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Abstract—In the initial phases of ACES-INP we have 
developed MPI trace file injection methods for Cray 

simulators that allow detailed analysis of network behavior 
under realistic application traffic loads. We have gathered 
application traces for CTH, Sage, and the adaptive mesh 
refinement step of xNobel, running at scale on the Cielo 
Cray XE6 system. We are using this data to test and tune 

our routing algorithms and to access the benefits of 
functionality proposed for future generations of 

interconnect. Early results show good performance on 
realistic application traffic. 

As part of the Exascale research program, the DOE lab 
community is developing mini applications (MiniApps) that 
are representative of the computational core of major ASC 
codes. In future work we will integrate execution of these 
applications with our simulators, enabling us to study the 
communication patterns of future-looking applications, 

either by simulating larger scales than we can trace, or by 
modifying the communication patterns of existing 

applications to explore new programming models.  This 
approach will allow us to analyze the transition from the 

bulk synchronous communication paradigm in common use 
today, to an asynchronous model in which new results are 

communicated as soon as they have been computed 
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I.  INTRODUCTION 
Los Alamos National Laboratory and Sandia National 

Laboratories have collaborated to create a New Mexico 
center for high performance computing: the Alliance for 
Computing at the Extreme Scale (ACES). ACES is funded 
by the U.S. Department of Energy’s Advanced Simulation 
and Computing (ASC) program and was formed to enable 
the solution of critical national security problems through 
the development and deployment of high performance 
computing technologies. In spring 2010 the ACES 
consortium and Cray Inc initiated the ACES Interconnection 
Network Project (ACES-INP), a collaborative research 
project focused on a potential future interconnection 
network..  The intent of this project is to analyze potential 
capabilities that would result in significant performance 
benefits for a suite of ASC applications.  The project 
encompasses both the NIC and router architectures, with 
early work focusing on the efficiency of the Dragonfly 
topology for the communication patterns of selected ASC 
applications.  Assuming our collaborative research and 

development effort is successful, Cray plans to provide this 
functionality in future commercially available computer 
systems. 

Due to the historical characteristics of high performance 
interconnects, many ASC applications have evolved to use a 
bulk synchronous model of computation.  Using the bulk 
synchronous model, applications go through distinct 
computation and communication phases, which results in 
the applications sending larger messages than would be 
natural for the utilized algorithms.  One of the main drivers 
for this evolution was low MPI messaging rates, leading to 
the need to bundle messages together in order to saturate 
network bandwidth.   

The bulk synchronous model leads to underutilization of 
the network during the computation stage.  This in turn 
exaggerates injection bandwidth requirements as the 
communication occurs at the end of each phase, adding to 
the time per cycle.  On current systems, the computation 
times are long and these overheads are generally small, but 
as the computational rate of the nodes increases, or as we 
increase the number of nodes used to solve a fixed size 
problem (strong scaling) this ceases to be the case, 
bandwidths must increase in order to maintain overall 
efficiency. 

This problem is further exacerbated as typical HPC node 
architectures have not been able to adequately overlap 
computation and communication, likely due to interference 
generated in the memory system when both the network and 
CPU attempt to access the memory simultaneously.  The 
bundling of messages leads not only to higher interconnect 
bandwidth requirements, but it also wastes valuable memory 
bandwidth as data is copied into and out of send/receive 
buffers. 

To address these inefficiencies, applications will need to 
move away from bulk synchronous message aggregation to 
more asynchronous communication using more natural 
sized messages distributed throughout computation, 
eliminating the distinct computation and communication 
stages.  However, applications will need help from the 
network in order to make this feasible.  In particular, the 
network will need to support high message rates and allow a 
high percentage of bandwidth utilization for relatively small 
messages (512 to 2K bytes). 

Another important aspect of network utilization is how 
well the interconnect topology supports the application 
communication patterns (which nodes communicate with 
which nodes).  The ASC codes are dominated by two- and 



three-dimensional physics, where most of the state is 
transferred only between adjoining cells in the simulation.  
This leads to the majority of communication being between 
logical nearest neighbor processes. However, the mapping 
of application meshes to the physical structure of the 
machine breaks this locality, increasing average hop counts 
and hence network load. 

Studies of the communication traffic generated by ASC 
applications show that CTH [2] is the most bandwidth 
sensitive [2] and as such it is the focus for our work. 

