
Node Health Checker Scaling Improvements and Automatic Dump and Reboot
Capability

Kent Thomson
OS/IO

Cray, Inc
St Paul, USA

Email: thomson@cray.com

Abstract—The Node Health Checker (NHC) component runs
after job failures to take compute nodes out of service that are
likely to cause future jobs to fail. Before NHC can take nodes
out of the availability pool, however, it must run some tests on
them to assess their health. While these tests are running, the
nodes being tested cannot have new jobs run on them. This
period of time is known as ‘Normal Mode’. By decreasing the
average time of normal mode, job throughput can be increased.
Performance investigation into the average run time of NHC
normal mode showed that instead of scaling logarithmically
with the number of nodes being tested, it instead scaled
linearly, which becomes much slower at larger node counts.
By localizing and fixing the bug causing the improper scaling
the normal mode run time of node health was decreased by,
in the best case, 100x. The analytical techniques involved in
identifying scaling will be shown, including curve fitting and
performance extrapolation using software tools. Additionally,
the method of isolating the location of the bug by testing the
different pieces of NHC separately will be discussed. Once the
source of the poor scaling is revealed as calls to an external
program for each node being tested, the fix of caching the
required information on NHC startup in an intelligent manner
is explained.

Additionally, the new automatic dump and reboot feature
of NHC is discussed. An architectural overview is given, along
with common usage scenarios.

Keywords-NHC, scaling, dump, reboot, dumpd

I. NHC INTRODUCTION

The Node Health Checker (NHC) is a software component
on a Cray system that takes compute nodes out of the job
availability pool if they fail to pass certain basic tests of
their functionality. NHC is launched from a service node
and connects to a list of compute nodes give to it by
ALPS. A node health binary on the compute node then runs
several tests designed to ensure that the node will be able
to adequately run any future jobs. Examples of these tests
include a test for all file systems listed in the /etc/fstab file,
a test to ensure a reasonable amount of available memory on
the compute node, and a test that verifies that the previous
job has exited cleanly from the node.

A general knowledge of the three main pieces of NHC is
integral to understanding the issues surrounding its scaling.
The process is initiated by a binary that lives on the service

nodes, called xtcheckhealth. xtcheckhealth oversees the test-
ing process for a set of nodes given to it by ALPS and also
manages state transitions should the nodes be unhealthy. The
xtcheckhealth binary initiates the testing process by creating
a binary fanout tree that connects all of the nodes in the set.
The fanout tree connects to a daemon on each compute node
called xtnhd. This daemon then runs the xtnhc binary that
performs the actual tests. The results of the tests are sent
up the fanout tree and back to the original xtcheckhealth
binary. The xtcheckhealth binary then uses the results of
the tests to decide which nodes should be taken out of the
job availability pool. Figure 1 is a diagram of the different
components of NHC.

NHC has two modes that it operates in: ‘normal mode’
(NM) and ‘suspect mode’ (SM). Normal mode runs just
after an ALPS job has completed. During NM ALPS is
essentially ‘stuck’ on the set of nodes it passed to NHC.
Until NHC decides the health of each of the nodes in
the job, and verifies any state changes that it performed
to communicate node unhealthiness, NHC will stop ALPS
from releasing the compute nodes in its list. In this mode,
each test in NHC is run on the node once while the node
is in the ‘up’ state. If a test that has an NHC action of
‘admindown’ in the configuration file fails on the compute
node then SM is initiated on that node. In SM, the node is
set to the ‘suspect’ state, effectively removing it from the
job availability pool, and all of the NHC tests are run on
the node. In SM, however, any tests that fail are restarted
and rerun for the duration of SM, which is 35 minutes by
default. If at any point during SM all of the tests pass the
node is set back to ‘up’ and jobs can be run on it. If the
SM timer expires and some tests are still failing, then the
node is set to ‘admindown’ and NHC has finished with that
node. At that point the admin must intervene to attempt to
repair the node or wait until the next system reboot.

NHC has three ‘actions’ that can be specified for a test,
listed here in order of increasing severity: ‘log’, ‘admin-
down’, and ‘die’. The ‘log’ action is used when the failure of
a test is significant, but not crucial enough to drive the node
into the admindown state. In the case of a test with the ‘log’
action an error is printed to the console and no further action

Figure 1. NHC Architectural Diagram

is taken. Tests with the action of ‘log’ are not run in SM. If
a test with the ‘admindown’ or ‘die‘ action fails the node is
set to suspect state for the duration of SM, and then set to
the admindown state if the test has not passed during SM.
The ‘die’ action is even more severe than the ‘admindown’
action in that the compute node is shut down if the end
of SM is reached without a test with the action of ‘die’
passing. The new automatic dump and reboot functionality
adds three additional states that will be discussed later in
this paper: ‘dump’, ‘reboot’, and ‘dumpreboot’.

