
Real Time Analysis and Event Prediction Engine

Joshi Fullop, Ana Gainaru, Joel Plutchak
Blue Waters project

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
{jfullop, againaru, plutchak}@ncsa.illinois.edu

Abstract—With the cost of operating extreme scale super-
computers like Blue Waters growing to what they are now
and will continue to be in the future, the act of predicting
failures and reacting accordingly to prevent the loss of effective
compute hours and their associated power and cooling costs is
quickly becoming actuarially feasible. Forecasting the systems
”weather” and predicting an exact event by location, time and
probability are two completely different propositions. The first
provides little more than a level of awareness under which to
operate the machine, and the second provides specific, localized
information on which actions can be taken in advance of
occurrence. We have endeavored to create a system that does
the latter for Blue Waters.

Herein we describe our utilization of specific enabling
technologies and our techniques to turn an overwhelming, theo-
retical task into an engineered possibility. Given NCSAs history
of building machines with the full spectrum of hardware,
architectures and software components, we have abandoned the
traditional regular expression engines for an intelligent, self-
modifying template system that we created in-house, named
the Hierarchical Event Log Organizer (HELO). It allows us
to tag each event occurrence (log message) with an integer
key identifying it as a unique type of event. This makes the
process of mining the logs for event occurrences a much more
manageable task since it no longer requires string matching
and bulk data traversal. This benefit enables us to do an all-
to-all event correlation analysis and store found correlations in
a table that tracks the relationship in terms of average time
between events, the standard deviation, and the confidence.
With this set of correlations, we construct a directed graph to
visually describe the inter-relationships between events across
all subsystems. For example, an event that is reported in
networking logs may precede an error in the parallel file
system.

Furthermore, we use this graph to work backwards from
events of interest and watch for the occurrence of any events
that precede it. From the occurrence of any preceding event in
any one of the found paths, we can traverse the graph forward,
summing average time between events and multiplying their
confidence values to deliver a probability that the event of
interest will occur at a given time. The standard deviation
values further allow us to provide a statistical window of
likelihood. This system is also self-updating and functions in
real time.

Keywords-event analysis; fault tolerance; fault prediction;
event correlation;

I. INTRODUCTION

In the world of extreme scale supercomputing downtime
costs significant amounts of operations capital as well as

reputation of the site and vendors. Power and cooling costs
are essentially a complete waste not only for the downtime
period, but also for any un-recoverable jobs that were taking
place on the system at the time of failure. One of the
largest constraints of massive scale clusters is the mean
time between failures for any component in the system vs
the runtime of the job. As cluster size increases, so does
the probability of a single component failure within a time
frame. Check-pointing jobs is an area of significant research
at the moment. But even when implemented in a satisfactory
manner, there is still a considerable loss of compute time
back to the last check point, not to mention the time spent
creating checkpoints and not on application computation.
A predictive system could cause or at least give grounds to
cause a checkpoint when it appears that a fault is likely. This
could save a great deal of compute cycles and associated
energy costs spent on the act of blindly check-pointing in
fear of a future failure.

II. BACKGROUND

Failures are the focus of analysis from many different
perspectives. Systems administrators want to know what
happened that caused systems to stop working and what to
do to fix it. Site managers want to know to account for the
downtime. And vendors want to understand why the failure
occurred and what the conditions were so that they can
improve their product. Users are generally happy to know
that the system failed and there is not a problem with their
code, but would like to know when they will be able to run
jobs again. In trying to understand and describe a failure
and how it is represented in the data that is generated by a
computer (or other) system, we see that it is inherently an
event.

There are two general types of data that can be monitored,
events and metrics. Events are specific things that occur at a
certain time and at a certain location or within a certain
domain. Metrics are measurable values that describe the
state of that which is being monitored. Metrics are often
recorded and trended in order to determine the general
health of a system. Metrics are also oftentimes the basis on
which events are generated. The classic example is a simple
threshold event where a metrics value exceeds some set
point. Some further disambiguation as this point is necessary

to distinguish between an event and an occurrence of an
instance of that event. We will define, for the purposes
of this paper, an event to be the description of what has
happened. The occurrence is the instance when and where
the event takes place. To illustrate this, well take the example
of Oktoberfest. It is an event that occurs every year in
late September in Munich, Germany. So in this example
Oktoberfest is the event, and Oktoberfest’12 is a specific
occurrence since it has a time and location. In practice,
syslog provides distinct values for the time and location.
However, the ’what’ is left open for description by the
message string. The message body generally is not distinct as
it usually passes other relevant information in the body of the
message. For example, ”CPU temperature critical: 91.3C”
might be a syslog message generated when a processor
temperature exceeds 85C. The event of the temperature
exceeding 85C can show up with a syslog message of ”CPU
temperature critical: 90.5C” as well. So we have shown two
different manifestations of the same underlying event. So the
trick is deriving the event given the manifestations in string
form.