As part of the DARPA HPCS program Cray is 
developing a new network design, known as Dragonfly [3] 
that provides significantly higher global bandwidth than 
current systems. This paper outlines the results of trace-
based simulations of Sandia’s CTH application used to 
analyze how well the Dragonfly network supports 
applications that primarily use logical nearest neighbor 
communication, and will act as the baseline against which 
we can compare the efficiency of implementing more 
asynchronous communications. 

In the following sections, we introduce the CTH 
application and it’s relevant communication characteristics.  
Section II describes the simulation infrastructure used for 
the research and Section III provides an overview of the 
Dragonfly topology.  Simulation results and analysis are 
detailed in Section IV. Initial conclusions of our work are 
presented in Section V. Section VI describes future plans for 
extending our simulation capabilities to allow direct 
execution of MiniApps.   

A. CTH 
CTH is a multi-material, large deformation, strong shock 

wave, solid mechanics code developed at Sandia National 
Laboratories. CTH has models for multi-phase, elastic 
viscoplastic, porous and explosive materials, using second-
order accurate numerical methods to reduce dispersion and 
dissipation and produce accurate, efficient results. For these 
tests we used the shaped charge problem, in three 
dimensions on a rectangular mesh. Figure 1 illustrates 
sample output. The shaped-charge consists of a cylindrical 
container filled with high explosive capped with a copper 

liner.  When the explosive is detonated from the center of 
the back of the container, the liner collapses and forms a jet 
which is shown striking a target. 

Computation is characterized by regular memory 
accesses, and is fairly cache-friendly, with operations 
focusing on two dimensional planes. Inter-process 
communication aggregates internal-boundary data for all 
variables into user managed message buffers, subsequently 
sent to up to six nearest neighbors. CTH's very large 
message aggregation scheme in the bulk synchronous 
programming (BSP) model induces a strong separation of 
computation and communication, illustrated in Figure 2. 

Each time step, CTH makes 90 calls to MPI collective 
functionality, 19 calls to exchange boundary data (two 
dimensional “faces”), and three calls to propagate data 
across faces (in the x, y and z directions). Collective 
communication is typically a reduction (MPI_Allreduce) of 
a single variable, although there are also reductions of larger 
sizes. Each boundary exchange aggregates data from 40 
three dimensional arrays, representing 40 variables. 
Message buffers are constructed for each face, 
approximately one third of which are contiguous, one third 
of which are stride y, and one third of which are stride x × y. 
For the problems being studied the bulk of traffic comprises 
messages of between 2 and 3 megabytes. Given this runtime 
profile, CTH performance will be most strongly impacted 
by the exchange of large messages between nearest 
neighbors, preceded by the accumulation of that data into 
message buffers and succeeded by the unpacking of the 
messages into the appropriate arrays. 

As currently configured, the CTH message aggregation 
scheme would benefit strongly from increased interconnect 
bandwidth. However, experiments are also being conducted 
to determine if the message aggregation strategy could be 
dismantled given Cray XE6 (and future predicted 
interconnect) capabilities. Additional benefits would be 
reduced on-node memory costs due to reduced, or even 
eliminated, message buffering requirements. 

 
 

 

Figure 1: Sample output from CTH shaped-charge problem. The shaped-charge consists of a cylindrical container filled with high 
explosive capped with a copper liner.  When the explosive is detonated from the center of the back of the container, the liner collapses and 
forms a jet which is shown striking a target. 

 



Figure 2: CTH bulk synchronous communication patterns. Each process 
exchanges face data with its neighbors on every timestep. 

 

II. METHODOLOGY 
Cray has developed two network simulators in support of 

the Dragonfly design. Dflysim is a high-level simulator that 
models an abstract network and router. It is used to 
investigate high-level routing performance and tradeoffs, 
especially for adaptive routing. Rtrsim is a cycle-accurate 
micro-architecture simulator modeling the router in detail. It 
is used to investigate system-level correctness and 
performance. Rtrsim provides more detail and accuracy, but 
is much slower. It has been parallelized using MPI and 
scales well to moderate node counts.   

For the Cascade program, both simulators were driven 
using synthetic traffic: uniform random, permutation or 
worst case. For ACES we wanted the ability to study 
network behavior with a variety of ASC application specific 
traffic patterns. The initial method chosen to achieve this 
was the addition of support for MPI event traces as a traffic 
source for rtrsim. This approach allows traces to be captured 
from the full application executing a realistic problem. 

The Sandia DUMPI event trace mechanism [4] was 
selected for use in the ACES project. DUMPI was 
developed to facilitate detailed tracing of MPI calls. It 
provides a low-overhead API for reading large trace files 
into a simulator. DUMPI event traces can be converted to 
Open Trace Format (OTF) format for use with standard 
trace visualization tools.  

