
Early Results from the ACES Interconnection Network Project

Duncan Roweth
Cray Inc, droweth@cray.com

Richard Barrett, Scott Hemmert
Sandia National Laboratories, rbarrett@sandia.com,

shemmert@sandia.com

Abstract—In the initial phases of ACES-INP we have
developed MPI trace file injection methods for Cray

simulators that allow detailed analysis of network behavior
under realistic application traffic loads. We have gathered
application traces for CTH, Sage, and the adaptive mesh
refinement step of xNobel, running at scale on the Cielo
Cray XE6 system. We are using this data to test and tune

our routing algorithms and to access the benefits of
functionality proposed for future generations of

interconnect. Early results show good performance on
realistic application traffic.

As part of the Exascale research program, the DOE lab
community is developing mini applications (MiniApps) that
are representative of the computational core of major ASC
codes. In future work we will integrate execution of these
applications with our simulators, enabling us to study the
communication patterns of future-looking applications,

either by simulating larger scales than we can trace, or by
modifying the communication patterns of existing

applications to explore new programming models. This
approach will allow us to analyze the transition from the

bulk synchronous communication paradigm in common use
today, to an asynchronous model in which new results are

communicated as soon as they have been computed

Keywords: MiniApps, Co-Design, MPI, Dragonfly Network

I. INTRODUCTION
Los Alamos National Laboratory and Sandia National

Laboratories have collaborated to create a New Mexico
center for high performance computing: the Alliance for
Computing at the Extreme Scale (ACES). ACES is funded
by the U.S. Department of Energy’s Advanced Simulation
and Computing (ASC) program and was formed to enable
the solution of critical national security problems through
the development and deployment of high performance
computing technologies. In spring 2010 the ACES
consortium and Cray Inc initiated the ACES Interconnection
Network Project (ACES-INP), a collaborative research
project focused on a potential future interconnection
network.. The intent of this project is to analyze potential
capabilities that would result in significant performance
benefits for a suite of ASC applications. The project
encompasses both the NIC and router architectures, with
early work focusing on the efficiency of the Dragonfly
topology for the communication patterns of selected ASC
applications. Assuming our collaborative research and

development effort is successful, Cray plans to provide this
functionality in future commercially available computer
systems.

Due to the historical characteristics of high performance
interconnects, many ASC applications have evolved to use a
bulk synchronous model of computation. Using the bulk
synchronous model, applications go through distinct
computation and communication phases, which results in
the applications sending larger messages than would be
natural for the utilized algorithms. One of the main drivers
for this evolution was low MPI messaging rates, leading to
the need to bundle messages together in order to saturate
network bandwidth.

The bulk synchronous model leads to underutilization of
the network during the computation stage. This in turn
exaggerates injection bandwidth requirements as the
communication occurs at the end of each phase, adding to
the time per cycle. On current systems, the computation
times are long and these overheads are generally small, but
as the computational rate of the nodes increases, or as we
increase the number of nodes used to solve a fixed size
problem (strong scaling) this ceases to be the case,
bandwidths must increase in order to maintain overall
efficiency.

This problem is further exacerbated as typical HPC node
architectures have not been able to adequately overlap
computation and communication, likely due to interference
generated in the memory system when both the network and
CPU attempt to access the memory simultaneously. The
bundling of messages leads not only to higher interconnect
bandwidth requirements, but it also wastes valuable memory
bandwidth as data is copied into and out of send/receive
buffers.

To address these inefficiencies, applications will need to
move away from bulk synchronous message aggregation to
more asynchronous communication using more natural
sized messages distributed throughout computation,
eliminating the distinct computation and communication
stages. However, applications will need help from the
network in order to make this feasible. In particular, the
network will need to support high message rates and allow a
high percentage of bandwidth utilization for relatively small
messages (512 to 2K bytes).

Another important aspect of network utilization is how
well the interconnect topology supports the application
communication patterns (which nodes communicate with
which nodes). The ASC codes are dominated by two- and

three-dimensional physics, where most of the state is
transferred only between adjoining cells in the simulation.
This leads to the majority of communication being between
logical nearest neighbor processes. However, the mapping
of application meshes to the physical structure of the
machine breaks this locality, increasing average hop counts
and hence network load.