Some highly integrated systems offer integer based IDs
in their event reporting systems. This is a most wonderful
thing, but it is a rarity in industry and only allows for
correlation analysis to be done within the constrained scope
of that integrated system. To consider correlations with
events from an outside system puts us back in the same
situation as beforehand. Given that most supercomputers
are not completely single vendor supplied, this a substantial
concern and reality for most monitoring endeavors. One
possible solution would be to allow for an attribute in the
log protocol specification that would be used to identify the
event. Another solution would be by convention. This would
have each message be prefixed with an integer or integer set
that would identify the event. However, both of these would
take years to propagate through industry and there would
always be the cases of non-compliance.

One method born of necessity began as a way to filter
log streams, is the use of a regular expression engine.
This allowed systems administrators to email themselves
or execute some script to deal with the occurrence of
some event. Later, as organized storage of these occurrences
became an evident need to prevent the re-processing of all
the message strings for a data mining process, tagging was
implemented. This, when combined with database indexing,
solved one major issue, but left a number still outstanding.
This method required a great deal of prior knowledge of
every specific subsystem and its reporting methods. Given
that there is always a new technology being incorporated
with the next machine, domain expertise in advance is often
a rare commodity. This also only allows things that have
been specifically identified in advance to be tagged. Later
identification processes involve a full re-processing traversal
of the stored dataset, with reads and writes. This can become

User againaru attempted to execute command: ps -a
User jfullop attempted to execute command: tar xvf archive name.tar
User * attempted to execute command: * * n+

Table I
LOG TEMPLATE EXAMPLE

cumbersome. This system also allows for a great deal of
information to slip through the cracks. If a regular expression
does not catch all the possibilities, events will go handled.
There is also the issue of maintaining the regular expression
library. As software changes with versions, bug-fixes or
driver updates, the regular expressions can become invalid
and more events continue to be missed. But the true downfall
of this system is that, by design, nothing happens to events
that are not successfully identified. There is no way to
gauge that something is happening on the system that an
administrator should take note of if it has not already been
specifically identified and coded for.

III. HIERARCHICAL EVENT LOG ORGANIZER (HELO)

To address these issues, we have developed a novel, un-
supervised classification tool named the Hierarchical Event
Log Organizer (HELO), that aims to accurately determine
events from log files. This tool takes sets of logs from any
number of sources and uses statistical methods to derive
a set of templates that can be used to describe the events
contained therein. This allows all of the events that occur to
be tagged with unique integer that will allow for enhanced
mining in analysis later. It further handles events that do not
directly match a template in the library by determining if
the new message is very similar to an existing template and
that the existing template should be slightly modified so the
new message can be included, or if the message warrants the
definition of a new template. The later would be the case
when something new occurs that has not been seen before.
HELO has to major modes. The first (Offline) builds the
initial template library with high degree of accuracy, while
the second (Online) tags and modifies the template library
at a very high speed.

Events generated by the system are usually composed
by two parts, the header and the message description part.
The header has information about location and timstamp,
like the first part in the following example [2008-07-08
02:32:47][c1-0c1s5n0] 157 CMC Errors. HELO analyses
only the message description part and extract patterns by
replacing the log variables, like the manipulated objects or
states for the program, with wildcards. In our example, the
template generated will be ”d+ CMC Errors”.

Our tool uses three types of wildcards: d+ represents
numeric values, * represents any other single words, and
n+ represents all columns of words that have a value for
some of the messages and do not exist for others. In the
example in Table I two types of wildcards are illustrated.

The extracted group templates are used to describe events
generated by the supercomputers and to afterwards charac-
terize the overall behavior of fault and failures in the system.