The Cray network simulators provide per-packet injection 
and ejection functions. The injection function is called on 
each cycle for each port on which the network is able to 
accept new data. The callback fills out a packet description 
and returns its size in flits (flits are the basic unit of data 
transfer in Cray networks). Flits are delivered to the output 
ports on each cycle. The ejection function is called each 
time a complete packet is delivered. The existing synthetic 
traffic pattern generators provide an injection function that 
delivers new packets on some proportion of cycles specified 

by the input load. The ejection functions log packet 
statistics. New injection and ejection functions are provided 
as part of this work, together with a new initialization 
function that specifies the trace file.  

The purpose of Cray’s router simulators is to study 
network behavior in the large and individual router behavior 
in detail. The NIC model is simple, serving to determine the 
mapping of traces to NICs and hence to router ports. 
Detailed NIC models are used for other purposes, but were 
not used as part of this study. The trace metafile determines 
the size of the job (number of traces). The NIC model 
determines the number of traces per NIC and the number of 
jobs to run simultaneously. Where the job size is small 
relative to the number of NICs the same set of traces will be 
used repeatedly. Alternatively the number of jobs used can 
be specified. Some NICs will be idle (inject no traffic) if 
size of system being simulated is not divisible by the job 
size. 

The router model requests packets from each NIC in turn. 
The NIC model requests packets from each MPI task (trace) 
in turn. Support is provided for multiple traces (MPI tasks) 
per NIC.  If all traces are blocked then no data is supplied 
on this cycle. A round-robin scheme tracks which NIC/trace 
last supplied a packet.  

A. MPI Model 
At this stage in the ACES work we are using MPI event 

traces to study the behavior of the network under application 
specific traffic patterns. We are not looking at the impact of 
MPI implementation or how it provides progression. As 
such we use an MPI model in which each message consists 
of a sequence of write request packets from source to 
destination, with overlapped response packets returning in 
the opposite direction. Where possible, packets are issued 
eagerly at a rate matching the injection bandwidth of the 
hardware.  The destination NICs consume packets at a rate 
equal to the ejection bandwidth of the hardware.  

The MPI model maintains a per-trace structure 
representing the state of an MPI task. Each time a network 
port can accept a new packet the MPI injection function is 
called with the relevant trace. The trace can be in one of 
three states: 
• Ready to start a new message 
• Part way through sending an existing message  
• Blocked waiting for messages to complete 
 

If the trace is ready to start a new message it takes the 
next one from the transmit queue. If the transmit queue is 
empty new events are read from the trace file until a 
blocking event is encountered. Corresponding entries (send 
or wait) are added to the transmit queue. Receives are 
checked against the unexpected message queue. The 
message is marked as complete if a match is found. If there 
is no match an entry is added to the receive queue, together 
with a wait for blocking receives.  

  



If the trace is part way through sending a message the 
next packet is returned. If the trace is blocked waiting then 
no data is supplied. The NIC model checks the next trace. If 
all traces are blocked then no data is supplied on this cycle. 
The status of each blocked message is evaluated on each 
cycle.  

The ejection function is called as each packet is 
delivered. On delivery of the last request packet the message 
is passed to the MPI model which searches for a matching 
receive. If a match is found the corresponding receive is 
marked as complete, otherwise unexpected. Sends are 
marked as complete on return of the last response. 

Collectives are implemented as a sequence of point-to-
point operations with each process communicating to its 
parent/children on a tree on neighbours on a ring as 
appropriate. Collectives operate on MPI_COMM_WORLD 
or communicators created by the application.  

 

III. DRAGONFLY NETWORK 
The 3D torus design used in the Cray XE6 provides 

excellent scalability, but global bandwidth per node declines 
with system size1. The Dragonfly network provides global 
bandwidth that scales with system size. It does this at linear 
cost, with one Aries router per blade. There is no 
requirement for expensive external switches. Dragonfly 
networks were developed as a result of work on high radix 
routers undertaken by Cray and Stanford University [5] as 
part of the DARPA HPCS program.  

 
Figure 3: Electrical network connecting the nodes in a Dragonfly group. 

The optical links for each router (shown in blue) are pooled to form a 
single high-radix router. 