II. NODE HEALTH SCALING PERFORMANCE

A. Motivation

By default, NHC only goes out to the compute nodes and
runs its tests when the previous ALPS job encounters an
error. ALPS jobs that run normally do not cause NHC to
run its tests. A question was posed about the performance
impact of having NHC run its tests after every job rather
than just after failed jobs. This can have the benefit of more
quickly finding nodes that may cause future jobs to fail,
and it can allow administrators to run their own scripts after
every job.

Please note that scaling improvements focused only on
NM run time. The reasons for this are twofold. Firstly,
reducing the NM run time can have an impact on total
job throughput, as ALPS is unable to schedule jobs on
the nodes that NHC is running NM on. This can be ex-
tremely pronounced when the NHC configuration file has
been altered to cause NHC to run after every ALPS job.
Secondly, the condition that causes linear scaling to occur
disappears during SM. Once the isolation of the linearity is
discussed this will become more clear. Regardless of SM
mode considerations, the NM speed up is still significant
and important, especially as system node counts increase.

No data had previously been collected on NHC runtime
performance or scaling. A small investigation was done on
an in house Cray system. NHC was run across node counts
up to 550 in increments of 50. The investigation was set up
such that no tests would fail and drive the node into suspect
or admindown state. Additionally, a random set of nodes was

Table I
NHC RUN TIMES AT VARIOUS NODE COUNTS

Node Count NHC Run Time (ms)

50 594

100 608

150 642

200 830

250 977

300 1168

350 1329

400 1538

450 1733

500 1881

550 2081

Figure 2. Initial NHC run times

chosen for each run so as to average out any jitter or noise
in the system that may cause inaccurate run times. Figure
2 plots the run times of NHC over various node counts as
found in table I. Please note that future data sets will not
be reproduced in this paper as those sets are too large to be
conveniently included.

Somewhat surprisingly, the trend line that emerges is
clearly linear, or in the big O notation O(n). This is
surprising as NHC uses a binary fanout tree to connect to
the compute nodes for the exact reason that a binary fanout
tree generally provides logarithmic scaling, or O(log n). At
the node counts present in Cray systems linear scaling can
quickly cause undesirably long run times. It was decided
that a more thorough investigation of this aberration from
the expected performance was necessary.

B. Curve Fitting and Gnuplot Overview

It was decided to make use of a curve fitting tool to
analyze subsequent data. Curve fitting is the act of deriving
an equation that approximates experimentally measured data.
This equation is necessary to verify that the desired scaling
is being observed, and is extremely useful in extrapolating
run times to node counts larger than what can be found in
house at Cray, or indeed even in the field.

Figure 3. NHC run times with more data points

The open source tool Gnuplot (http://www.gnuplot.info/)
was chosen as the curve fitting tool. It has robust and flexible
curve fitting paired with graphing capabilities, and the ability
to easily handle data in the format that is most convenient
to produce as part of the NHC scaling investigation. All
graphs and equations found in this paper were produced by
Gnuplot.

C. More Thorough Investigation

A script was created to automatically gather the run
times of NHC at various node counts on in house Cray
systems. Multiple runs were performed for each node count.
Each of the runs, even at the same node count, used a
random selection of compute nodes to minimize the effect of
transient disturbances in the system that might skew the data.
The data points in the rest of the figures, unless explicitly
stated otherwise, are averages of all of the runs taken at that
node count.

Figure 3 illustrates the linearity of NHCs scaling per-
formance. It also includes a line corresponding to the fit
equation found from the data using Gnuplot.

The linearity of NHCs scaling is striking. The fit line is
almost indistinguishable from the actual collected data, with
the exception of a downward spike seen around the 520
node mark. Such spikes were occasionally observed and can
be explained by transient conditions that cause components
such as NHC to run faster or slower than normal for a brief
period.

Please note that in all equations in this paper, unless
explicitly stated otherwise, t is measured in milliseconds
and n is measured in number of nodes. The following is the
equation of the fit curve for figure 3.

t = 3.19n+ 259 (1)

For node counts much larger than about 800 the 259 con-
stant factor becomes largely insignificant and the equation
simplifies to:

t ≈ 3.19n (2)

Table II
PROJECTED NHC RUN TIMES AT LARGE NODE COUNTS

Node Count NHC Run Time (s)

1000 3.4

10000 32.2

20000 64.1

Figure 4. Run times of xtnhc when called by xtxqtcmd

Table II illustrates why such scaling becomes undesirable
at large node counts. Normal mode on a node count of
20,000 takes over one minute to run.