A. Offline Methodology

The offline component of HELO deals with mining group
patterns from historic log file messages. Basically the algo-
rithm groups events considering their description in a 2 step
hierarchical process. In the first step the algorithm searches
for the best split column for each cluster and in the second
step the clusters are divided correspondingly. A split column
represents a word position in the message description that is
used to divide the cluster into different groups. An intuitive
description of the methodology is described in Figure 1.

HELO starts with the whole unclustered log file as the
first group and recursively partitions it until all groups have
the cluster goodness over a specified threshold. The cluster
goodness is a term used to characterize how similar all
messages in one group are and is defined as the percentage
of common words in all events’ description over the average
message length. The pseudo-code for this part is presented
in Algorithm 1.

We will now follow the example presented in Figure 1
in order to explain the splitting process. The best splitting
position is the one that contains the maximum number of
constant words. We consider that words with a high number
of appearances on one position have a higher chance of being
a constant, so HELO searches for the column where most
unique words have a high appearance rate. This position
corresponds to the column where the mean number of
appearances for every unique word is maximum while still
having enough words in order to be relevant to the analysed
event dataset.

HELO considers that different type of words have dif-
ferent priorities dependent on their semantics. There are
three types of considered words: English words, numeric
values and hybrid tokens (words that are composed of letters,
numbers and symbols of any kind). The lowest priority is for
all-numeric values since the algorithm considers that these
words have the most chances of becoming variables in the
clusters. In the example from above, 8 and 10 from column
2 represent the same token and so they are decreasing the
appearance mean for all unique words. In our example the
template ”Added d+ subnets and d+ addresses to DB”
comes from a group with 100% cluster goodness. Hybrid
values are represented by tokens like ”check..0” from our
example. The algorithm extracts and considers only the
English words incorporated in the hybrid token. For our
example both ”check..0” and ”check..1” are considered as
the word ”check”. If we analyze the second split from our
example, the second and the third columns could be both
chosen by the algorithm for the splitting position.

In the end, the group templates describe all types of events
that the system has generated, in an intuitive way. The user-

Algorithm 1 Offline Clustering Function
Name: Divide cluster
Input: Collection G[] of partitions; cluster goodness threshold
CT
Output: Collection G[] of partitions that have the goodness
over the threshold
Function call from the main program: DivideCluster(G)
where G is one cluster containing all events in the log file.

1: Create null collection of partitions Gfinal
2: for every partiotion in G do
3: Create null temporary collection of partitions Gaux
4: word position = Find split token(G[])
5: Add to Gaux the partitions returned

Split in clusters(G[], word position)
6: for every partition in Gaux do
7: if Gaux[] goodness < CT then
8: Add to Gfinal the partitions returned by Di-

vide cluster(Gaux[])
9: end if

10: end for
11: end for
12: return Gfinal

friendly group description generated by the tool could ease
the work of system administrators to follow and understand
errors from log files.

B. Online Methodology

The online clustering process deals with grouping mes-
sages in real time as they are being generated by the system.
Clustering tools must be able to change the group templates
in order to manage new messages that could appear. The
input is given by the groups obtained with the offline process
on the initial dataset. In HELO, each cluster needs to be
represented by a description in the format described in the
previous section and some statistics about the group.

For each new message, the online component checks the
description of the messages and retrieves the most appropri-
ate group templates. If a message fits the exact description
of a group (this means the group template does not need
to be modified) then the search is over and we stamp the
message with the template’s group id. If the message does
not have an exact match with any of the groups then we
compute the cluster goodness for all the clusters retrieved
before, after including the new message in each of them.
For computing the goodness of the group if the message is
inserted, we retrieve the average length of all messages in
this cluster from the group statistics file. This information is
used to decide if including the new message decreases the
cluster goodness under the threshold or not. If no cluster
has the goodness over a specific threshold then a new group
is formed. Else the group with the best cluster goodness
will be chosen and the group template will be modified to
accommodate the new message.

Figure 1. Online methodology

Algorithm 2 Online Clustering Function
Input: Event message M; Collection G[] of message groups;
Collection Gstat[] of statistics information about each group
CT as cluster goodness threshold
Output: The group id where the message belongs

1: define null maxid and maxCG
2: for every group in G do
3: sim = Compute similarity(M, G[])
4: if sim == 100% then
5: return id of group G[]
6: end if
7: MT = Extract message templates from Gstat[]
8: Create temporary partition Gaux by adding M to MT
9: CG = compute cluster goodness(Gaux)

10: if CG > CT then
11: maxCG = CG
12: maxid = id of group G[]
13: end if
14: end for
15: if maxid is null then
16: Create new cluster with description M
17: return id for the new cluster
18: end if
19: Add information about M in cluster maxid
20: return maxid

The pseudo-code for this component is illustrated in
Algorithm 2.

