
Tuning And Understanding MILC Performance In Cray XK6
GPU Clusters

Guochun Shi
National Center for

Supercomputing Applications
University of Illinois
Urbana, IL 61801

gshi@ncsa.illinois.edu

Steven Gottlieb
Department of Physics

Indiana University
Bloomington, IN 47405

sg@indiana.edu

Michael T. Showerman
National Center for

Supercomputing Applications
University of Illinois
Urbana, IL 61801

mshow@ncsa.illinois.edu

ABSTRACT
Graphics Processing Units (GPU) are becoming increasingly
popular in high performance computing due to their high
performance, high power efficiency, and low cost. Lattice
QCD is one of the fields that has successfully adopted GPUs
and scaled to hundreds of them. In this paper, we report our
Cray XK6 experience in profiling and understanding perfor-
mance for MILC, one of the Lattice QCD computation pack-
ages, running on multi-node Cray XK6 computers using a
domain specific GPU library called QUDA.

QUDA is a library for accelerating Lattice QCD compu-
tations on GPUs. It started at Boston University and has
evolved into a multi-institution project. It supports multiple
quark actions and has been interfaced to many applications,
including MILC and Chroma. The most time consuming
part of lattice QCD computation is a sparse matrix solver
and QUDA supports efficient Conjugate Gradient (CG) and
other solvers. By partitioning in the 4-D space time domain,
the solvers in the QUDA library enable the applications to
scale to hundreds of GPUs with high efficiency. The other
computationally intensive components, such as link fatten-
ing, gauge force and fermion force computations, are also
being ported to GPUs.

Keywords
Lattice QCD, GPU, Krylov solvers, MILC

1. INTRODUCTION: LATTICE QCD AND
MILC

Quantum Chromodynamics (QCD) is the quantum field
theory that describes the strong interaction among subatomic
particles. Lattice QCD (LQCD) is a formulation of the the-
ory that discretizes the four dimensional space-time contin-
uum and allows numerical calculation of the strong force.
This is the most successful approach for dealing with the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
cug2012 April 29 - May 3, 2012, Stuttgart, Germany
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

strong interaction in the low energy regime where perturba-
tion theory does not work. Lattce QCD calculations have
been consuming a significant portion of the supercomputer
time in the US, Europe, and Asia. LQCD is one of the major
applications that demands exaflop-speed machines. MIMD
Lattice Computation (MILC) is one of the freely available
LQCD computation packages, and it has proved popular
with US and international researchers. It is imperative that
we enable lattice QCD codes to run efficiently on upcoming
supercomputers, including the GPU-accelerated machines.

Typical computations are separated into two stages. The
first stage is the gauge generation stage, in which snapshots
of the QCD gauge fields are computed using Monte Carlo
methods. This is run as only a few parallel streams. The
second stage is the analysis stage, in which the gauge fields
generated in the first stage are used to calculate observables
of physical interest. Each stored snapshot (or configuration)
can be run as an independent job. Different researchers can
use the configurations for different projects, so the second
stage can result in thousands of independent moderate size
jobs. In the first stage, usually over 50% of the calculation
time is spent on the fermion solver, while the rest of the
time is spent on so called fatlink, gauge force, and fermion
force computations. For example, in a production run on
Argonne National Lab’s BlueGene/P when generating 643×
144 lattice in 8,192 cores, the run time distribution is shown
in Table 1.

Table 1: Distribution of time in a production run
Computation Percentage

CG 53%
FF 27%
GF 9%
fat 10%

In contrast, in the analysis stage, the solver totally domi-
nates the computation. Therefore in both stages, the solver
is always the most important computation and optimizing
its efficiency receives the most attention. We reported our
work on porting the solver into many GPUs in [1]. In this
work, we benchmark and profile LQCD code on Cray XK6
nodes and analyze how the features in the XK6 node benefit
the application and where potential bottlenecks could come
from in the future.