D. Isolating the Linearity

The linearity in NHC could only be in one of the three
pieces: the xtcheckhealth binary on the service nodes, the
xtnhc binary on the compute nodes, or xtnhd and the fanout
tree. The hypothesis was that the linearity would be found
in the fanout tree piece, as small errors in a fanout tree can
easily lead to suboptimal scaling.

A plan was made to eliminate both xtcheckhealth and
xtnhc as the cause of the linearity, which would leave the
fanout tree as the only culprit. The strategy for eliminating
xtcheckhealth was to use a binary called xtxqtcmd to set
up the NHC fanout tree and run xtnhc just as xtcheckhealth
would, but without any additional overhead such as database
connections or configuration file parsing. The xtxqtcmd
binary was created to leverage the NHC fanout tree to
efficiently run commands on compute nodes, and creates a
fanout tree in a way identical to xtcheckhealth. The strategy
for eliminating xtnhc was to replace xtnhc on the compute
nodes with a binary that exits immediately with success. It
was decided that the xtnhc elimination strategy would be
tried second as it was extremely unlikely that the linearity
would be found in xtnhc.

The run times of xtxqtcmd calling xtnhc at various node
counts were gathered. Figure 4 is a graph of those runtimes.

This graph confirmed that the linearity was caused by
xtcheckhealth. While the data is quite noisy, the run times
are up to two orders of magnitude faster than when xtcheck-
health is used. Additionally, the data approximates a log-

http://www.gnuplot.info/

Figure 5. NHC with scaling fix up to 500 node count

arithmic curve. A best fit logarithmic curve is included
in the graph for reference, but the data is too noisy for
the fit curve to be reliable for extrapolation to larger node
counts. Regardless, the implication that the linearity resides
in xtcheckhealth is clear.

Through some instrumentation of xtcheckhealth the cause
of the linearity was ultimately found in a call to an external
program. As some background, NHC is provided with the
nids of the compute nodes that it is to check on. To make
error messages about a nid more helpful NHC also prints
out the cname that corresponds to that nid. On the service
node, this conversion of nid to cname is done by calling
an external program, rca-helper. This program, given a nid,
returns the cname string associated with that nid. Each call
to this program takes about three milliseconds, and this
program was being called once for each nid in the list given
to xtcheckhealth.

E. Scaling Fix

The fix to the linearity was straightforward. The rca-helper
binary has an option where it will print out information that
can be used to determine the cname of every nid in the
system. xtcheckhealth was fixed to call rca-helper with this
option at start up and cache the cname information for all
of the nids in the list given to xtcheckhealth.

A version of xtcheckhealth with the scaling fix was run
on node counts up to 550. Figure 5 is a graph of this data
including the logarithmic fit. The logarithmic curve fits the
data quite nicely.

The fit curve in Figure 5 is described by the following
equation.

t = 1.61 ln(n) + 19.6 (3)

Around the time that this fix was being implemented there
was coincidentally a large in house system being used to
identify scaling issues. A run of NHC with the scaling fix
was done across node counts up to 1600. Figure 6 is a plot
of that data.

In an interesting turn of events, a new linearity starts to
appear in the NHC run time on node counts greater than 950.

Figure 6. NHC with scaling fix up to 1600 node count

Figure 7. NHC with scaling fix up to 950 node count

Figure 8. NHC with scaling fix on node counts from 950 to 1600

The two ranges (node counts less than 950 and node counts
greater than 950) were split apart and analyzed separately.
Figure 7 is a graph of times for node counts up to 950. The
logarithmic fit curve is included as well.

The equation describing this logarithmic region is:

t = 2.54 ln(n) + 22.0 (4)

Figure 8 is a graph of node counts greater than 950. The
linear fit curve is included.

The equation describing the line is:

t = 0.024n+ 18.6 (5)

Figure 9. NHC on node counts up to 1600 with superimposed linear fit

Table III
COMPARISON OF NHC RUN TIMES WITH AND WITHOUT SCALING FIX

Node Count Without Fix (ms) With Fix (ms)

1000 3400 42

10000 32200 258

20000 64100 498

Figure 9 super-imposes the linear fit curve on top of
the run time graph. This super-position illustrates how the
logarithmic curve of the region from zero to 950 nodes hides
the long-term linearity of the graph.