 

 
Figure 4: All-to-all network connecting together the groups of a Dragonfly 

network.  
Increasing signal speeds limit the length of electrical 

links to just a few meters. This is sufficient to connect a few 

                                                             
1 Performance of a global communication pattern such as all-to-all; 
scales inversely with the size of the longest dimension on a 3D 
Torus.   

hundred nodes, but not a large system.  Optical links are 
required as well, adding substantially to the cost. In a 
Dragonfly network, each router provides a mix of short 
range electrical links and long range optical links.  Large 
groups of nodes are connected using the electrical links (see 
figure 3).  The optical links for all nodes in a group are then 
pooled as if to form a single very high radix router. These 
links are used to connect each group to all of the other 
groups (see figure 4).  

One of the strengths of the Dragonfly design is that the 
electrical group size can be tailored to the system 
packaging. Electrical groups map to mechanical structures, 
chassis or cabinets.  As each new group is added the system 
acquires more global optical links. The all-to-all connection 
structure between groups ensures that bisection bandwidth 
grows linearly with the number of groups. For large systems 
global bandwidth is twice the bisection bandwidth. 

The Cascade network routes packets either 
deterministically or adaptively along either a minimal or 
non-minimal path. A local minimal route (within a group) 
will always take at most two hops.  A global minimal route 
(between groups) will route minimally in both the source 
and destination groups, and will take exactly one global 
optical link.  Non-minimal routing in Cascade is an 
implementation of Valiant’s routing algorithm [6]. It is used 
to avoid congestion and to spread non-uniform traffic 
evenly over the set of available links in the system. Non-
minimal routes can be thought of as routing “up” from the 
source to a randomly selected intermediary and then 
minimally “down” to the target. Non-minimal routing 
doubles the network load. Dragonfly networks over-
provision electrical bandwidth within each group so as to 
compensate for this.  

Cascade provides packet-by-packet adaptive routing. 
Each router along the path will attempt to route minimally 
but may select non-minimal paths so as to avoid congestion. 
Routing decisions are made locally using information 
collected from each router and its neighbours. This data is 
distributed out-of-band so as to ensure that each device has 
up-to-date congestion information.  

Details of the Dragonfly network used in the Cray 
Cascade system remain under NDA pending launch of the 
product later this year. An initial objective of the ACES 
Interconnect project was to study the behavior of ASC 
applications such as CTH on Dragonfly networks.   

 

IV. SIMULATION RESULTS 
Simulations were performed using a detailed model of the 

Cascade hardware (group structure, cycle times, link speeds, 
etc.) and routing algorithms. Traces were distributed over 
NICs using a block allocation policy. In our study time 
spent in computation is set to zero, increasing the network 
load. This is a conservative approach, but one that is 
representative of bulk synchronous applications that 
compute in one phase and communicate in another. Where 



good overlap is possible communication will in general be 
spread over longer periods of time reducing network load.  

Initial CTH simulations were run with 1024 traces, 
unused NICs were left idle.  Initial results were good, but as 
the simulation continued the network load dropped off. This 
was found to be the result of imbalance in the 
communication traffic. Comparing the sequence of calls 
made by different processes we found variation of up to 
30% in the amount of traffic being sent on each cycle. The 
network injection load drops off as a result of this 
imbalance.  

In order to study the bandwidth achieved, we truncated 
message sizes to 64K bytes. In figures 5 and 6 we show 
initial results for 20 million cycles (approximately 20 
milliseconds) with minimal and non-minimal routing. With 
minimal routing the simulation completed 4 application 
timesteps, with non-minimal routing the simulation 
completed 8 timesteps.  

The average hop count plot (see figure 5) illustrates 
aliasing between the problem size and the group size. Some 
processes perform local communication (within a single 
group) with all 6 peers while others communicate with 4 
local peers and 2 in another group.  Non-minimal paths are 
longer as traffic is routed via an intermediary selected using 
the non-minimal routing tables and a deterministic hash 
computed on the packet. In figure 6 we show the total 
number of packets transmitted by each NIC.  The peak 
counts reflect both the application and the performance of 
the network with a given routing mode. The lower numbers 
of packets transferred by some NICs reflect the 
communication structure of the application. Non-minimal 
routing shows significantly better performance.   

 

 
Figure 5: Initial CTH simulation results. Average hop count per NIC for 

minimal (red) and non-minimal (green) routing.   
 

With a single trace per NIC we see an average bandwidth 
of 0.58 flits per cycle (see figure 6).  The per-trace logs 
show substantial amounts of time waiting for blocking 
transfers to complete. 