Lattice QCD solves the space-time 4D linear systemMφ =
b where φi,x and bi,x are complex variables carrying a color



index i = 1, 2, 3 and a four-dimensional lattice coordinate x.
The matrix is given by M = 2maI +D where I is the iden-
tity matrix, 2ma is a constant related to the quark mass,
and the matrix D (called “Dslash” operator) is given by

Dx,i;y,j = Σ4
µ=1(UFi,jx,µ δy,x+µ̂ − UF

†i,j
x−µ̂,µδy,x−µ̂)+

Σ4
µ=1(ULi,jx,µ δy,x+3µ̂ − UL

†i,j
x−3µ̂,µδy,x−3µ̂)

2. GPU ARCHITECTURE: FERMI GPUS
Early GPUs were fixed function non-programmable graph-

ics only accelerators. Over the years, GPUs have become
more powerful in terms of raw compute capability. They
have also become more flexible in programmability. NVIDIA
introduced a completely programmable shader GPU, and in
2007, Compute Unified Device Architecture (CUDA) was in-
troduced by NVIDIA, with which a programmer can write
a general C-like program and execute it in NVIDIA GPUs
without using graphics APIs.

GPUs follow a different design philosophy from that of
CPUs, that makes them suited for massively parallel data-
intensive computing, while not fit for general purpose com-
puting. In GPUs, many compute units (Streaming Proces-
sors (SP) in NVIDIA’s terminology) are packed together to
provide massive raw computing power. For example, there
are up to 512 streaming processors in a Fermi GPU and we
expect there will be more in the upcoming Kepler GPUs.
Each SP is capable of executing one MAD-type single preci-
sion floating point instruction per cycle, or two flops. Dou-
ble precision execution speed is half of that in single pre-
cision. With the Fermi architecture, 32 streaming proces-
sors are packed together, forming a Streaming Multiproces-
sor (SM). Each SM contains a scratch pad (called shared
memory in NVIDIA’s terminology), texture, and dispatch-
ing units. Sixteen such streaming multiprocessors form the
whole GPU.

There are multiple layers of memory in the GPU. Start-
ing closest to the compute unit (streaming processor), there
are registers, shared memory (L1 cache), L2 caches, and
global memory. The access to these memories are in order
of increasing latency and decreasing bandwidth. The global
memory can be bound to texture units and accessed through
texture calls. Since texture has its own cache, this usually
helps improve application performance. There is also a small
amount of constant memory, 64 KB in case of Fermi, that
can be used to store constants, lookup tables, etc.

Matching the hardware is the CUDA programming en-
vironment. In CUDA programming, the compute or data
intensive computation part is rewritten using thousands or
tens of thousands of threads, called a kernel. In each ker-
nel, many threads are grouped together and called thread
blocks. All the threads in a thread block execute the same
code, and run on one SM. Thread blocks should be com-
pletely independent, as there is no mechanism for threads
in different thread blocks to communicate with each other.
Threads within a single thread block can coordinate through
the shared memory, and they can be synchronized using

syncthreads(). Multiple thread blocks can occupy the same
SM and the scheduler can switch to different warps without
extra overhead. The ratio of the number of thread blocks
to the maximum possible number of thread blocks in a SM,
called occupancy, is determined by the amount of resources

such as registers and shared memory used by the thread
blocks and is usually a good indicator of how well one is
using the GPU.

The GPUs in Cray XK6 compute nodes are Tesla X2090s.
This Fermi GPU has 512 cores and 6 GB memory with ECC
protection. The peak performance is 1.3 Teraflops in sin-
gle precision and 665 Gflops in double precision. The peak
bandwidth is 177 GB/s when ECC is off and 155 GB/s when
ECC is on. The GPU is connected to the host with a PCIe
2.0 bus. The hosts are connected to each other with Cray’s
Gemini Interconnect, which provides 1–2 microseconds of la-
tency in point to point messages and 20 GB/s peak injection
bandwidth. The Cray XK6 architecture is shown in Fig. 1
1.

Figure 1: The Cray XK6 node architecture.