Studies of the communication traffic generated by ASC
applications show that CTH [2] is the most bandwidth
sensitive [2] and as such it is the focus for our work.

As part of the DARPA HPCS program Cray is
developing a new network design, known as Dragonfly [3]
that provides significantly higher global bandwidth than
current systems. This paper outlines the results of trace-
based simulations of Sandia’s CTH application used to
analyze how well the Dragonfly network supports
applications that primarily use logical nearest neighbor
communication, and will act as the baseline against which
we can compare the efficiency of implementing more
asynchronous communications.

In the following sections, we introduce the CTH
application and it’s relevant communication characteristics.
Section II describes the simulation infrastructure used for
the research and Section III provides an overview of the
Dragonfly topology. Simulation results and analysis are
detailed in Section IV. Initial conclusions of our work are
presented in Section V. Section VI describes future plans for
extending our simulation capabilities to allow direct
execution of MiniApps.

A. CTH
CTH is a multi-material, large deformation, strong shock

wave, solid mechanics code developed at Sandia National
Laboratories. CTH has models for multi-phase, elastic
viscoplastic, porous and explosive materials, using second-
order accurate numerical methods to reduce dispersion and
dissipation and produce accurate, efficient results. For these
tests we used the shaped charge problem, in three
dimensions on a rectangular mesh. Figure 1 illustrates
sample output. The shaped-charge consists of a cylindrical
container filled with high explosive capped with a copper

liner. When the explosive is detonated from the center of
the back of the container, the liner collapses and forms a jet
which is shown striking a target.

Computation is characterized by regular memory
accesses, and is fairly cache-friendly, with operations
focusing on two dimensional planes. Inter-process
communication aggregates internal-boundary data for all
variables into user managed message buffers, subsequently
sent to up to six nearest neighbors. CTH's very large
message aggregation scheme in the bulk synchronous
programming (BSP) model induces a strong separation of
computation and communication, illustrated in Figure 2.

Each time step, CTH makes 90 calls to MPI collective
functionality, 19 calls to exchange boundary data (two
dimensional “faces”), and three calls to propagate data
across faces (in the x, y and z directions). Collective
communication is typically a reduction (MPI_Allreduce) of
a single variable, although there are also reductions of larger
sizes. Each boundary exchange aggregates data from 40
three dimensional arrays, representing 40 variables.
Message buffers are constructed for each face,
approximately one third of which are contiguous, one third
of which are stride y, and one third of which are stride x × y.
For the problems being studied the bulk of traffic comprises
messages of between 2 and 3 megabytes. Given this runtime
profile, CTH performance will be most strongly impacted
by the exchange of large messages between nearest
neighbors, preceded by the accumulation of that data into
message buffers and succeeded by the unpacking of the
messages into the appropriate arrays.

As currently configured, the CTH message aggregation
scheme would benefit strongly from increased interconnect
bandwidth. However, experiments are also being conducted
to determine if the message aggregation strategy could be
dismantled given Cray XE6 (and future predicted
interconnect) capabilities. Additional benefits would be
reduced on-node memory costs due to reduced, or even
eliminated, message buffering requirements.

Figure 1: Sample output from CTH shaped-charge problem. The shaped-charge consists of a cylindrical container filled with high
explosive capped with a copper liner. When the explosive is detonated from the center of the back of the container, the liner collapses and
forms a jet which is shown striking a target.

Figure 2: CTH bulk synchronous communication patterns. Each process
exchanges face data with its neighbors on every timestep.

II. METHODOLOGY
Cray has developed two network simulators in support of

the Dragonfly design. Dflysim is a high-level simulator that
models an abstract network and router. It is used to
investigate high-level routing performance and tradeoffs,
especially for adaptive routing. Rtrsim is a cycle-accurate
micro-architecture simulator modeling the router in detail. It
is used to investigate system-level correctness and
performance. Rtrsim provides more detail and accuracy, but
is much slower. It has been parallelized using MPI and
scales well to moderate node counts.