 
Figure 6: Initial CTH simulation results. Number of 64-byte writes 

completed per NIC for minimal and non-minimal routing. 
   

The NIC does not inject traffic during this time. In 
practice there would be multiple processes per node 
(equating to multiple traces per NIC in our simulation) and 
traffic from one process would fill the periods when another 
was idle. In order to study these effects we ran a number of 
simulations with varying numbers of traces per NIC. In 
figure 7 we show the number of 64-byte writes per NIC and 
the equivalent bandwidth in flits per cycle with four traces 
per NIC. The average transfer rate was 1.22 flits/cycle; 
approximately 1.9 times higher than with a single trace per 
NIC. In this study the simulation sustained an average of 
68% of peak Cascade MPI bandwidth using CTH trace 
traffic.  

 

 
Figure 7: Number of 64-byte request packets transferred per NIC. Results 

are for 4 CTH traces per NIC with non-minimal routing 
 

The simulator includes a full model of the Cascade load 
measurement logic and routing pipeline. These simulations 
allowed us to develop our routing algorithms and check 
their properties on a wide range of application specific 
traffic patterns. In figure 8 we show the distribution of load 
over the optical links connecting groups.  One of the 
objectives of the routing algorithms is to balance this load 



across the available links. Our results show good load 
balance.  We were also able to demonstrate good uniformity 
in the number of times each router was selected as the 
intermediary for non-minimal routing.  

 

 
Figure 8: Number of flits transmitted by each optical link. Results are for 

CTH traffic with non-minimal routing.  
 

The CTH study raised a number of additional questions 
that could not easily be answered using our trace based 
simulation: To what extent does communications load 
imbalance and synchronization in CTH reduce the 
bandwidth achieved? How will CTH perform on a larger 
network? 

To address these questions we constructed a synthetic 
traffic generator that follows the CTH structure. On each 
cycle on which traffic can be injected we generate a packet 
to each neighbor with equal probability, modeling the case 
where each process has transfers pending to multiple 
destinations. In the current version of CTH each process 
communicates with one neighbor at a time. In general, most, 
if not all processes on a node will communicate with 
processes on a neighboring node, limiting path diversity.   
 

 
Figure 9: Number of 64-byte writes completed and equivalent bandwidth 
for synthetic CTH traffic. Results are for minimal routing (red) and non-

minimal routing (green).  

Average bandwidths obtained using the synthetic traffic 
generator were 1.45 flits per cycle, approximately 18% 
higher than that seen with CTH itself, giving us an 
indication of the application specific overheads. Bandwidths 
were maintained on larger systems, we tested up to 8000 
nodes. 

Results so far show significant benefits for non-minimal 
routing. However, there are likely to be occasions on which 
the shorter minimal paths will be more lightly loaded. 
Cascade includes sophisticated adaptive routing hardware 
designed to select these lightly loaded paths.  In order to 
determine its effectiveness we repeated our tests for a range 
of adaptive routing settings. Results of this test (see Table 1) 
show that bandwidths obtained with adaptive routing are up 
to 25% better than that obtained with non-minimal routing. 
Best performance is obtained when selecting a non-minimal 
path if its load is approximately one third higher than the 
equivalent minimal path. Selecting between minimal paths 
based on load is shown to be approximately 15% better than 
selecting them with a deterministic hash.   

 
Routing mode 64-byte writes Minimal  
Non-minimal 89359 0% 

Adaptive (best settings) 112377 28% 
Minimal 66129 100% 

 
Table 1 Number of packets transferred in one million cycles for a range of 
routing options. Also shown is the percentage of traffic routed minimally.   

 
Repeating our trace based CTH runs with these adaptive 

routing settings improved performance by between 10 and 
15%. In Figure 10 we show average hop counts for trace 
based CTH traffic with non-minimal and adaptive routing. 
All NICs show reduced loading with adaptive routing. In 
this simulation average hop count was reduced from 3.44 to 
3.21.  The adaptive routing algorithm selected a minimal 
path on 34.8% of packets. 
 

 
Figure 10: Hop count per NIC. Results are for trace based CTH traffic with 

non-minimal and adaptive routing.  



Our CTH results show relatively low loading on the 
global links. In figures 11 and 12 we show the number of 
flits transferred by every port in the simulated system. 
Results are for CTH trace based traffic using non-minimal 
routing (figure 11) and adaptive routing (figure 12).  The x-
axis is ordered by group, router and port. Loading on the 
electrical ports is shown in green and black. Loading on the 
optical ports is show in blue.  