It is worth noting that there are two CPU dies in the same
socket, each die with its own memory controller. These two
dies appear as different numa nodes to the OS. As discussed
later, the communication performance will be different when
a GPU process is bound to different numa nodes.

3. OVERVIEW OF RELATED WORK
Lattice QCD calculations on GPUs were originally re-

ported in [2] where the immaturity of using GPUs for general
purpose computation necessitated the use of graphics APIs.
Since the advent of CUDA in 2007, there has been rapid
uptake by the LQCD community (see [3] for an overview).
More recent work includes [4], which targets the computa-
tion of multiple systems of equations with Wilson fermions
where the systems of equations are related by a linear shift.
Solving such systems is of great utility in implementing the
overlap formulation of QCD. This is a problem we target in
the staggered-fermion solver below. The work in [5] targets
the domain-wall fermion formulation of LQCD. In [6], multi-
GPU CG implementation and performance is reported for
staggered fermions. This work concerns the QUDA library
[7], which we describe in Sec. 4 below.

Most work to date has concerned single-GPU LQCD im-
plementations. Beyond the multi-GPU parallelization of

1http://www.olcf.ornl.gov/wp-
content/uploads/2012/01/TitanWorkshop2012 Day1 AMD.pdf



QUDA [8, 9] and the work in [10] which targets a multi-
GPU implementation of the overlap formulation, there has
been little reported in the literature, though we are aware
of other implementations which are in production [11].

4. THE QUDA LIBRARY

4.1 General Introduction
QUDA2 is a library for performing calculations in lattice

QCD on graphics processing units (GPUs) using NVIDIA’s
“C for CUDA” API. It supports multiple quark actions in-
cluding Wilson, clover-improved Wilson, twisted mass, im-
proved staggered, and domain wall. The initial development
was started in Boston University [12] and now it is developed
by individuals at multiple institutions. The library supports
solvers (both CG and BiCGStab), fatlink, fermion force and
gauge force computations. QUDA is a standalone library
and can be linked with any existing Lattice QCD software
packages. So far MILC and Chroma have been using QUDA
to do analysis computations (but not gauge configuration
generation).

4.2 Data Structure And Data Layout In GPU
Memory

In lattice QCD, we mainly focus on two data structures,
the spinor field and the gauge field. Each element of a spinor
field is a length three complex vector (6 floating point num-
bers) and each element of a gauge field is a 3 × 3 complex
matrix (18 floating point numbers). On a four-dimensional
space time lattice, there is one spinor element at each of the
grid points (called a “site”). The gauge fields live on the
links connecting nearest neighbor grid points, and are some-
times just called links. For each site, there are four links
that go to its neighbors in +X,+Y,+Z,+T directions, and
there are four links pointing to this site from its neighbors
from −X,−Y,−Z,−T directions. The spinor and all the
four links pointing to the positive direction’s neighbors are
stored according to the coordinates of this site. All the sites
are categorized as even or odd sites according to whether the
sum of x, y, z, and t is even or odd. All even data (spinor or
gauge field) are stored in the first half of the array and the
odd data are stored in the second half. The mapping of 4-D
coordinates to 1-D array is the following

idx =
t ∗XY Z + z ∗XY + y ∗X + x

2

where X, Y , and Z are the dimension’s sizes, x, y, z, t are
the coordinates of a site.

In CPU memory, all 6 floating numbers for a spinor or
18 floating numbers for a gauge field are stored contigu-
ously in memory. This is well suited for a CPU’s large cache
architecture. However, in a GPU, this will not result in co-
alesced memory access. In order to enable coalesced access,
the spinor or the gauge field are split into 3 float2 (double2)
or 9 float2 (double2) numbers, respectively, and stored as
depicted in Figs. 2 and 3. In this way, the threads in the
same warp are able to read or write data stored consecu-
tively, thus enabling coalesced access to achieve near maxi-
mum bandwidth.

