
My Cray can do that?
Supporting Diverse Workloads on the Cray XE-6

Richard Shane Canon, Lavanya Ramakrishnan, and Jay Srinivasan
NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA USA

SCanon,LRamakrishnan,JSrinivasan@lbl.gov

Abstract—The Cray XE architecture has been optimized to
support tightly coupled MPI applications, but there is an in-
creasing need to run more diverse workloads in the scientific
and technical computing domains. These needs are being driven
by trends such as the increasing need to process “Big Data”. In
the scientific arena, this is exemplified by the need to analyze data
from instruments ranging from sequencers, telescopes, and X-ray
light sources. These workloads are typically throughput oriented
and often involve complex task dependencies. Can platforms
like the Cray XE line play a role here? In this paper, we will
describe tools we have developed to support high-throughput
workloads and data intensive applications on NERSC’s Hopper
system. These tools include a custom task farmer framework,
tools to create virtual private clusters on the Cray, and using
Cray’s Cluster Compatibility Mode (CCM) to support more
diverse workloads. In addition, we will describe our experience
with running Hadoop, a popular open-source implementation of
MapReduce, on Cray systems. We will present our experiences
with this work including successes and challenges. Finally, we
will discuss future directions and how the Cray platforms could
be further enhanced to support these class of workloads.

Index Terms—data intensive; hadoop; workflow

I. INTRODUCTION

Increasingly, high-end and large-scale computing are be-
ing applied to new fields of study. Most noticeably is the
growth in the demands around “Big Data” where large-scale
resources are used to process petabyte scale datasets and
perform advanced analytics. Modern HPC systems like the
Cray XE-6 could potentially play a role in addressing these
emerging needs, but several design characteristics stand in
the way. Fortunately, the platform’s use of commodity based
processors and Linux underpinnings can be exploited to open
the door to these non-HPC workloads. Furthermore, Cray’s
recent investments to support dynamic shared libraries and
its Cluster Compatibility suite further simplify the system.
In this paper, we will discuss how NERSC has exploited
these capabilities to support more diverse workloads on its
Hopper XE-6 system. This discussion will include how this
was accomplished and the impact it is having on certain
applications areas.

II. BACKGROUND

A growing number of fields are requiring increasing
amounts of computation to keep pace with data and new
classes of modeling and simulation workloads. For example,

 $1,000

 $10,000

 $100,000

 $1,000,000

 $10,000,000

 $100,000,000

S
ep

-0
1

D
ec

-0
1

M
ar

-0
2

Ju
n-

02

S
ep

-0
2

D
ec

-0
2

M
ar

-0
3

Ju
n-

03

S
ep

-0
3

D
ec

-0
3

M
ar

-0
4

Ju
n-

04

S
ep

-0
4

D
ec

-0
4

M
ar

-0
5

Ju
n-

05

S
ep

-0
5

D
ec

-0
5

M
ar

-0
6

Ju
n-

06

S
ep

-0
6

D
ec

-0
6

M
ar

-0
7

Ju
n-

07

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n-

08

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n-

09

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

Ju
n-

10

S
ep

-1
0

D
ec

-1
0

M
ar

-1
1

Ju
n-

11

S
ep

-1
1

Cost per Genome

Source: National Human
Genome Research Institute

Moore’s Law

Fig. 1. Plot of declining cost of sequencing a human genome compared with
the relative cost of computing. Figure is courtesy of NHGRI.

the genomics field has experienced a rapid growth in sequence
data over the past 8 years. This has been driven by the rapid
drop in sequencing cost due to Next Generation Sequencers.
Fig 1 illustrates this growth, where it shows that the cost
of sequencing a genome has dropped by a factor of over
10,000 in less than a decade. By comparison, a comparable
plot of Moore’s law has provided around 100x improvement
over the same period. This growth in sequence data leads to a
comparable growth in demand for computing. The results from
the analysis of genomic data can aid in the identification of
microbes useful for the purposes of bioremediation, biofuels,
and other applications. Another example comes from the
Materials Project [1]. The Materials Project is an effort to
model thousands of inorganic compounds to compute basic
material properties. These results are then used to identify
promising materials for applications such as next generation
batteries. This requires throughput oriented scheduling and
future efforts may require hundreds of millions of core hours
of simulation. Increasingly, these communities are looking to
use HPC Centers to satisfy their resource demands.