F. Comparison of Old and New Scaling

This new linearity is accounted for by the architecture
of NHC. When xtnhc completes on each compute node
a message is sent from that node up the fanout tree and
ultimately to xtcheckhealth. xtcheckhealth must process the
responses one at a time to determine the appropriate action
for each node. This processing is a linear operation and so
limits the run time to O(n) at larger node counts.

Even with the new linear scaling NHC has much better
performance than before the fix. Table III has projected run
times of both versions of NHC across various node counts.
For larger node counts the difference is on the order of a
factor of 100.

Plotting the two fit equations on the same graph as in
Figure 10 demonstrates the large difference in the run times.
Fixing the issue that caused NHC to scale linearly with
number of nodes instead of logarithmically decreased the
normal mode run time significantly.

III. AUTOMATIC DUMP AND REBOOT

The latter half of this paper deals with the automatic dump
and reboot feature. A design and architectural overview is
presented along with several use cases for normal operation.

A. Design Goals

The main design goals for Automated Dump and Reboot
(henceforth ADR) were twofold: to reduce the amount of

Figure 10. Comparison of old and new NHC scaling

manual dumping and rebooting that admins must perform
on a system and to integrate that functionality into existing
mechanisms, namely NHC. NHC without ADR does some
error detection and reporting, but very little data gathering
and no recovery. It writes messages to the console indicating
the tests that failed and changes the state of compute nodes
to take them out of the job availability pool. Any further
debugging or action, however, is left up to the system
admin. Oftentimes the next logical step in debugging an
issue is taking a dump of an affected node. Once that has
been completed a reboot of the unhealthy nodes can often
resolve any issues they were having and allow future jobs
to be successfully run on the nodes. ADR is an attempt
to automate as much as possible in the dump and reboots
steps. The hope is that admins will then be freed up to
spend their time on issues that are not as clear cut as the
ones encountered as part of ADR. Since NHC was already
responsible for reporting problems with the health of a
compute node, it made the most sense to integrate ADR
into NHC.

Two additional sub-goals were also outlined for ADR:
avoid detrimental actions if the admin does want to manually
dump or reboot a node, and have a configuration file that is
extensible enough to easily allow any command on the SMW
to be run as part of the ADR cycle. There are often times
when an admin does not want an automated system touching
a node. As such the daemon associated with ADR watches
for evidence of admin interference and cancels any actions
for that node. As well, it is easy to imagine wanting to add
additional steps in the dump and reboot cycle. A simple
example would be sending an email alerting an admin or
other entity to the existence of a new dump.

B. What is a dump?

A dump is a copy of node memory containing structures
and data that can be used to reconstruct the state of the
kernel at the time of the dump. It is a way to preserve the
error state of a compute node, while also allowing copies of
that state to be made and sent out for inspection. When read

with the appropriate program a dump can be an invaluable
window into what processes are running on a node, what
system calls they are performing, any files they have open,
and several other pieces of information useful in debugging.
Oftentimes a dump is the only way to properly debug any
number of problems that may plague a node, from hung
applications to memory shortages to core hangs.

Dumps are taken manually by using the ldump program
on the SMW. Before taking a dump, the node is often halted
by means of a non-maskable interrupt (NMI) that causes a
kernel panic on the node. This effectively freezes the node
in place to allow a dump to be self-consistent. Dumps that
are taken while a node is still running are often partially
unreliable, as node memory can be written while the dump
is being performed.

C. Reboot Information

Reboots in dumpd are performed by calling the xtbootsys
command with the –reboot flag. By default only one out-
standing call to xtbootsys is made at a time, though up to
50 nodes (by default) can be passed to one invocation of
xtbootsys. The 50 node limit was empirically determined on
in-house Cray systems. Reboots of in chunks of 50 nodes or
less was observed to give the best mix of a relatively large
amount of simultaneous node reboots with less system-wide
impact.

D. Dumpd SMW Daemon

The commands to send NMIs to nodes, take dumps,
and initiate reboots are only available on the SMW. This
presented a problem, as NHC lives exclusively on the service
and compute nodes. To that end a new daemon, dumpd, was
created on the SMW to actually perform dump and reboot
actions. This new daemon is composed of four different
components: the dumpd binary written in C, the python
script executor, the mznhc database, and the dumpd.conf
configuration file. Each of the components has a different
role to play in performing dumps and reboots. They will
each be explained in detail. Figure 11 shows the relationship
between the different pieces of dumpd.

Before each of the pieces of dumpd are explained it is
important to understand the concept of ‘actions’ as used in
dumpd. Actions are comma separated lists of commands that
dumpd can perform. For example, if a node is just to be
rebooted the action would be “reboot”. If instead a node was
to be halted, dumped, and then rebooted in order (as is often
requested by NHC) the action would be “halt,dump,reboot”.