In many cases, the 18 numbers in the gauge field are not
independent. For example, in a SU(3) matrix, the last row

2https://github.com/lattice/quda

…

one spinor field

Spinor field layout in GPU memory:

Spinor field layout in host memory:

Vh *Float2 + pad

… … …

pad ghost spinor fields

Spinor field layout in GPU memory:

Figure 2: Spinor field layout in host and GPU mem-
ory for the staggered discretization (consisting of six
floating point numbers per site). Here V h is half
the local volume of the lattice, corresponding to the
number of sites in an even/odd subset. Layout for
the clover-improved Wilson discretization is similar,
wherein the spinor field consists of 24 floating point
numbers per site.

can be constructed using the outer product of the first two
rows, thus reducing storage requirement to 12 numbers. Fur-
thermore, it was shown in [13] that an SU(3) matrix can be
reconstructed using only eight numbers. In these cases, we
can store and load only 12 or 8 numbers for a gauge field,
then reconstruct the entire 18 number gauge field on the fly.
In this way, we can trade extra computations for a reduced
bandwidth requirement, potentially improving the perfor-
mance. For single precision, the gauge field in these two
cases are split into three float4 (12 numbers case) or two
float4 (8 number case) instead of a number of float2 so that
we can achieve better bandwidth. Texture units are used
when possible to optimize read speed.

4.3 Parallelization Over Multiple GPUs
In parallelizing over multiple GPUs, the 4-D space time

lattice is partitioned and each GPU gets a local subvolume
of the 4-D space time lattice. Each GPU needs to commu-
nicate with its neighbors in the processor grid to get the
3 slices of three-dimensional data in order to do the dslash
operation for the local spinor data. The gauge field data re-
mains constant during the whole solution process, thus it is
exchanged only once at the beginning. The ghost gauge field
is placed in the ghost/padding regions shown in Fig. 3 and
proper indices are computed in the kernel to use the ghost
data. The spinor field, however, changes in each iteration of
the solution process thus must be exchanged among GPUs
each iteration. The ghost data for the spinor is placed at the
end of the local data buffer instead of the padding region due
to the requirement for computing norms with spinors.

Exchanging spinor data among GPUs involves several steps
in each direction: packing, gathering, inter-process commu-
nication through MPI or QMP, and scattering. The QMP, or
“QCD message-passing” standard, was originally developed
to provide a simplified subset of communication primitives



Gauge field layout in host memory:

Gauge field layout in GPU memory:

one gauge field

…

Gauge field layout in GPU memory:

Vh *Float2 + pad

…

pad/ghost gauge fields

… ……

Figure 3: Gauge field layout in host and GPU mem-
ory. The gauge field consists of 18 floating point
numbers per site (when no reconstruction is em-
ployed) and is ordered on the GPU so as to en-
sure that memory accesses in both interior and
boundary-update kernels are coalesced to the extent
possible.

most used by LQCD codes, allowing for optimized imple-
mentations on a variety of architectures, including purpose-
built machines that lack MPI. Packing involves launching a
GPU kernel to collect the boundary data for that direction
into a contiguous GPU buffer. The data is then copied from
the GPU to the host memory (gathering); after that, the
data is exchanged among the neighboring processes and fi-
nally the data is copied to the ghost area of the spinor in
the GPU (see Fig. 2). In each direction, these actions must
happen in sequence but for different directions, these steps
can overlap with each other thus reducing the overall run
time. To enable the overlap, one CUDA stream is used for
each direction.

The dslash computation in the GPU is separated into an
interior kernel and multiple exterior kernels. The updating
of interior spinors does not require ghost spinors. There-
fore, they can be updated without waiting for the ghost
data. Once the ghost data in a direction is collected, an
exterior kernel for that direction is launched to finish com-
puting the contribution from the boundary spinors. We use
eight CUDA streams for the eight directions (+X, +Y , +Z,
+T , −X, −Y , −Z, −T ) and one extra stream for interior
and exterior kernels. The overall dslash execution timeline
is shown in Fig. 4.