A platform like NERSC’s Hopper system provides an un-
precedented level of capability to a broad set of researchers.
However, the XE-6 architecture and its run-time environment
have been optimized for tightly-coupled applications typically

written in MPI. Furthermore, the scheduling policies in place
at many HPC centers like NERSC have traditionally been de-
signed to favor jobs that concurrently utilize a large number of
processors. Unfortunately, these design points and policies can
act as a barrier to a growing set of users that can take advantage
of the computational power but have more throughput oriented
workloads. In the past, HPC centers have often directed this
class of users to other resources or facilities arguing that the
large HPC systems were to specialized and valuable to use
for throughput oriented workloads. However, recent analysis
at NERSC shows that HPC systems like Hopper can be cost
effective compared to many department scale clusters [2]. This
is a consequence of the size of the system which allows for
a greater level of consolidation and increased economies of
scale. Furthermore, there is an increasing need to support a
variety of scales and workload patterns in order to ensure
that researchers can productively accomplish their science.
Recognizing these points, NERSC has engaged in a variety
of efforts to enable these new class of users to leverage the
computational power of systems like Hopper.

There are several issues that often complicate using a system
like Hopper for throughput workloads. Some are policy based.
For example, NERSC typically limits the number of jobs per
user in an “eligible” stage for scheduling. The justification for
this is to guard against a single user occupying the system for
extended period of time which could prevent other users from
getting jobs processed in a reasonable time. Other barriers are
due to the run-time system. For example, on the Cray platform
one must use the ALPS runtime (i.e. aprun) to instantiate
a process out on a compute node. While multiple aprun
commands can be executed in parallel from a single job script,
relying on this approach leads to the undesirable consequence
that users would require thousands of aprun commands to
run a typical throughput oriented workload. Recognizing these
challenges, NERSC has explored a number of approaches
to either working around these limitations or changing the
policies and run-time environment.

III. APPROACHES

There are several potential approaches to addressing the
policy and run-time constraints that stand in the way of
running throughput workloads. One method is to provide
an alternate framework that runs within the constraints of
the policies and run-time system but provides an efficient
mechanism to execute throughput workloads. We provided
three examples of this approach including a Task Farmer,
Hadoop on demand, and a personal scheduler instance. An-
other approach is to remove the policy and run-time limitations
entirely. We describe an approach that leverages Cray’s re-
cently released Cluster Compatibility Mode (CCM) to provide
a throughput oriented scheduling environment. We will explain
the differences between these different approaches including
some of the limitations and constraints. We will also provide
an explanation on the trade-offs of different approaches for
different workloads.

A. Task Farmer

As noted in the introduction, the field of Genomics is
facing an unprecedented increase in data generation. This
trend led the Joint Genome Institute (JGI), DOE’s production
sequencing facility, to turn to NERSC to help address its
increasing computing needs. In addition to JGI’s dedicated
resources, JGI users wanted to exploit the capabilities of
systems like Hopper to process and analyze genomic data.
This led NERSC to develop a framework that would enable
JGI scientists to easily exploit the capabilities of the HPC
systems. The result of this work was a Task Farmer optimized
for use cases common in genomics, but which is applicable
across a broad set of throughput oriented applications.

1) Approach: Many high throughput workloads require
running a common set of analysis steps across a large input
data set in parallel. Often times, these tasks can be run com-
pletely independent of each other (i.e. embarrassingly parallel).
Typically one would use a serial queue on a throughput
oriented cluster to satisfy this workload. However, on an HPC
system it is desirable to restructure this as a single large
parallel job that uses an internal mechanism to launch the tasks
on the allocated processors. This is exactly the approach the
TaskFarmer takes. The framework consists of a single server
and multiple clients running on each of the compute elements.
The server handles coordinating work, tracking completion,
sending the input data to be processed, and serializing the
output. The client, which is run on the compute nodes, handles
requesting work, launching the serial application, and sending
any output back to the server before requesting new work.
The framework is primarily written in Perl. While this is
arguable not the most efficient language to use, it was the
most familiar to the developers and users which mades it a
convenient choice.

The TaskFarmer framework provides several features that
simplify running throughput oriented workloads. Here we
summarize a few.