C. HELO core summary

HELO starts with an initial set of log files and generates
the template library (offline). It then uses this library to
classify and tag the output of the system so that it can be
efficiently mined in future analysis processes.

IV. ADDITIONS TO HELO

In order to run HELO on different systems, we im-
plemented a couple of optimizations and additions that
make the process applicable as a preprocessing step for
a wide variety of analysis modules. First, we propose a
parallelization scheme that makes the process efficient even
in the absence of a powerful machine dedicated to analyzing
the system. Secondly we added a new level in the analysis
process by including the Source field. This allows us to
have a component level analysis beside the existing system
level one. Finally, we look at grouping the template list
so that we can further analyze the events at a coarse or
finer granularity. Each of the additions is described in the
following subsections.

A. Parallelization

Our optimization was specific for IBM machines, that
offer a set of service nodes that can be used for analysis
purposes. However, this work can be applied on other
machines as well, as long as we can choose a set of nodes
where our analysys modules will not interfere with the
application execution.

Since our method is almost embarrassingly parallel, we
divide the online process on each service node offered by
the system. The execution of each HELO instance will be
independent one from the other and will need to interact only
when a new message is generated. In our implementation we
use a database on a centralized webserver to synchronize the
list of templates from all the nodes.

The execution of the online component on each service
node starts with the download of the entire set of templates
extracted by using HELO on a centralized node. Each

Figure 2. Example of a complex correlation graph

service node deals with an incoming stream of messages
generated by the system. Each of them are transposed into
event occurrences by matching the message to a template.
The classification with an existing event type is done au-
tomatic and in parallel on each service node without any
communication with any other nodes. However, in case of
an unknown message the service node needs to communicate
the modification in the template list, in order to update the
centralized database. With this occasion, the service node
downloads all the changes that occurred in the centralized
set of templates since its last download.

The advantage of this approach is that each service node
adapts its own list of templates to the output of the part
of the system that it is analyzing. Even if the template
lists are not consistent across service nodes, at all time,
the centralized database holds the set of event types that
describes the entire system. Another advantage is how the
data is organized across the nodes, different modules can be
added in the framework and execute on the event list in a
pipeline manner, with the synchronization being guaranteed
by the centralized database.

B. The Source field

The HELO tool was integrated into the fault tolerance
framework for the Blue Waters system as a preprocessing
module that represents an input to other analysis processes,
like the correlation module presented in the next section.
It is important to have as much flexibility as possible
in the analysis modules. This is why is preferable to be
able to change the granularity of the analysis dynamically
depending on the demands of the prediction module [8].

We use the Source field to separate the events generated
by different components in the system. This allows us to
apply the correlation system separately on each component

but also for the whole system. In practice, this is a major
benefit as it allows for cross-system correlations to be found.
For example, we can find when a network event causes
storage system events.

C. Template grouping
We group the set of templates based on keywords from

their description. By tuning the parameters in this process,
we can change the granularity at which we characterize event
types in the system. For example, for the lowest granularity,
for the Blue Waters system, we obtain only 6 event types:
network, memory, processor, disk and all others. However,
when we tune the tool to give us the highest granularity, the
template list consist of over 300 event types. These represent
more specific events of the base 6 presented before. For
example, failed to configure resourcemgmt subsystem err =
10 still represents a processor message for both granularities,
however has extra information when analyzed at a lower
granularity. Specifically, in this case it represent a processor
cache error.

V. EVENT CORRELATION ANALYSIS

The correlation model takes as input the template list
generated by HELO and its purpose is to find the set
of events that frequently occur together. We use a brute
force method by investigating all to all event types and
extracting the pairs of correlating templates. We then use this
information to generate a graph that describes the behavior
of the system, a graph that can be used for prediction
afterwards. In the following subsections we will describe
in more details each step of the method.