4.4 CG, Mixed Precision and Multi-mass CG
Solvers

Following the efficient implementation of the dslash oper-
ation in the GPU, we developed Conjugate Gradient (CG)
for all precisions: double precision, single precision and half
precision, and all the variations: no reconstruct (18 num-
bers for a gauge field), 12-reconstruct, 8-reconstruct gauge
fields. Mixed precision solvers [7] are also supported, where
the majority of the work is done in lower precision while
the residual is updated using higher precision later so that
the final solution is as accurate as the higher precision. We

0: kernels

GPU kernel

sync

Interior kernel X

Total 9 cuda Streams

1: X-backward

2: X-forward

exterior

kernels

Y Z T

cudaMemcpy

memcpy (host)

MPI send/recv

sync

GPU idle

gather kernel

7: T-backward

8: T-forward

.

.

.

.

.

.

Figure 4: Use of CUDA streams in the application of
the Dirac operator, illustrating the multiple stages
of communication. A single stream is used for the
interior and exterior kernels, and two streams per
dimension are used for gather kernels, PCIe data
transfer, host memory copies, and inter-node com-
munication.

Table 2: Measured peak bandwidth
communication measured peak (GB/s)

h2d 5.7
d2h 6.5
bidir optimal numa 11.3
bidir suboptimal numa 9.1

also developed a multi-shift (multi-mass) CG solver based on
the algorithm in Ref. [14] and a variation to solve multi-shift
systems using a mixed precision solver.

5. THE PERFORMANCE RESULTS

5.1 Bandwidth across the PCIe Connection
To better understand the GPU performance, we bench-

marked the communication bandwidth over PCIe. The host
to device (h2d), device to host (d2h) and bi-directional band-
width are shown in Fig. 5 with different message sizes. The
peak bandwidth is reported in Table 2. The bi-directional
bandwidth is measured by sending data from host to device
and from device to host at the same time. Since h2d and
d2h are the same for different numa settings, we only report
one. However, the bi-directional bandwidth shows a differ-
ence for large messages. This indicates that there can be
a performance penalty when the d2h and h2d communica-
tion happen simultaneously if the process is running on the
suboptimal numa node.

5.2 The Dslash Timeline And The solver’s Per-
formance

Dslash operation is the most time consuming operation
in the CG solver, and the performance of a CG solver is
determined by how effectively we can execute the dslash op-
eration. Here we use the U(1) code that computes the elec-



Figure 5: The h2d, d2h and bi-directional band-
width in a Cray XK6 GPU node

tromagnetic contribution to the meson mass [15]. The test is
set up to run on 16 GPUs, with the input lattice size 283×96,
7 masses and different numa settings. The solver is the dou-
ble/single mixed precision multi-mass solver. The problem
is partitioned over Y/Z/T dimensions in the grid of 2×2×4,
with local volume size 28×14×14×24. In each iteration, the
spinor’s boundary data is exchanged among its immediate
neighbors in six directions +Y,−Y,+Z,−Z,+T,−T .

The system we use in this experiment is the Early Science
System (ESS) for Blue Waters. The ESS contains 48 Cray
XE6 cabinets and a small number of XK6 GPU nodes, repre-
senting about 15% of the final Blue Waters system 3. On the
ESS we use CUDA 4.0 for the GPUs and Cray MPICH2 ver-
sion 5.4.2 for inter-node communication. One typical dslash
execution timeline in ESS is shown in Fig. 6, with optimal
or suboptimal numa. In both cases, the interior kernel time
exceeds the communication time. The asynchronous nature
of the communication channel makes the execution in the
communication channel efficient since there is no fixed order
of execution among different channels. It can be seen in the
diagram that all the communication phases, including d2h,
inter-node MPI communication and h2d, are well overlapped
with each other in different communication channels. While
in both cases, the interior kernel runs long enough to cover
the communication time, it is clear that with the subopti-
mal numa setting communication takes longer and is much
closer to the interior kernel run time. It is worth noting
that while the h2d and d2h performance for different numa
nodes are virtually identical, the combined performance is
not, and the message sizes in our test cases (197,568 bytes
for the T direction, and 338,688 bytes for the Y and Z di-
rections) are large enough to be in the region where the
bi-directional PCIe performance degrades with suboptimal
numa binding (see Fig. 5). It is shown in the suboptimal
numa figure that the gather phase in the Y− channel is
starting to overlap with the scatter phase in the T+ phase,

3More info about ESS can be found in
http://www.ncsa.illinois.edu/News/Stories/BW ESS/

with which the numa effects for bi-directional bandwith will
influence the performance. The numa node also has a visible
impact on the MPI performance as shown in the orange bar
in Figure 6. Overall this explains why the communication
channel binding to the suboptimal numa cores shows longer
communication time.