• Fault Tolerance: Clients send a heartbeat to the server. If
the server fails to receive a heartbeat within an adjustable
time period, then it will automatically reschedule the task.
The framework will also automatically retry tasks up to
a threshold. This can help work around transient failures.

• Checkpointing: The server keeps track of which tasks
have been completed successfully. A compact recovery
file is maintained in a consistent state with the output
files. The recovery process is particularly useful when
the required wall time for a job is poorly understood.

• Serialized Output: The clients send the output from
each tasks back to the server. While this can create
a scaling bottleneck, in practice this works reasonably
well for many workloads. This ensures that the output
is consistent and prevents potentially overlapping writes
within a single file. It also helps avoid creating thousands
or millions of individual output files if each task was to
write to a dedicated file.

• Sharding the Input: The server understands the FASTA

Fig. 2. Example of web based status page for the TaskFarmer.

format which is commonly used in genomics and it
can automatically shard the input sequences up into
small chunks. This eliminates the need to pre-shard the
input and create thousands or millions of input files for
processing.

• Progress Monitoring: The TaskFarmer can update a JSON
formatted status file. This file can be downloaded from
a web server and visualized by a monitoring page (See
Fig. 2).

The TaskFarmer greatly simplifies many common tasks in
genomic processing. For example, the following command
would execute BLAST across all of the allocated processors.

tfrun -i input.faa blastall -p blastp \
-o blast.out -m8 -d $SCRATCH/reference

The framework takes care of splitting up input.faa into small
chunks (32 sequences by default) and merges the output into a
single output file (blast.out). If the parallel job requests were
to run out of time, the job can be resubmitted and the Task
Farmer will automatically resume from where it left off and
re-queue any tasks that were incomplete.

2) Scaling and Thread Optimization: The TaskFarmer uses
TCP sockets for communications between the server and
client. While this can create a potential scaling bottleneck, in
practice we have found it to be sufficient to scale up to 32,000
cores. Connection between the server and client are created
and destroyed during each exchange. This adds overhead for
creating the connections but helps avoid running out of sockets
on the server. Typically, when using the TaskFarmer we adjust
the task granularity to achieve an average task run time of
around five to ten minutes. This decreases the average number
of connections to 50-100 per second for even a large 32k core
run. One advantage of using TCP sockets is that the framework
can be easily ported to other resources. For example, in
addition to Hopper, the framework has been deployed on a
cluster and, even, on virtualized cloud-based resources. The
framework also supports running a single server that is used
to coordinate across multiple resources.

The TaskFarmer allows the user to adjust the num-

ber of tasks per node by setting an environment variable
(THREADS). This can be used in conjuction with a threaded
applications to reduce the load on the server since this can
help reduce the number of concurrent connections. In general,
the user adjusts THREADS and the level of threading for
the underlying application to find the balance that achieves
the best efficiency and the least load on the server. This can
require some experimentation for a new CPU architecture
and the optimal layout is highly dependent on the underlying
application. For example, for some applications we have found
they run best with four instances per node with each instance
using six threads. While for other applications, where the
threading implementation is not efficient, we simply run 24
instances per node and disable threading in the application.

3) Discussion: The TaskFarmer has proven useful for tack-
ling a number of large scale genomic workloads. This has
included large-scale comparisons of metageome datasets with
standard references and building clusters using hmmsearch.
Since the input format for the TaskFarmer is quite simple, it
has also been adopted to run lists of commands, MapRduce
style applications, and other task oriented workloads.

B. MyHadoop

In 2005, Jeffrey Dean and Sanjay Ghemawat at Google
published a paper describing Google’s approach to addressing
their rapidly increasing data analysis needs [3]. A related
paper was published shortly after describing the distributed
file system that was used to support the distributed framework
[4]. Together, MapReduce and the Google File System (GFS),
enabled google to tackle internet scale data mining with a
highly scalable, fault tolerant system. These publications were
widely read, and soon after inspired Doug Cutting to create
Hadoop, an open-source framework modeled after MapReduce
and GFS. The power of this approach is that it allows a user to
easily express many data-intensive problems in a simple way.
The framework then handles the job of distributing the tasks
across a system in a manner that is resilient against failures,
efficiently allocates work close to data, and is highly-scalable.