 

 
Figure 11 Number of flits transferred per port.  Results are for CTH traffic 

with non-minimal routing.  
 

Loading is low on the right-hand-side of these charts as 
one third of the NICs in the last group were unused. For 
adaptively routed traffic (see figure 12) we see higher flit 
counts on many links as traffic moves away from busy non-
minimal paths.  

 

 
Figure 12: Number of flits transferred per port.  Results are for CTH traffic 

with adaptive routing. 
 
The simulator allows us to reduce the number of global 

links per group. Route tables are adjusted to exclude 
unconnected ports just as they will be in the Cascade 
system. This allows us to test application performance as the 
number of global links is reduced. Simulation results 

generated using the CTH traces show no degradation in 
performance with 50% population of the global links. 

 

V. CONCLUSIONS  
CTH processes exchange large amounts of data with 

neighbors in each of three dimensions.  This structure fits 
naturally onto a torus, although average hop counts increase 
as we map the logical mesh structure of the application to 
the physical structure of the machine. On the Dragonfly 
network used in Cascade, small problems will be contained 
within a single group they benefit from the excess local 
bandwidth. Larger problems will be distributed over 
multiple groups. We have shown that loading on the global 
links is low and applications with nearest-neighbor 
communications scale well. Adaptive routing is shown to 
improve performance on both CTH and our synthetic test 
cases.  The simulation methodology used in this work has 
allowed us to tune our routing algorithms and to 
demonstrate key features of these algorithms on realistic 
traffic. 

VI. FUTURE WORK 
Work to-date has focused on CTH. The iteration 

mechanisms used in xNobel and xRage [10] also use local 
communication patterns. Early results on these codes show 
that conclusions on network performance drawn from CTH 
work apply. However, all these codes also perform Adaptive 
Mesh Refinement (AMR) steps with markedly different 
communication patterns.  We plan to study these codes 
using traces that cover both iteration cycles and AMR steps. 

Working with the full ASC codes and MPI traces gives a 
detailed picture of the behavior of an application, but it is 
often a labor intensive effort. To alleviate this, the Mantevo 
project[7] has produced a set of proxies, called MiniApps, 
that enable rapid exploration of key performance issues that 
impact a broad set of scientific application programs of 
interest to the ASC program and broader computational 
science and engineering communities. The Mantevo 
MiniApps are developed and maintained by ASC 
application code teams, they are available as open source 
software under an LGPL license.  

The Mantevo MiniApps have been demonstrated to 
accurately reflect key performance issues of a set of full 
physics and engineering application codes [8]. The 
miniGhost application [9] is a bulk-synchronous message 
passing code whose structure is modeled on the 
computational core of CTH.  Two new variants have been 
developed that will allow us to explore alternative 
implementations. The options are: 
• Bulk synchronous parallel with message aggregation 

(BSPMA): This version accumulates face data, from all 
variables as they are computed, into message buffers, 
one per neighbor. Thus six messages are transmitted, 
one to each neighbor, each time step.  



• Single variable, aggregated face data (SVAF): This 
version transmits data as soon as computation on a 
variable is completed, face data is aggregated. Thus six 
messages are transmitted for each variable (up to 40), 
one to each neighbor, and each time step.  

• Single variable, contiguous pieces (SVCP): A 
modification of SVAF, with four of the six faces 
eliminating intermediate buffering in exchange for a 
significant increasing in the number of messages. That 
is, the x-y faces are transmitted as they are found 
contiguously in memory, the x-z faces are transmitted 
one message per contiguous column, and the rows of 
the y-z faces are aggregated into individual messages.  
 

A number of possible techniques are being considered for 
integration of MiniApps and the network simulators. We 
might, for example, provide an MPI library that interfaces 
directly with the simulator’s injection and ejection 
functions. The process is complicated by both the simulator 
and miniGhost being MPI applications that want to call 
MPI_Init, control execution and generate communications 
traffic. There is also a problem of relative scale. We 
typically run a small number of miniGhost timesteps on a 
large number of MPI ranks. The network simulator typically 
runs for a large number of cycles on fewer MPI ranks, 
hundreds rather than thousands or tens of thousands.  A 
simple expedient is to run the MiniApp first to generate 
trace files in local temporary storage and then use them with 
the current version of the network simulator.   

In subsequent phases of the ACES-INP project we plan 
to use the miniGhost application to study the impact of 
moving away from the bulk synchronous model. This work 
will be undertaken using a combination of prototype 
Cascade hardware and simulations of future networks.  
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