A. Cluster analysis
The mining process is using DBScan [1] to decide when

two event types are correlated. DBScan is a data clustering

Figure 3. DBScan example of correlated events

Figure 4. DBScan example of uncorrelated events

algorithm that is usually used to find all clusters that have
an estimated density distribution. In our implementation
DBScan uses only one input parameter that influences the
results, specifically the minimum number of points required
to form a cluster.

For each event type A, we use DBScan by looking at all
preceding events of type B within a window and recording
the number of seconds between them into a set. We observed
that for previous systems the number of correlated events
separated by a time delay of more than a couple of days is
very low. For this reason we chose a maximum time window
of one week, to limit the search for DBScan and make it
more efficient. The constructed set for the correlation ~BA
is processed to become the input array for DBScan. This
process consists of counting the number of occurrences of
each time delay. The pseudo-code is presented in Algorithm
3.

In statistics, a result is called statistically significant
if it is unlikely to have occurred by chance. We use the
Pearson’s significance test with two tailed t-values [3]
to determine the threshold over which our correlation has
statistical significance. The significance test for Pearson’s r
is computed as follows:

t = r∗
√
N−2√

1−r2

with r is Pearson’s correlation value, t is the two-

tailed probability value and N is the number of samples that
went into the computation of r. From a t table, by taking
into consideration the number of samples that create the
signal, the two-tailed probability value can be found. So,
we can use the previous equation for finding the minimum
correlation value that would still give statistical significance
for our signal:

r = t√
t2+N−2

For example, if we are analyzing the correlation between
two events A and B, and the number of occurrences of the
less frequent event is 50,000, this means t will be 164. By
using the second equation, we will get a r-value of 0.61.
This means that a peak from DBScan must have at least
61% of total delays in order to represent a correlation. This
is the value that we use as a threshold for determining the
minimum number of points required to form a cluster.

Figure 3 and figure 4 present two examples of processed
sets of time delays. The first one shows a peak for time
delays between 9 and 11 time units. This means that this
time delay is very frequent in the log file and indicates a
strong correlation between those event types. It also gives
an average time delay of 10.6 minutes unites with a standard
deviation of 0.86 minutes. The second figure does not show
any peaks, which indicates a lack of correlation between
the event types. In both figures, the lower valued peaks are

Figure 5. Example of correlation graph

filtered out by the input threshold.
One of the main advantages that DBScan has over other

mining techniques [5] is that it does not require the number
of clusters a priori. Also, it does not require a filtering step
that related work relies on, which is known to decrease the
accuracy of the results [4], [10].

In its original form DBScan visits each point of the
database multiple times and results in a complexity of
O(n*log n). However, by taking into consideration the
behavior of HPC events we optimised our algorithm to run
in O(n). The service nodes running this module handle the
task easily, so there is no problem executing the all to all
computations, even if most of the pairs are not correlated.
This method guarantees that we extract all of the correlations
in the system.

B. Generating graphs

The correlation module records the average time delay
and the standard deviation between all the correlated event
types. We then parse the log file to further characterize the
correlations by extracting the count and the confidence. The
confidence value represents how many times the correlation
takes place divided by the number of occurrences second
event.

conf(~BA) = count(~BA)
count(A)

With this information we construct a graph that describes
the behavior of the system and that will be used for event
prediction.

To make things more clear, we will provide a couple
of examples of correlated chains extracted from the graph
after analyzing a BlueGene machine. In the first example
the chain is composed of only informational messages and

is a sequence of messages generated each time the system
controller restarts.

”starting systemcontroller”
after just a couple of seconds:
”controlling bg/l rows [0 1 2 3 * n+”
after one minute and 30 seconds:
”running as background command”

This sequence of events is extracted from the graph
presented in Figure 5 after applying DBScan on all to all
combinations between the event types provided by HELO.
The nodes are represented by template ids and the links
show the confidence value between each event type. The
time delay between the events is given by the peak indicated
in DBScan. For example between the last two event types
presented previously, DBScan showed a peak corresponding
to 30 seconds, with a very low standard deviation.

A more complex graph could indicate event more complex
correlations. Figure 2, at the end of this paper, illustrates
a graph extracted from one of the LANL HPC system [6].
The following example, presented in Table II presents one
of the chains found in this graph which contains FAILURE
messages in the sequence of notifications.

The correlation graph will be analyzed into more detail
and used for prediction in the next section.