Hadoop has been widely adopted by the Web 2.0 community
to deal with some of the most demanding data intensive tasks.
Petabyte scale data sets are now being analyzed with Hadoop
at companies like Yahoo! and Facebook [5], [6]. Traditionally,
Hadoop has been used for text analysis for tasks such as web
search or mining web logs. However, the MapReduce model
is starting to be applied to data-intensive scientific computing
as well. Genome assembly and comparison have been ported
to run inside the framework [7]. Hadoop has typically been
deployed on commodity based clusters using inexpensive
storage. However, as the model gains wider adoption, it will
likely prove a useful approach fo analyzing data sets on large-
scale systems. To help users explore this model on the Cray
we have developed “MyHadoop” which enables a user to
instantiate a private Hadoop cluster that is requested as a single
parallel job through the standard Torque/Moab batch system.

1) MapReduce and the Hadoop Architecture: A Map Re-
duce tasks consists of three basic phases: a map phase, a

36

Node 1

Mapper

Node 2

Mapper

Node N

Mapper

Node 1

Reducer

Node 2

Reducer

Node N

Reducer

Shuffle

Map

Reduce

Fig. 3. Illustration of the MapReduce model including the implicit shuffle
phase.

shuffle phase, and a reduce phase. The user specifies the
functions to perform in the map and reduce phases, hence
the name. The Map function reads in input data delivered
through the framework and emits key-value pairs. The shuffle
phase which is performed implicitly by the framework, handles
redistributing the output to the reduce tasks and ensures that
all key-values pairs that share a common key are sent to a
single reducer. This means that a reducer does not have to
communicate with other reducers to perform the reduction
operation. For example, assume that there was a large list of
numbers that needed to be binned into a histogram. The map
would compute the bin for each input that it was sent and
emit a key of the bin number and a value of 1. The reducer
would then accumulate all of the inputs to compute the total
for each bin in its partition space. The framework assist in
decomposing the map phase into individual tasks. By default,
it will create a map tasks for ever block of input, but this
behavior can be tuned. The user must typically specify the
number of reduce tasks, since the framework cannot easily
predict the best number of reducers.

The Hadoop MapReduce framework consists of a single
Job Tracker and many Task Trackers. The Job Tracker tracks
the overall health of the system, handles job submissions,
schedules and distributes work, and retries failed tasks among
other things. It plays a role similar to the master server in
a batch scheduler system. The task trackers communicate
with the job tracker and execute tasks. The task trackers also
performs the shuffle operation by directly transmitting data
between task trackers. The task trackers run all phases of the
job (Map, Shuffle, and Reduce). The task trackers also send
heartbeats and statistics back to the job tracker. If a job tracker
fails to receive a heartbeat within a certain time period, it
will automatically reschedule tasks which were running on the
node. The architecture is similar to the resource manager and
execution daemon used in a batch system. When scheduling
tasks, the job tracker will attempt to place the map tasks
close to the data. It does this by querying the file system to
determine the location of the data. For example, if there is
an idle task tracker that contains a copy of the data, it will
typically schedule the tasks on that node.

The Hadoop Distributed File System consists of a single

Name Node and many Data Nodes. The Name Node maintains
the name space of the file system and is similar to the metadata
server in a parallel file system such as Lustre. The Data Nodes
store blocks of data on locally attached disks similar to an
Object Storage Server in Lustre. The file system is typically
configured to replicate the data across multiple data nodes for
fault-tolerance and performance. In Hadoop, the Task Tracker
and the Data Node are typically running on every compute
node in the cluster. The Task Tracker will normally direct its
output to the local Data Node to avoid excess communication.
The Data Node will then handle replicating the data to
other Data Nodes to achieve the specified replication level.
The Name Node provides the location of the replicas but is
otherwise not involved in the replication process. While the
primary purpose of the replication is to provide fault-tolerance,
the extra replicas also provide increased opportunities for the
job tracker to schedule tasks close to the data.

2) Implementation on Cray Systems: Hadoop has been
designed to run on commodity clusters with local disks and
a weak interconnect such as gigabit ethernet. Consequently,
running Hadoop on a system like the Cray which lacks local
storage presents some challenges. In addition, the framework
is written in Java and is typically started through startup scripts
that rely on ssh to launch the various services on the compute
elements. Here is a brief summary of the ways in which we
address these issues and others on the Cray systems.