Figure 6: The execution timeline for one dslash
operation with different numa settings. Each hori-
zontal represents a CUDA stream handling one di-
rections’ communication and/or kernels. In both
cases the interior kernel completely overlaps the
communications in other directions. The upper di-
agram represents the case with optimal numa map-
ping while the bottom one represents the subopti-
mal numa mapping case.

The achieved bandwidth results are shown in Table 3. One
noticeable point is that the bandwidth in the scatter phase
is higher than those in the gather phase in general. This is
due to the fact the gather for all communication channels
happen in a relatively small time window, and they compete
with each other for PCIe bandwidth, while the scatter in dif-
ferent communication channels happens at different times,
and each one gets nearly full bandwidth. It is not surprising
that the first d2h communication (T+, gather) and the last
h2d (Y+, scatter), achieve the best bandwidth performance
because there is no contention for the first or the last PCI
communications.

The final solver performance for both cases in ESS, shown
in Table 4, are very close to each other. As mentioned ear-
lier, the interior kernel completely covers the communication
channel’s execution, thus shielding the internal communica-
tion differences. Due to limited availability of GPU nodes,
we are not able to test scaling with more than 16 GPUs.
However, we expect the solver’s performance may degrade
significant when the local volume decreases thus reducing
the interior kernel run time.

As a comparison, we did similar runs on the Dirac GPU



cluster in NERSC4. Dirac is a 50 node GPU cluster con-
nected with QDR infiniband. Each GPU node contains two
Intel 5530 2.4 GHz, 5.86 GT/sec QPI Quad core Nehalem
processors each with 8 MB of cache (8 cores per node) and 24
GB DDR3-1066 registered ECC memory. Forty four nodes
contain one C2050 GPU per node, and the rest contain var-
ious numbers of different GPUs. For this experiment, we
used 16 C2050 GPU nodes and benchmarked the same prob-
lem. We used CUDA 4.1 for GPUs and openMPI 1.4.2 with
gcc in Dirac for inter-node communications. The dslash pro-
file is shown in Fig. 7. It can be seen that the interior kernel
is only slightly slower in Dirac than in ESS. This makes sense
since we have C2050 in Dirac, while we have the full blown
Fermi GPU X2090 in ESS. A noticeable difference is that
at NERSC the overall communication time is more than the
interior kernel, therefore, the GPU is idle for a significant
fraction of the time, thus degrading the performance. One
interesting point to notice regarding the Dirac cluster is that
while the MPI communication for different channels started
at different times, they end almost at the same time. We
speculate that this might be due to a fair-share policy in the
MPI implementation. This is particularly bad for our appli-
cation because it slows down every channel, and it creates
contention for the host to device communication bandwidth,
as can been seen in the scatter time in Fig. 7. The solver’s
reported performance is shown in Table 4. The ESS GPU
nodes are about 40% faster than the GPU nodes in Dirac
cluster for this particular run. It is worth noting that we
did not report the optimal numa or suboptimal numa per-
formance for Dirac, as our measurements show no difference
between the different numa settings.