For the Cascade program, both simulators were driven
using synthetic traffic: uniform random, permutation or
worst case. For ACES we wanted the ability to study
network behavior with a variety of ASC application specific
traffic patterns. The initial method chosen to achieve this
was the addition of support for MPI event traces as a traffic
source for rtrsim. This approach allows traces to be captured
from the full application executing a realistic problem.

The Sandia DUMPI event trace mechanism [4] was
selected for use in the ACES project. DUMPI was
developed to facilitate detailed tracing of MPI calls. It
provides a low-overhead API for reading large trace files
into a simulator. DUMPI event traces can be converted to
Open Trace Format (OTF) format for use with standard
trace visualization tools.

The Cray network simulators provide per-packet injection
and ejection functions. The injection function is called on
each cycle for each port on which the network is able to
accept new data. The callback fills out a packet description
and returns its size in flits (flits are the basic unit of data
transfer in Cray networks). Flits are delivered to the output
ports on each cycle. The ejection function is called each
time a complete packet is delivered. The existing synthetic
traffic pattern generators provide an injection function that
delivers new packets on some proportion of cycles specified

by the input load. The ejection functions log packet
statistics. New injection and ejection functions are provided
as part of this work, together with a new initialization
function that specifies the trace file.

The purpose of Cray’s router simulators is to study
network behavior in the large and individual router behavior
in detail. The NIC model is simple, serving to determine the
mapping of traces to NICs and hence to router ports.
Detailed NIC models are used for other purposes, but were
not used as part of this study. The trace metafile determines
the size of the job (number of traces). The NIC model
determines the number of traces per NIC and the number of
jobs to run simultaneously. Where the job size is small
relative to the number of NICs the same set of traces will be
used repeatedly. Alternatively the number of jobs used can
be specified. Some NICs will be idle (inject no traffic) if
size of system being simulated is not divisible by the job
size.

The router model requests packets from each NIC in turn.
The NIC model requests packets from each MPI task (trace)
in turn. Support is provided for multiple traces (MPI tasks)
per NIC. If all traces are blocked then no data is supplied
on this cycle. A round-robin scheme tracks which NIC/trace
last supplied a packet.

A. MPI Model
At this stage in the ACES work we are using MPI event

traces to study the behavior of the network under application
specific traffic patterns. We are not looking at the impact of
MPI implementation or how it provides progression. As
such we use an MPI model in which each message consists
of a sequence of write request packets from source to
destination, with overlapped response packets returning in
the opposite direction. Where possible, packets are issued
eagerly at a rate matching the injection bandwidth of the
hardware. The destination NICs consume packets at a rate
equal to the ejection bandwidth of the hardware.

The MPI model maintains a per-trace structure
representing the state of an MPI task. Each time a network
port can accept a new packet the MPI injection function is
called with the relevant trace. The trace can be in one of
three states:
• Ready to start a new message
• Part way through sending an existing message
• Blocked waiting for messages to complete

If the trace is ready to start a new message it takes the
next one from the transmit queue. If the transmit queue is
empty new events are read from the trace file until a
blocking event is encountered. Corresponding entries (send
or wait) are added to the transmit queue. Receives are
checked against the unexpected message queue. The
message is marked as complete if a match is found. If there
is no match an entry is added to the receive queue, together
with a wait for blocking receives.

If the trace is part way through sending a message the
next packet is returned. If the trace is blocked waiting then
no data is supplied. The NIC model checks the next trace. If
all traces are blocked then no data is supplied on this cycle.
The status of each blocked message is evaluated on each
cycle.

The ejection function is called as each packet is
delivered. On delivery of the last request packet the message
is passed to the MPI model which searches for a matching
receive. If a match is found the corresponding receive is
marked as complete, otherwise unexpected. Sends are
marked as complete on return of the last response.

Collectives are implemented as a sequence of point-to-
point operations with each process communicating to its
parent/children on a tree on neighbours on a ring as
appropriate. Collectives operate on MPI_COMM_WORLD
or communicators created by the application.