• Utilize the Lustre scratch file system to replace HDFS: In
certain cases, Hadoop requires a local working directory
for the Task Tracker. In this case we create a unique
directory for each node in the Lustre file system and use
symlinks to direct Hadoop to the appropriate directory.
We use a default stripe count of one.

• Generate a set of configuration files: The configuration
is customized to use the user’s scratch space for various
Hadoop temporary files. In addition, the job tracker is
configured to run on the ”MOM” node.

• Use CRAY ROOT FS = DSL: This provides a more
complete run-time environment on the compute nodes for
the Hadoop framework.

• Use aprun to launch the task tracker on the compute
nodes: The option “-N 1” is used to ensure that a single
TaskTracker per node is started.

• Tell Java to use the urandom random number gen-
erator instead of the default random: This is needed
because there are insufficient inputs for entropy on
the light-weight compute nodes. This is achieved by
adding the following argument to the Java execution
−Djava.security.egd = file : /dev/urandom.

• Use a custom library that is specified through
LD PRELOAD environment variable: This library in-
tercepts calls to getpw∗ and getgr∗ and returns generated
strings. This is to work around the fact that the com-
pute nodes do not typically have fully configured name
services. For example, at NERSC we rely on LDAP to
provide name services, but this is not configured on com-
pute nodes. The library is designed to provide responses

to the specific types of lookup queries performed during
Hadoop startup.

Most of these details are handled in the MyHadoop startup
scripts. It handles initializing the users environment and file
layout, starting up the Job Tracker on the MOM node, and
launching the Task Trackers on the compute nodes. Once
the framework is started, the user can submit jobs to the
private Hadoop instance in the exact same way jobs would
be submitted to a dedicated Hadoop cluster.

3) Discussion: While the customizations we have devel-
oped enable Hadoop clusters to be started on systems like
the Cray XE-6, the user needs to understand some of the
limitations of the approach. The most significant limitation
comes from the lack of local disk storage. Hadoop assumes
local disk both in its distributed file system and in its
MapReduce framework. A well performing Lustre file system
can effectively replace an HDFS file system. However, the
framework’s expectation of local disk to “spill” large output to
during the map phase is more difficult to address. On the Cray
system, these temporary files must be written to the Lustre
file system which introduces more load on the file system and
impacts the overall performance. As a result, Hadoop on the
Cray is best suited for applications where the map tasks is able
to minimize the output sent to the reducers. A good example
is a map performing a filter of input data.

C. MySGE

Many workflows require a mixture of task parallel execution
coupled with serial regions that call for a more sophisticated
execution framework. For example, a pipeline may require
executing some analysis operation across a large input data
set then reorganizing the results and performing additional
analysis. These types of dependency based scheduling call
for a more flexible solution. Batch systems such as Torque
and Univa’s GridEngine already provide these capabilities.
However, systems like Hopper are typically configured to
favor large parallel jobs and, sometimes, take steps to penal-
ize through-put workloads. In addition, aspects of the Cray
run-time system (ALPS) also complicate running throughput
oriented workloads on the system. In order to address this
combination of policy and architectural constraints, we devel-
oped MySGE. This tool allows individual users to instantiate
“virtual private clusters” (VPC) running a private GridEngine
scheduler. Users can then submit a broad range of workloads
to this private cluster including array jobs or jobs with complex
dependencies. From the standpoint of the global scheduler, the
VPC looks like a standard parallel job.

1) Architecture: The GridEngine scheduler (both Sun
GridEngine and Univa GridEngine) are a popular choice
for throughput oriented workloads. GridEngine is particu-
larly popular among the genomics and experimental High-
Energy Physics communities. While the scheduler can support
scheduling parallel workloads, its strength is in its ability to
schedule a large number of tasks. This was one of the primary
reasons we chose GridEngine as the private scheduler for the
Virtual Private Cluster approach. Additionally, GridEngine can

be easily run as a non-root user and supports using SSL based
certificates for authentication. Using a similar approach with
Torque requires custom patches since it assumes that it is
running as root. The services used in a GridEngine cluster are
similar to those found in other batch systems. There is a master
scheduler service that receives jobs requests and schedules
the jobs on resources. There is a global master that monitors
the resources and communicates with the scheduler so that it
can select the appropriate resources. Finally on each compute
node, there is an execution daemon that communicates with
the master services, executes the actual jobs, and monitors the
node’s health.