C. Special considerations

1) Fan-in/Fan-out: There are two interesting scenarios
that are not caught by any other data mining algorithm
apart from DBScan. Specifically, this is the case of many
to one patterns, fan-out and fan-in. The many to one fan-out
pattern occurs when a single event type precedes multiple
events that are identical between them. For example, if the
log frequently experiences the sequence of events ~BAA,
this represents a two to one fan out pattern. The many to
one fan-in pattern is represented by multiple identical events
preceding a separate event. This is the case of ~BBA patterns.

These patterns put other data mining algorithms in dif-
ficulty, however with DBScan they are easily identified by
multiple peaks in the DBScan set. For example, if figure
3 would present two peaks, we would have a two to one
pattern.

Large scale systems experience a large variety of events
during their lifetime and they output notifications for each
of them. Once an error is triggered, there is not a consistent
way of registering how the system will behave. For example,
in case a node experience a network failure and is incapable
of generating log messages, the failure is announced in the
log files by a lack of generated messages. Conversely, some
component failures may cause logging a large numbers of
notifications. For example, memory failures can result in a
single faulty component generating hundreds or thousands
of messages in less than a day.

* is not fully functional
after 27416 seconds (7 hours)

warning no ethernet link
after 7019 seconds (2 hours)

rts tree/torus link training failed: wanted: * n+
after 24185 seconds (6 hours)

job d+ timed out. block freed.
after 20 seconds:

ciodb exited abnormally due to signal: aborted
mmcs server exited abnormally due to signal: * n+

after less than 10 seconds:
mmcs db server has been started: ./mmcs db server –usedatabase bgl –dbproperties * –iolog /bgl/bluelight/logs/bgl –reconnect-blocks all n+
(this is probably a restart due to the failure)
ciodb has been restarted.

Table II
SEQUENCE OF CORRELATED EVENTS

Algorithm 3 Correlation extraction
Input: List of templates Template T[], the Log file L;
Output: List of correlated pairs of events Corr[] and corre-
sponding list of time delays for each of them D[] (Coor[i]=(A
B) with a time delay between them of D[i]=(avg time,
std dev))

1: min pt = Pearson threshold(count(A),count(B))
2: for every template A in T do
3: for every template B!=A in T do
4: delay = Extract delays(A, B, log)
5: dbarray = Extract count for each delay(delay)
6: CG = DBScan(dbarray, min pnt)
7: if len(CG) > 0 then
8: Add (A,B) to Corr
9: Add CG to D

10: end if
11: end for
12: end for
13: Function DBScan(dbarray,min pnt):
14: CG = []
15: for every delay in dbarray do
16: if dbarray[delay] < min pnt then
17: Filter noise
18: if start is set then
19: Add (delay+start/2, delay-start/2) to CG
20: end if
21: else
22: start = delay
23: end if
24: end for
25: return CG

2) Periodic events: Event types exhibit three types of
behavior: periodic, silent and noise [7]. In our procedure we
analyze periodic event differently than the others. Usually,
periodic signals are generated by daemons or by events
that deal with monitoring information, like cron. The reason
why these type of signals need to be analyzed separately is
because their behavior creates extraneous correlations with
other periodic events, and in DBScan multiple peaks would
be found. These peaks could be mistaken for the fan-out

pattern.
3) Same-source accuracy: Even though the ability to find

correlations across sources is a phenomenal benefit, it does
not come without a cost. As machines grow in node counts,
so does the probability that another node somewhere will
have an event that occurs in the window of time preceding
the event found in the mining process while building the
elapsed time sets for cluster analysis. In fact, something
could easily cause many nodes to report similar syslog
messages at nearly the same time. When node time skew
is added to the situation, the data set for cluster analysis
becomes very noisy if we consider the entire domain for
preceding events. To address this, if the trailing event and
preceding events are both from the same source, we add the
further qualification that their locations should match in our
mining process. This significantly cuts down the size of the
data set used for cluster analysis while greatly improving
the accuracy of the correlation.

VI. PREDICTION

Our mining and analysis operations generate an event
relationship table that tracks the two events in order of
temporal relationship, average time between them, the stan-
dard deviation of that relationship and the probability of the
following event occurring given that the preceding one has,
and the count of the following event cluster. The average
time between events allows us to determine how far in the
future a predicted event may occur. The standard deviation
is used to determine the window in time to expect the future
occurrence. The probability helps us determine the chance
that the event may occur. Much of this should be self evident,
but needs to be stated for the explanation of chains of events.