III. DRAGONFLY NETWORK
The 3D torus design used in the Cray XE6 provides

excellent scalability, but global bandwidth per node declines
with system size1. The Dragonfly network provides global
bandwidth that scales with system size. It does this at linear
cost, with one Aries router per blade. There is no
requirement for expensive external switches. Dragonfly
networks were developed as a result of work on high radix
routers undertaken by Cray and Stanford University [5] as
part of the DARPA HPCS program.

Figure 3: Electrical network connecting the nodes in a Dragonfly group.

The optical links for each router (shown in blue) are pooled to form a
single high-radix router.

Figure 4: All-to-all network connecting together the groups of a Dragonfly

network.
Increasing signal speeds limit the length of electrical

links to just a few meters. This is sufficient to connect a few

1 Performance of a global communication pattern such as all-to-all;
scales inversely with the size of the longest dimension on a 3D
Torus.

hundred nodes, but not a large system. Optical links are
required as well, adding substantially to the cost. In a
Dragonfly network, each router provides a mix of short
range electrical links and long range optical links. Large
groups of nodes are connected using the electrical links (see
figure 3). The optical links for all nodes in a group are then
pooled as if to form a single very high radix router. These
links are used to connect each group to all of the other
groups (see figure 4).

One of the strengths of the Dragonfly design is that the
electrical group size can be tailored to the system
packaging. Electrical groups map to mechanical structures,
chassis or cabinets. As each new group is added the system
acquires more global optical links. The all-to-all connection
structure between groups ensures that bisection bandwidth
grows linearly with the number of groups. For large systems
global bandwidth is twice the bisection bandwidth.

The Cascade network routes packets either
deterministically or adaptively along either a minimal or
non-minimal path. A local minimal route (within a group)
will always take at most two hops. A global minimal route
(between groups) will route minimally in both the source
and destination groups, and will take exactly one global
optical link. Non-minimal routing in Cascade is an
implementation of Valiant’s routing algorithm [6]. It is used
to avoid congestion and to spread non-uniform traffic
evenly over the set of available links in the system. Non-
minimal routes can be thought of as routing “up” from the
source to a randomly selected intermediary and then
minimally “down” to the target. Non-minimal routing
doubles the network load. Dragonfly networks over-
provision electrical bandwidth within each group so as to
compensate for this.

Cascade provides packet-by-packet adaptive routing.
Each router along the path will attempt to route minimally
but may select non-minimal paths so as to avoid congestion.
Routing decisions are made locally using information
collected from each router and its neighbours. This data is
distributed out-of-band so as to ensure that each device has
up-to-date congestion information.

Details of the Dragonfly network used in the Cray
Cascade system remain under NDA pending launch of the
product later this year. An initial objective of the ACES
Interconnect project was to study the behavior of ASC
applications such as CTH on Dragonfly networks.

IV. SIMULATION RESULTS
Simulations were performed using a detailed model of the

Cascade hardware (group structure, cycle times, link speeds,
etc.) and routing algorithms. Traces were distributed over
NICs using a block allocation policy. In our study time
spent in computation is set to zero, increasing the network
load. This is a conservative approach, but one that is
representative of bulk synchronous applications that
compute in one phase and communicate in another. Where

good overlap is possible communication will in general be
spread over longer periods of time reducing network load.

Initial CTH simulations were run with 1024 traces,
unused NICs were left idle. Initial results were good, but as
the simulation continued the network load dropped off. This
was found to be the result of imbalance in the
communication traffic. Comparing the sequence of calls
made by different processes we found variation of up to
30% in the amount of traffic being sent on each cycle. The
network injection load drops off as a result of this
imbalance.

In order to study the bandwidth achieved, we truncated
message sizes to 64K bytes. In figures 5 and 6 we show
initial results for 20 million cycles (approximately 20
milliseconds) with minimal and non-minimal routing. With
minimal routing the simulation completed 4 application
timesteps, with non-minimal routing the simulation
completed 8 timesteps.