2) Implementation on Cray Systems: MySGE is essentially
a collection of scripts that initializes the GridEngine environ-
ment for a user and assist in starting the various services. It
uses unaltered version of GridEngine which means existing job
scripts and tools can be used with it. Many of the challenges
described in Section III-B2 apply to MySGE as well. Here we
summarize the basic approach to launching GridEngine on the
Cray system.

• Prior to starting a MySGE cluster, the user runs an initial-
ization script. This script creates the directory layout for
GridEngine, creates SSL certificates, and performs other
basic setup tasks.

• Once the system is initialized, the user executes
vpc start to instantiate the VPC. The user can include
standard torque qsub options to specify the desired wall
time, queue, number of nodes, etc to the global scheduler.
MySGE performs the actual submission to the global
scheduler and, once scheduled, handles starting up the
services.

• Upon startup MySGE ensures that a qmaster is running.
It then collects the hostnames (actually the Network ID
on the Cray systems) for the allocated nodes. While this
information could probably be gathered from a special
ALPS command, we simply use aprun to execute a
hostname script on the assigned compute nodes. These
hostnames are added to the GridEngine configuration as
execution hosts.

• Use CRAY ROOT FS = DSL to provide a more
complete run-time environment on the compute nodes for
the Hadoop framework.

• A custom library is preloaded in order to intercept calls
to getpw∗ and getgr∗. This is to work around the lack
of configured name services on the compute nodes. The
library reads various environment variables to generate a
response. CCM could be used to address this issue.

• MySGE uses aprun to start the execution daemons on
the compute nodes.

• The user sources a setup file to configure their environ-
ment to submit jobs to the VPC. This can be done from
any of the interactive nodes that are part of the Cray
system.

Once the VPC has been instiated, the user can submit
jobs to the VPC in the same manner they would a standard

ccm_queue	 batch	 queue	

Service	 (MOM)	
	 nodes	

CCM	 	
nodes	

Batch	 Nodes	

External	 (Eslogin)	
	 nodes	

Fig. 4. Schematic of access using CCM and MPP modes

GridEngine cluster.
3) Discussion: A MySGE Virtual Private Cluster provides

a great deal of flexibility, both in the types of jobs that can
be submitted to the VPC and in the configuration of the VPC.
For example, the user can submit large array jobs that run
very quickly and can include dependencies. Since the user
has dedicated access to the allocated nodes, the user doesn’t
have to wait in the global scheduler for each tasks to become
eligible for scheduling. If a slot in the allocated pool of
nodes is available, the job will run immediately. Furthermore,
since all of these services run as the end user, versus as
special privileged account, the user has total flexibility in the
configuration of the VPC scheduler. For example, the user
can customize the queue structure to provide different priority
queues. This allows the user to tailor the configuration for
their workload without additional assistance from a system
administrator. However, this does require the user to have a
more in-depth understanding of the batch system.

D. Using CCM

The Cray XE-6 system is able to function in two modes.
In the first, the MPP mode, the compute cores of the system
are tightly coupled with the high-speed interconnect and the
compute nodes of the system run a version of the Cray Linux
Environment which does not support all the services that one
might expect in a typical cluster environment. Additionally,
in this mode, a node is not shared between users, since the
Gemini network interface cannot be shared between different
users on the same node. However, there are a large number of
ISV applications that depend on the availability of the standard
Linux ”Cluster” environment, and users typically have little
to no control over these requirements. To accomodate these
users, Cray introduced the ”Cluster Compatibility Mode” (or
CCM v2.2.0-1) in CLE v4.0-UP02. CCM builds on the facility
that provides dynamic shared libraries to the compute nodes
(the Cray compute node root runtime environment, CNRTE)
and essentially transforms the individual compute nodes of
the Cray system into ”cluster-like” nodes which have a Linux
environment that will be familiar to users of Linux clusters.

One benefit of running a node under the CCM environment
is that we can then run applications and services on the
node that normally might not be available on the node. An

User	 1	 User	 2	 User	 3	 External	 (Eslogin)	
	 nodes	

CCM	 Computes	 as	 MOM	 nodes	

XE-‐6	 Service	 (MOM)	 Nodes	

XE-‐6	 Service	 	
(Torque	 server)	 	
Node	

Fig. 5. Schematic of jobs dispatched to CCM compute nodes running PBS
MOM

obvious use-case that Cray supports is that of ISV applications.
Earlier versions of CCM were restricted to utilizing the high-
speed (Gemini network) not natively, but instead over TCP/IP.
The performance implications of this for MPI-based ISV
applications are obvious, so Cray now supports a feature called
ISV Application Acceleration (IAA) which allows for direct
use of the Gemini network by providing a IB-verbs to Gemini
layer that MPI libraries compiled using IB-verbs can utilize.