A chain is a series of related events that can have its
predictive attributes calculated in the following manner. The
estimated time of occurrence of the final event in the chain
from the first is simply the sum of the average time values
for each relationship contained in the chain. The window
can be described as plus or minus the sum of some surety

Figure 6. Event chain example

Figure 7. Normal distribution curve

constant multiplied by the standard deviation of average
times for each relationship contained in the chain. For our
implementation, we have chosen to use a surety constant
of 2. Utilizing a normal distribution curve, two standard
deviations greater and two standard deviations less than
the average value should encompass 95% of the expected
results. (Figure 7 [2]) A smaller factor results in a smaller
window, but also a lower rate of prediction success. This is
an engineered feature that can be used to tune the prediction
engine to its area of application. Finally, the probability
of the final event occurring is the product of the series of
probabilities of the events in the chain.

For clarity, we offer the following example for a chain
of events A− > B− > Z. (~ABZ) from Figure 6.

Probability of Z = P (A|B) ∗ P (B|Z)

Time until Z = avg.time(~AB) + avg.time(~BZ)

Window for Z = 2 ∗ std.dev(~AB) + 2 ∗ std.dev(~BZ)

Calculations:
If Event A occurs at 1335675600 unixtime.
Probability of Z = 50% *75% = 37.5%
Time until Z = (10+5)*60 (seconds) = 900 seconds from A
(@1335676500)
Window for Z = (2*1 +2*1) *60(seconds) = 240 seconds

We can predict that there is a 37.5% chance that Z will
occur at 1335676500 with a window of +/- 240 seconds. If
B occurs, the prediction would change to 5 minutes from
the occurrence of B +/- 2 min with a probability of 75%.

A. Prediction Expiration

If an intermediate event fails to occur within (avg. time +
3 * std. dev) seconds from the occurrence of its predecessor,
the prediction expires. In our example ~ABZ, if B does
not occur within 13 minutes of A, the prediction expires.
This poses the question ’What if B ends up occurring after
the prediction has expired?’ An algorithm could continue
to actively watch for the occurrence of B, but in practice
that takes a significant number of cycles for a computer to
accomplish given the extreme potential of predictions that
could arise in a short period of time. This further begs the
question of what methodology should be used to analyze
large sets of real-time data to find and react to these chains
of events.

B. Implementation

Since our relationship table can be used to generate a
graph (Figure 8(a)), which is in essence a set of interwoven
chains leading to an Event of Interest (EoI) (Figure 8(b)).
We can use these chains and the methods described above
to predict the future occurrence of an EoI.

The first and most obvious option would be to watch
for the occurrence of a preceding event, starting at the
originating end of the chain. This is a valid method, but
as chains grow in length, so does computational cost. This
is because any subset of the chain is also a valid chain.
And since each event in the chain could occur indepen-
dently without any preceding events, this becomes complex.
Bayesian network generation is an option. But since we
are working with purely observed data and no insight into
the inner mechanisms of the system we are monitoring,
accurately determining conditional situations from the raw
data would be a difficult task. Furthermore, there is the issue
on how difficult it will be to keep that network updated with
a constant flow of new data.

Our approach is to first identify each EoI that is to
be monitored for prediction. For each EoI, we recursively
traverse the graph backwards from the EoI until we find
an event that has occurred within the cumulative time
plus window from now; we reach a maximum cumulative
time depth or steps; or we reach an event node with no
predecessors. This gives a number of benefits. First, the
most recent event, graph-wise, is the most important. Events
before the preceding event that has occurred have little value
in the given linear chain. Remember that it is possible for an
event to be a preceding event for multiple following events,

(a) Graph of events (b) An example of interwoven chain

Figure 8. Example of graph of events and its corresponding chains

of which there might be a relationship. (e.g. ~AB, ~BC and
~AC). Those relationships will be considered independently

by the recursive graph traversal. A second benefit is that
we can easily control and enforce boundary conditions to
manage computational load with the maximum windows,
number of steps, and/or total elapsed time. Additionally, we
do not have to pre-determine chains or find them in the graph
each time we wish to ascertain if there is a chance for an
EoI.