4http://www.nersc.gov/users/computational-
systems/dirac/

Table 3: The achieved bandwidth in the different
communication stages. The message size in T direc-
tion is 197, 568 bytes while it is 338, 688 bytes in Y
and Z directions.

numa node Comm Gather MPI Scatter

optimal numa

T- 2.9 2.8 2.3
T+ 4.9 3.6 4.2
Z- 1.8 2.8 4.1
Z+ 2.6 2.8 4.2
Y- 1.1 2.6 3.4
Y+ 1.4 2.3 5.0

suboptimal numa

T- 2.8 1.5 1.7
T+ 4.5 3.3 3.4
Z- 1.5 2.2 3.2
Z+ 2.3 2.4 2.1
Y- 0.8 1.6 3.4
Y+ 1.0 1.5 4.8

Table 4: The CG performance
Machine GFLOPS/GPU

ESS with optimal numa 51.1
ESS with suboptimal numa 50.3
Dirac 36.1

Figure 7: The execution timeline in a typical dslash
operation in the Dirac GPU cluster at NERSC.Each
horizontal represents a CUDA stream handing one
directions’ communication and/or kernels. In this
run the communication channels run longer time
than the interior kernel, indicating the performance
will hurt because the GPUs sit idle for some period
of time during the iteration

6. CONCLUSIONS AND FUTURE WORK
This paper demonstrates and explains the dslash and the

conjugate Gradient solver’s performance when running a
MILC application on multiple Cray XK6 GPU nodes, par-
allelizing in multiple dimensions. Our results show how the
relative runtime of the communication channels and the in-
terior kernel dictates the final performance. The result also
shows that while there is virtually no difference in d2h and
h2d for the different numa cores, the combined bandwidth is
not the same, and this is reflected in the increased communi-
cation time in the dslash operation. While the current runs
show little difference with different numa bindings, the per-
formance difference is expected to be more significant when
the problem is scaled up to more GPUs and the interior
kernel runs in less time than the communication channels.
We also compared the performance between ESS and Dirac
GPU cluster from NESRC and show how the better GPUs
and inter-node communications help the ESS achieve better
performance.

Our future work includes two directions: one is to push
the scaling so that we can run the solver in thousands of
GPUs efficiently with real world work loads; the other direc-
tion is to port all the components, including the fatlink, the
gauge force and the fermion force computation into GPUs
and parallelize them over multiple GPUs so that we can run
the entire gauge generation in many GPUs. We are actively
pursuing both goals with other members of the QUDA de-
velopment team.

7. ACKNOWLEDGMENTS
Part of this research used resources of the National En-

ergy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of En-
ergy under Contract No. DE-AC02-05CH11231. This work
was partially supported by Department of Energy grants
DE-FC02-06ER41443 and DE-FG02-91ER40661. We thank
Robert Gottlieb for reading the manuscript.

8. REFERENCES
[1] R. Babich, M. A. Clark, B. Joó, G. Shi, R. C. Brower,



and S. Gottlieb, “Scaling Lattice QCD beyond 100
GPUs,” in Proceedings of the 2011 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11.
IEEE Computer Society, 2011.

[2] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz,
D. Nógrádi, and K. K. Szabó, “Lattice QCD as a video
game,” Computer Physics Communications 177 no. 8,
(2007) 631 – 639, arXiv:0611022 [hep-lat].

[3] M. A. Clark, “QCD on GPUs: cost effective
supercomputing,” PoS LATTICE2009 (2009) 003.

[4] A. Alexandru, C. Pelissier, B. Gamari, and F. Lee,
“Multi-mass solvers for lattice QCD on GPUs,”
arXiv:1103.5103 [hep-lat].

[5] TWQCD Collaboration, T.-W. Chiu, T.-H. Hsieh,
Y.-Y. Mao, and K. Ogawa, “GPU-Based Conjugate
Gradient Solver for Lattice QCD with Domain-Wall
Fermions,” PoS LATTICE2010 (2010) 030,
arXiv:1101.0423 [hep-lat].

[6] K. Hyung-Jin and L. Weonjong, “Multi GPU
Performance of Conjugate Gradient Algorithm with
Staggered Fermions,” PoS LATTICE2010 (2010)
028.

[7] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and
C. Rebbi, “Solving Lattice QCD systems of equations
using mixed precision solvers on GPUs,” Comput.
Phys. Commun. 181 (2010) 1517–1528,
arXiv:0911.3191 [hep-lat].