Another use case is to essentially transform compute nodes
into stand-alone compute elements that can then be scheduled
independently. If one was to use a batch system such as
Torque, the nodes would then be ”Mom nodes” (in the
vernacular of Torque). This can be done by running a CCM job
(as a regular user) that, upon startup, then starts a PBS mom
daemon on each of the compute nodes assigned to the job.
These MOM processes then communicate with a previously
running Torque server (which is running on alternate ports, so
as to not conflict with the regular batch system).

To implement this, we have enabled user jobs to start up
PBS Mom processes on compute nodes. This is carefully
controlled so only a designated user, and one who is assigned
to the node by ALPS is able to start up MOM processes.
Once the MOM processes are up and running and registered
with the Torque server, other users can then submit jobs to the
batch system. In order to facilitate easy access to the second
batch system, we have provided a module that users can load
to give them access to commands used to query, submit jobs,
and manage their workflow through the second batch system.

The designated ”master CCM job” requests as many nodes
as is required to support a serial workload on the system for
as long as necessary. There are currently some limitations to
how many nodes can be requested using a single CCM job.
Once the CCM nodes are allocated, the user then starts up
a MOM on every single CCM allocated node (either using
ccmrun or ccmlogin). At this point, all the CCM nodes are
registered with the secondary Torque server and are available
to run jobs. Users can then query this secondary batch system
and submit jobs to it, just as if they were submitting jobs to
a regular cluster.

Fig. 6. Snippets of showq and qstat output showing multiple jobs on a
compute node

IV. DISCUSSION

The four approaches described above have various advan-
tages and disadvantages. Here we will discuss some of the
trade-offs. It is worth noting that all of these approaches
can coexist on a single system. Users can spawn MyHadoop
instances, while another user (or even the same user), starts
a MySGE Virtual Private Cluster. Since most of these ap-
proaches run as the end user, they behave basically the same as
a standard MPI parallel job from the standpoint of the global
scheduler.

1) Private versus Shared Resources: One major difference
between the two approaches is private versus shared alloca-
tion of resources. The first three approaches (Task Farmer,
MyHadoop, and MySGE) rely on a parallel job request to
the global scheduler. This allows these environments to be
instantiated without policy changes. For example, this can
effectively work around limits on the number of submitted
or eligible jobs. For some institutions, the scheduling policies
may be driven by external metrics or trying to balance com-
peting priorities. By operating within these constraints, this
approach allows the end user to get their work done without
requiring policy changes. However, there is a downside to this
approach. Since the nodes are reserved for the end user for
the duration of the parallel job request, other jobs can not be
scheduled on idle nodes by the global scheduler. If the user
can keep the allocated resources busy, this is not an issue.
However, if the throughput workload is highly variable, this
can lead to inefficient use of resources.

Example Use Case. To help illustrate this limitation, we will
describe a use case. User Bob has a task oriented workload that
requires roughly 1200 core hours of processing. The workload
consists of 12,000 tasks, so on average each task takes about
6 minutes. He decides to use MySGE and requests 1200 cores
for 2 hours to provide a buffer. Unfortunately, Bob’s tasks
are highly variable. Some tasks take only a minute while a
few take an hour. Bob submits this workload to his VPC.
After an hour most of the tasks are complete. However, a
handful of tasks continue to run and his final wall time is

TABLE I
SUMMARY OF COMPARISON BETWEEN DIFFERENT APPROACHES.