The average hop count plot (see figure 5) illustrates
aliasing between the problem size and the group size. Some
processes perform local communication (within a single
group) with all 6 peers while others communicate with 4
local peers and 2 in another group. Non-minimal paths are
longer as traffic is routed via an intermediary selected using
the non-minimal routing tables and a deterministic hash
computed on the packet. In figure 6 we show the total
number of packets transmitted by each NIC. The peak
counts reflect both the application and the performance of
the network with a given routing mode. The lower numbers
of packets transferred by some NICs reflect the
communication structure of the application. Non-minimal
routing shows significantly better performance.

Figure 5: Initial CTH simulation results. Average hop count per NIC for

minimal (red) and non-minimal (green) routing.

With a single trace per NIC we see an average bandwidth
of 0.58 flits per cycle (see figure 6). The per-trace logs
show substantial amounts of time waiting for blocking
transfers to complete.

Figure 6: Initial CTH simulation results. Number of 64-byte writes

completed per NIC for minimal and non-minimal routing.

The NIC does not inject traffic during this time. In
practice there would be multiple processes per node
(equating to multiple traces per NIC in our simulation) and
traffic from one process would fill the periods when another
was idle. In order to study these effects we ran a number of
simulations with varying numbers of traces per NIC. In
figure 7 we show the number of 64-byte writes per NIC and
the equivalent bandwidth in flits per cycle with four traces
per NIC. The average transfer rate was 1.22 flits/cycle;
approximately 1.9 times higher than with a single trace per
NIC. In this study the simulation sustained an average of
68% of peak Cascade MPI bandwidth using CTH trace
traffic.

Figure 7: Number of 64-byte request packets transferred per NIC. Results

are for 4 CTH traces per NIC with non-minimal routing

The simulator includes a full model of the Cascade load
measurement logic and routing pipeline. These simulations
allowed us to develop our routing algorithms and check
their properties on a wide range of application specific
traffic patterns. In figure 8 we show the distribution of load
over the optical links connecting groups. One of the
objectives of the routing algorithms is to balance this load

across the available links. Our results show good load
balance. We were also able to demonstrate good uniformity
in the number of times each router was selected as the
intermediary for non-minimal routing.

Figure 8: Number of flits transmitted by each optical link. Results are for

CTH traffic with non-minimal routing.

The CTH study raised a number of additional questions
that could not easily be answered using our trace based
simulation: To what extent does communications load
imbalance and synchronization in CTH reduce the
bandwidth achieved? How will CTH perform on a larger
network?

To address these questions we constructed a synthetic
traffic generator that follows the CTH structure. On each
cycle on which traffic can be injected we generate a packet
to each neighbor with equal probability, modeling the case
where each process has transfers pending to multiple
destinations. In the current version of CTH each process
communicates with one neighbor at a time. In general, most,
if not all processes on a node will communicate with
processes on a neighboring node, limiting path diversity.

Figure 9: Number of 64-byte writes completed and equivalent bandwidth
for synthetic CTH traffic. Results are for minimal routing (red) and non-

minimal routing (green).

Average bandwidths obtained using the synthetic traffic
generator were 1.45 flits per cycle, approximately 18%
higher than that seen with CTH itself, giving us an
indication of the application specific overheads. Bandwidths
were maintained on larger systems, we tested up to 8000
nodes.

Results so far show significant benefits for non-minimal
routing. However, there are likely to be occasions on which
the shorter minimal paths will be more lightly loaded.
Cascade includes sophisticated adaptive routing hardware
designed to select these lightly loaded paths. In order to
determine its effectiveness we repeated our tests for a range
of adaptive routing settings. Results of this test (see Table 1)
show that bandwidths obtained with adaptive routing are up
to 25% better than that obtained with non-minimal routing.
Best performance is obtained when selecting a non-minimal
path if its load is approximately one third higher than the
equivalent minimal path. Selecting between minimal paths
based on load is shown to be approximately 15% better than
selecting them with a deterministic hash.

Routing mode 64-byte writes Minimal
Non-minimal 89359 0%

Adaptive (best settings) 112377 28%
Minimal 66129 100%

Table 1 Number of packets transferred in one million cycles for a range of
routing options. Also shown is the percentage of traffic routed minimally.