[8] R. Babich, M. A. Clark, and B. Joó, “Parallelizing the
QUDA Library for Multi-GPU Calculations in Lattice
Quantum Chromodynamics,” in Proceedings of the
2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’10, pp. 1–11. IEEE Computer Society,
Washington, DC, USA, 2010. arXiv:1011.0024
[hep-lat].

[9] G. Shi, S. Gottlieb, A. Torok, and V. V. Kindratenko,
“Design of MILC lattice QCD application for GPU
clusters,” in IPDPS. IEEE, 2011.

[10] A. Alexandru, M. Lujan, C. Pelissier, B. Gamari, and
F. X. Lee, “Efficient implementation of the overlap
operator on multi- GPUs,” arXiv:1106.4964

[hep-lat].

[11] S. Borsáni, “Thermodynamics from accelerated
architectures.”
http://crunch.ikp.physik.tu-darmstadt.de/

gpu2011/Talks/Borsanyi_Darmstadt_GPU.pdf, 2011.

[12] K. Barros, R. Babich, R. Brower, M. A. Clark, and
C. Rebbi, “Blasting through lattice calculations using
CUDA,” PoS LATTICE2008 (2008) 045.

[13] B. Bunk and R. Sommer, “An eight parameter
representation of SU(3) matrices and its application
for simulating lattice QCD,” Computer Physics
Communications 40 no. 2-3, (June, 1986) 229–232.

[14] B. Jegerlehner, “Multiple mass solvers,” Nuclear
Physics B - Proceedings Supplements 63 no. 1-3,
(April, 1998) 958–960.

[15] A. Torok, S. Basak, A. Bazavov, C. Bernard,
C. DeTar, E. Freeland, W. Freeman, S. Gottlieb,
U. Heller, J. Hetrick, V. Kindratenko, J. Laiho,
L.Levkova, M. Oktay, J. Osborn, G. Shi, R. Sugar,
D. Toussaint, and R. V. Water, “Electromagnetic

splitting of charged and neutral mesons,” PoS
LATTICE2010 (2010) .

http://dx.doi.org/DOI: 10.1016/j.cpc.2007.06.005
http://dx.doi.org/DOI: 10.1016/j.cpc.2007.06.005
http://arxiv.org/abs/0611022
http://arxiv.org/abs/1103.5103
http://arxiv.org/abs/1101.0423
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://arxiv.org/abs/0911.3191
http://dx.doi.org/http://dx.doi.org/10.1109/SC.2010.40
http://dx.doi.org/http://dx.doi.org/10.1109/SC.2010.40
http://dx.doi.org/http://dx.doi.org/10.1109/SC.2010.40
http://arxiv.org/abs/1011.0024
http://arxiv.org/abs/1011.0024
http://arxiv.org/abs/1106.4964
http://arxiv.org/abs/1106.4964
http://crunch.ikp.physik.tu-darmstadt.de/gpu2011/Talks/Borsanyi_Darmstadt_GPU.pdf
http://crunch.ikp.physik.tu-darmstadt.de/gpu2011/Talks/Borsanyi_Darmstadt_GPU.pdf
http://dx.doi.org/10.1016/0010-4655(86)90111-6
http://dx.doi.org/10.1016/0010-4655(86)90111-6
http://dx.doi.org/10.1016/S0920-5632(97)00954-7
http://dx.doi.org/10.1016/S0920-5632(97)00954-7
http://dx.doi.org/10.1016/S0920-5632(97)00954-7

	Introduction: Lattice QCD and MILC
	GPU architecture: Fermi GPUs
	Overview Of Related Work
	The QUDA library
	General Introduction
	Data Structure And Data Layout In GPU Memory
	Parallelization Over Multiple GPUs
	CG, Mixed Precision and Multi-mass CG Solvers

	The Performance Results
	Bandwidth across the PCIe Connection
	The Dslash Timeline And The solver's Performance

	Conclusions And Future Work
	Acknowledgments
	References