Approach Private/Shared Flexibility Fault Tolerance
Task Farmer Private Low High
MyHadoop Private Medium High
MySGE Private High Low
CCM/Torque Shared High Low

1.5 hours. During this long-tail period, Bob had over 1000
cores idle. Since these cores are reserved to Bob as a part of
his parallel job request to the global scheduler, other jobs can
not be scheduled to these idle cores by the global scheduler
so they remain idle. Furthermore, Bob is charged for those
resources even if the nodes are idle. So Bob is charged 1800
core hours versus the estimated 1200 core hours. If Bob’s
workload was perfectly load balanced, then each tasks would
run for 6 minutes and the workload would complete in the
expected hour wall time. In contrast, if Bob’s workload were
submitted to a CCM/Torque cluster, then other throughput jobs
can be run on the idle resources as Bob’s tasks complete.
Furthermore, Bob will only be charged for the hours consumed
(1200 core hours).

2) Flexibility: Throughput oriented workloads vary greatly
in complexity. In some cases, the user simply needs to
run a common function across a large set of inputs. For
example, filtering a dataset to remove data points that are
above some threshold. In other cases, the user may have
a combination of filters followed by some global reduction
operation. An example of this would be binning data points
and tallying the number of entries in each bin. The most
complex workflows may have many levels of dependencies
with highly parallel regions at different stages. We illustrate
these different workflows in Fig 7. A fully featured scheduling
system like GridEngine and Torque will provide the greatest
flexibility. So MySGE and CCM/Torque are typically the
best option for complex workflows. Using additional tools
such as Yahoo!’s Oozie [8] can enable Hadoop to run more
complex workflows, but this requires additional understanding
additional tools. Finally, the Task Farmer is tailored to running
an array of independent tasks and lacks a mechanism to specify
dependencies between tasks. So, it is most appropriate when
the workflow is a simple job array. We summarize these
features in Table I.

V. FUTURE WORK

NERSC continues to explore ways to extend these ap-
proaches and is particularly focused on ways to improve
the Torque/CCM approach. For example, the initial imple-
mentation uses a static set of resources. One enhancement
would be to dynamically add and remove resources to the
throughput partition based on demand. Ideally this would
utilize reservations in the throughput scheduler to ensure that
user jobs are not scheduled onto resources that may be released
back to the global parallel scheduler during the duration of the
job. Eventually the serial queue could be integrated into the
standard global scheduler. Users would simply submit jobs

Large Input

Filter/Map Filter/Map Filter/Map Filter/Map

Output Output Output Output

(a) Array Job

Large Input

Filter/Map Filter/Map Filter/Map Filter/Map

Reduce Reduce Reduce Reduce

Shuffle

Output

(b) Map Reduce Job

39

Large Input

Reorder

Finalize

Filter/Map Filter/Map Filter/Map Filter/Map

2nd Step 2nd Step 2nd Step 2nd Step

(c) Complex Job

Fig. 7. Illustrations of common workflow patterns.

to the serial queue, no differently than they would submit
a large parallel job. A combination of the Moab scheduler,
CCM, and custom startup scripts could be used to dynamically
move nodes back and forth between the parallel mode and the
throughput mode.

VI. CONCLUSION

The rapid increase in data-intensive computing and high
throughput computing has led to a dramatic increase in com-
puting requirements for these classes of workloads. These
increases are being driven by dramatic improvements in sci-
entific instruments and detectors and by an increasing need
to execute large scale ensemble runs for the purposes of un-
certainty quantification and exploring a large parameter space.
These class of problems have computational requirements that
rival some large scale simulation and modeling problems and
these communities are increasingly looking to use HPC centers
like NERSC to meet these needs. NERSC has developed and
explored a number of approaches to accommodating these
types of workloads. We expect that over time the needs of
the data intensive computing communities and those of the
traditional modeling and simulation communities will slowly

converge and that centers like NERSC will increasingly need
to effectively support both types of communities.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] “Materials project,” http://materialsproject.org/.
[2] “Magellan final report,” http://science.energy.gov/∼/media/ascr/pdf/

program-documents/docs/Magellan Final Report.pdf.
[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
29–43. [Online]. Available: http://doi.acm.org/10.1145/945445.945450

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, May 2010, pp. 1 –10.

[6] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt,
and A. Aiyer, “Apache hadoop goes realtime at facebook,” in Proceedings
of the 2011 international conference on Management of data, ser.
SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 1071–1080.
[Online]. Available: http://doi.acm.org/10.1145/1989323.1989438

[7] M. C. Schatz, “CloudBurst: highly sensitive read mapping with MapRe-
duce,” Bioinformatics, pp. 1363–1369, June 2009.

[8] “Oozie,” http://rvs.github.com/oozie/design.html.