Repeating our trace based CTH runs with these adaptive

routing settings improved performance by between 10 and
15%. In Figure 10 we show average hop counts for trace
based CTH traffic with non-minimal and adaptive routing.
All NICs show reduced loading with adaptive routing. In
this simulation average hop count was reduced from 3.44 to
3.21. The adaptive routing algorithm selected a minimal
path on 34.8% of packets.

Figure 10: Hop count per NIC. Results are for trace based CTH traffic with

non-minimal and adaptive routing.

Our CTH results show relatively low loading on the
global links. In figures 11 and 12 we show the number of
flits transferred by every port in the simulated system.
Results are for CTH trace based traffic using non-minimal
routing (figure 11) and adaptive routing (figure 12). The x-
axis is ordered by group, router and port. Loading on the
electrical ports is shown in green and black. Loading on the
optical ports is show in blue.

Figure 11 Number of flits transferred per port. Results are for CTH traffic

with non-minimal routing.

Loading is low on the right-hand-side of these charts as
one third of the NICs in the last group were unused. For
adaptively routed traffic (see figure 12) we see higher flit
counts on many links as traffic moves away from busy non-
minimal paths.

Figure 12: Number of flits transferred per port. Results are for CTH traffic

with adaptive routing.

The simulator allows us to reduce the number of global

links per group. Route tables are adjusted to exclude
unconnected ports just as they will be in the Cascade
system. This allows us to test application performance as the
number of global links is reduced. Simulation results

generated using the CTH traces show no degradation in
performance with 50% population of the global links.

V. CONCLUSIONS
CTH processes exchange large amounts of data with

neighbors in each of three dimensions. This structure fits
naturally onto a torus, although average hop counts increase
as we map the logical mesh structure of the application to
the physical structure of the machine. On the Dragonfly
network used in Cascade, small problems will be contained
within a single group they benefit from the excess local
bandwidth. Larger problems will be distributed over
multiple groups. We have shown that loading on the global
links is low and applications with nearest-neighbor
communications scale well. Adaptive routing is shown to
improve performance on both CTH and our synthetic test
cases. The simulation methodology used in this work has
allowed us to tune our routing algorithms and to
demonstrate key features of these algorithms on realistic
traffic.

VI. FUTURE WORK
Work to-date has focused on CTH. The iteration

mechanisms used in xNobel and xRage [10] also use local
communication patterns. Early results on these codes show
that conclusions on network performance drawn from CTH
work apply. However, all these codes also perform Adaptive
Mesh Refinement (AMR) steps with markedly different
communication patterns. We plan to study these codes
using traces that cover both iteration cycles and AMR steps.

Working with the full ASC codes and MPI traces gives a
detailed picture of the behavior of an application, but it is
often a labor intensive effort. To alleviate this, the Mantevo
project[7] has produced a set of proxies, called MiniApps,
that enable rapid exploration of key performance issues that
impact a broad set of scientific application programs of
interest to the ASC program and broader computational
science and engineering communities. The Mantevo
MiniApps are developed and maintained by ASC
application code teams, they are available as open source
software under an LGPL license.

The Mantevo MiniApps have been demonstrated to
accurately reflect key performance issues of a set of full
physics and engineering application codes [8]. The
miniGhost application [9] is a bulk-synchronous message
passing code whose structure is modeled on the
computational core of CTH. Two new variants have been
developed that will allow us to explore alternative
implementations. The options are:
• Bulk synchronous parallel with message aggregation

(BSPMA): This version accumulates face data, from all
variables as they are computed, into message buffers,
one per neighbor. Thus six messages are transmitted,
one to each neighbor, each time step.

• Single variable, aggregated face data (SVAF): This
version transmits data as soon as computation on a
variable is completed, face data is aggregated. Thus six
messages are transmitted for each variable (up to 40),
one to each neighbor, and each time step.

• Single variable, contiguous pieces (SVCP): A
modification of SVAF, with four of the six faces
eliminating intermediate buffering in exchange for a
significant increasing in the number of messages. That
is, the x-y faces are transmitted as they are found
contiguously in memory, the x-z faces are transmitted
one message per contiguous column, and the rows of
the y-z faces are aggregated into individual messages.