The above discourse has shown how we are able to predict
what event will occur when and with what probability. The
remaining component for predicting these lightning strikes
is determining where they will occur. With the current
location reporting facilities of syslog, it is fairly direct that
we can determine the location of a future occurrence in
that for a node, a preceding event occurrence’s location
would determine the location of the trailing occurrence.
This works well enough with event chains that are wholly
contained within the scope of a node. However, one of the
great features of this system is the ability to correlate across
sources or subsystems (i.e. networking to storage system).
In the cross-source events, the best that we can determine
in terms of location is which subsystem, and not necessarily
the specific host resource within a particular subsystem.

VII. FUTURE RESEARCH

Topology awareness - This is an area of research that
could provide an enhanced location component of predic-
tions. We envision a database housed relation mapping for
physical connections as well as configuration adjacencies.
The major areas of impact would be in the expanded
description and consideration of the mining techniques to
include the topology map traversal.

Event Fingerprinting - Oftentimes an event takes place
that does not have a distinct syslog message to indicate
that something has occurred. However, it manifests itself
in the logs as a pattern of events. We are aware of a
couple of projects that finds event sets or patterns and distills
them down into a singular event. These techniques could be
incorporated into our system in the future.

Root Cause Analysis - Given our event relationship graph,
we have seen how we can predict future events focused on
the end of the chain. However, we are interested in seeing
how the origin end of the chain can be used for determining
root causes of events. We look forward to determining the
implementation of algorithms to provide usable research
tools to systems administrators.

VIII. CONCLUSION

With the world of leading edge computing systems con-
stantly changing, trying to maintain libraries and rule sets
to handle the massive amount of data reported by these
machines is daunting task to do and virtually impossible
to do well. The thing we realized is that we’ll rarely ever
know what to look for going into the building of a new
supercomputer. Once we came to terms with that, we began
to look at the problem from a different perspective. We
created an intelligent, learning system that did not let things
fall through the cracks. Being able to distinguish the dif-
ference between events and their occurrences and organize
them in such a way that we could efficiently analyze them
made the correlation an engineering possibility. Visualizing
the relationships in graph form led us to the algorithms for
prediction. Along the way we found a number of coinci-
dental benefits that in sum have the potential to change the
way supercomputers are monitored and managed. We have
also tried to keep the structure fairly generic so that it may

be applied in other areas of analysis beyond supercomputer
monitoring. We hope that this provides a step in the right
direction and look forward to finding improvements in the
future.

REFERENCES

[1] Martin Ester, Hans-Peter Kriegel, Jrg Sander, Xiaowei Xu A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise in Proceedings of 2nd Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD-96) Volume 2 Issue 2, Pages 169-194, June 1998

[2] AllPsyche Online http:// allpsych.com/researchmethods /distri-
butions.html Accessed on April, 2012.

[3] H. Posten: The robustness of the twosample ttest over the Pear-
son system. Journal of Statistical Computation and Simulation,
Volume 6, Issue 3-4, 1978

[4] A. Pecchia et al: Improving Log-Based Field Failure Data
Analysis of Multi-Node Computing Systems DNS 2011

[5] N. Nakka et al: Predicting Node Failure in High Performance
Computing Systems from Failure and Usage Logs IEEE Work-
shop on Dependable Parallel, Distributed and Network-Centric
Systems, 2011

[6] Bianca Schroeder and Garth A. Gibson. A large scale study of
failures in high-performance-computing systems. International
Symposium on Dependable Systems and Networks (DSN
2006).

[7] Ana Gainaru, Franck Cappello, William Kramer Taming of
the Shrew: Modeling the Normal and Faulty Behavior of
Large-scale HPC Systems. 26th IEEE International Parallel &
Distributed Processing Symposium 2012

[8] Z. Lan and all. Toward automated anomaly identification in
large-scale systems. IEEE Trans. on Parallel and Distributed
Systems, Volume 21, Issue 2, Pages 174187, February 2010.

[9] Zhiling Lan and all Enhancing Application Robustness through
Adaptive Fault Tolerance NSFNGS Workshop (in conjunction
with IPDPS) Pages 1-5, April 2008

[10] A. Pecchia et al: Improving Log-Based Field Failure Data
Analysis of Multi-Node Computing Systems 41st International
Conference on Dependable Systems & Networks (DSN), Pages
97-108, 2011

