThreadSpotter can identify locations
where poor cache utilization happens, and happens
frequently enough to have an impact on performance.

2) Cache Reuse
Each cache has a limited number of cache lines it can

store at a time. Frequently, programs will be written in such
a way that they repeatedly access a data set of a certain size.
If that size is smaller than the cache, then the cache will
generally be able to hold that memory, and the processor can
proceed with very few cache misses. However, if the overall
dataset is larger than the cache, then the order the operations
occur become critically important. Generally, there will be
multiple ways to arrange the calculation, some of which will
place repeated accesses together, so that the cache can be
highly effective at reducing the need for reading and writing
to main memory. Other mathematically equivalent ways of
structuring the calculation will spread repeated accesses out,
causing much more traffic to the main memory.
ThreadSpotter will highlight regions with poor cache usage
and provide advice for how the programmer can approach
improving the behavior.

3) Cache Coherency
The cache architecture is usually engineered to provide

all of the cores within the processor with a consistent view of
memory at all times. If there is more than one cache (as is
almost always the case), then this requires a cache coherency
mechanism. Cache coherency works but increases the
overhead of memory access. If the same data is written to
repeatedly from different cores, then many of those write
operations may require the extra steps to ensure coherency,
which will slow down the calculation. ThreadSpotter can
identify locations in the code where such accesses are
occurring frequently enough to have an impact on
performance. ThreadSpotter can identify places where
different cores are not touching the same data, but are
nonetheless incurring coherency overhead. This can occur
when different processor cores are updating two different
data elements that happen to reside on the same cache line.

Because discovering bottlenecks by hand is labor
intensive, it is especially valuable to have a tool, like

ThreadSpotter, available to quickly check the application and
discover if poor cache optimization is an issue. If not, then
the developer can move on and look at other forms of
optimization such as load balancing, tuning MPI
communication, etc.

IV. CONCLUSION
This paper highlighted some of the challenges facing

developers working on Cray supercomputers and described
two powerful tools that Rogue Wave provides to make such

development easier (TotalView debugger and ThreadSpotter
cache optimizer) . Recent improvements to the TotalView
debugger on the Cray XE and XK environments include
support for ReplayEngine on the Cray XE, support for
CUDA on the Cray XK, and support for the OpenACC
pragma-based language extensions in the Cray CCE.