A number of possible techniques are being considered for
integration of MiniApps and the network simulators. We
might, for example, provide an MPI library that interfaces
directly with the simulator’s injection and ejection
functions. The process is complicated by both the simulator
and miniGhost being MPI applications that want to call
MPI_Init, control execution and generate communications
traffic. There is also a problem of relative scale. We
typically run a small number of miniGhost timesteps on a
large number of MPI ranks. The network simulator typically
runs for a large number of cycles on fewer MPI ranks,
hundreds rather than thousands or tens of thousands. A
simple expedient is to run the MiniApp first to generate
trace files in local temporary storage and then use them with
the current version of the network simulator.

In subsequent phases of the ACES-INP project we plan
to use the miniGhost application to study the impact of
moving away from the bulk synchronous model. This work
will be undertaken using a combination of prototype
Cascade hardware and simulations of future networks.

ACKNOWLEDGMENT
This work is undertaken as part of the ACES Interconnect

Project Subcontract number B580786.
This material is based upon work supported by the

Defense Advanced Research Projects Agency under its
Agreement No. HR0011-07-9-0001. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the Defense Advanced Research Projects
Agency.

Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-
94AL85000.

REFERENCES
[1] E.S.Hertel, R.L.Bell, M.G.Elrick, A.V.Farnsworth and G.I.

Kerley and J.M.McGlaun and S.V.Petney and S.A.Silling and
P.A.Taylor, and L.Yarrington, CTH: A Software Family for
Multi-Dimensional Shock Physics Analysis, Proceedings,
19th International Symposium on Shock Waves, 1993.

[2] J.H.Laros III, K.T.Pedretti, S.M.Kelly, W.Shu, and
C.T.Vaughan Energy Based Performance Tuning for Large
Scale High Performance Computing Systems. 20th High
Performance Computing Symposium, Orlando, Florida, 2012.

[3] J.Kim, W.J.Dally, S.Scott, D.Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. Proceedings of the 35th
Annual International Symposium on Computer Architecture,
2008

[4] J.C.L.Adalsteinsson, H.Cranford, S.Kenny, J.P.Pinar, A.
Evensky, D.A.Mayo J. A Simulator for Large-Scale Parallel
Computer Architectures.International Journal of Distributed
Systems and Technologies (IJDST), 1(2), pages 57-73.
doi:10.4018/jdst.2010040104, 2010

[5] S. Scott, D. Abts, J. Kim, and W. J. Dally. The BlackWidow
high-radix clos network. In Proc. of the International
Symposium on Computer Architecture (ISCA), pages 16–28,
Boston, MA, 2006.

[6] L.G.Valiant. A scheme for fast parallel communication.
SIAM Journal on Computing, 11(2), pages 350–361, 1982.

[7] M.A.Heroux D.W.Doerfler, P.S.Crozier, J.W.Willenbring,
H.C.Edwards, A.Williams, M.Rajan, E.R.Keiter, H.K.
Thornquist, and R.W.Numrich, Improving Performance via
Mini-applications, Sandia National Laboratories, SAND2009-
5574, 2009, https://software.sandia.gov/mantevo

[8] R.F.Barrett, P.S.Crozier, S.D.Hammond, M.A.Heroux,
P.T.Lin, T.G.Trucano, C.T.Vaughan and A.B.Williams,
Assessing the Validity of the Role of Mini-Applications in
Predicting Key Performance Characteristics of Scientific and
Engineering Applications, Sandia National Laboratories,
SAND2012-TBD, 2012.

[9] R.F.Barrett, C.T.Vaughan, and A.Heroux, MiniGhost: A
Miniapp for Exploring Boundary Exchange Strategies Using
Stencil Computations Scientific Parallel Computing, Sandia
National Laboratories, SAND2011-5294832, 2011

[10] M.Gittings, R.Weaver, M.Clover, T.Betlach, N.Byrne,
R.Coker, E.Dendy, R.Hueckstaedt, K.New, W.R.Oakes,
D.Ranta, and R.Stefan, The RAGE Radiation-Hydrodynamic
Code, Journal of Computational Science & Discovery, vol. 1,
no. 1, p. 015005, 2008