The dumpd binary has three jobs: listen for requests from
NHC or other sources, create a database entry that describes
the request, and start the executor script to actually perform
the request. Requests are sent to dumpd in the form of HSS
events. These events were chosen as the transport method
for requests because of their ubiquity on a system and
because of the large amount infrastructure in place to deal

Figure 11. Dumpd Components and Interactions on the SMW

with these events. HSS events can be sent from every part
of a Cray system, including the SMW, blade and cabinet
controllers, and both service and compute nodes. There
is also a large amount of existing code that can be used
to process these events. HSS events contain space for a
sender-defined payload. Dumpd uses this payload to transmit
the request information. When the dumpd binary receives
a request, it parses out the information from the event’s
payload and places that information into a database on the
SMW. The executor python script is then called.

The database is used to store information about requests
for recovery and also to act as a communication path
between the dumpd binary and the executor python script.
There is a python script on the SMW, called dumpd-
dbadmin, that allows admins a convenient interface to see
any database entries currently in the database.

The dumpd configuration file is found in /etc/opt/cray-
xt-dumpd/dumpd.conf on the SMW. It contains various
configuration parameters and the actual command definitions
of what is meant by ‘halt’, ‘dump’, and ‘reboot’. As an
example, the following is the definition, in dumpd.conf, of
the halt action:

[halt]
command: xtnmi --partition $partition $cname
max_cnames: unlimited
timeout: 60

The $cname variable is replaced with a comma separated
list of cnames to perform the action on, and the $partition
argument is replaced by the partition name that the cnames
came from, for example ‘p0’ or ‘p1’. The max cnames
variable is used to determine the number of cnames in the
comma separated list substituted into $cname. The timeout
variable specifies, in seconds, how long the command is
allowed to run for before being killed and considered to
have exited in error.

The python script executor is the entity responsible for

actually performing the dumps and reboots. Upon startup
by dumpd it reads dumpd.conf for the definitions of its
various actions and other assorted configuration parameters.
When a request contains multiple actions (for example
“halt,dump,reboot”) the executor performs each comma sep-
arated action in order. So in the previous example, executor
would perform “halt”, then “dump”, then “reboot”. When
performing an action, the executor is smart enough to ag-
gregate nodes with the same action together. For example, if
reboot requests were sent for nodes with cnames c0-0c0s1n0
and c0-0c0s1n1 executor would call xtbootsys once, with
both cnames present in the call. In that case $cname would
get substituted with c0-0c0s1n0,c0-0c0s1n1. The amount
of aggregation of cnames and the number of outstanding
calls to a program can be controlled by the dumpd.conf
configuration file. The executor runs until there are no more
database entries to process. While it is running, dumpd may
be continually placing new database entries in the database,
and so the executor may end up processing many more
requests than were present when it was started.

E. NHC Integration

Dumpd is tightly integrated with NHC. Three new NHC
test actions were created for dumpd integration: ‘dump’,
‘reboot’, and ‘dumpreboot’. Each of these will be discussed
in detail. To use any of the three new actions the ‘dumpdon’
variable in the NHC config file must be set to ‘on’. This
variable is a quick way to disable all ADR requests from
NHC. Several use cases of automatic dump and reboot can
be found in the “Use Cases” subsection.

The ‘reboot’ action is the most straightforward, and so
will be discussed first. If a test with the action of ‘reboot’
fails, at the end of suspect mode NHC will set the node to
the ‘unavail’ state and send an HSS event to dumpd with an
action string of ‘reboot’. The ‘unavail’ state is used instead
of the ‘admindown’ state for both a technical and non-
technical reason. The technical reason is that nodes that are
in the ‘admindown’ state stay in the ‘admindown’ state after
the conclusion of a reboot. This would essentially negate
the automatic aspect of dumpd, as a human would need
to intervene and set the node to the ‘up’ state. The non-
technical reason is that nodes in the queue to be rebooted
are still in a state of flux, and so should not be treated as
though NHC has finished with them.

The ‘dump’ action is slightly more complicated in its
execution. At the end of SM, any nodes that have failed
a test with the action ‘dump’ are set to the ‘admindown’
state. An additional parameter - maxdumps - is found in
the configuration file. If a set of nodes fails a test with
the ‘dump’ action, a dump is not requested for every
single failing node. This could quickly overload the storage
capabilities of the SMW while offering very little additional
debugging information. Instead, only a random subset of the
failing nodes have dumps performed on them. The number

in this subset is determined by the maxdumps parameter.
xtcheckhealth sends out HSS events for this random subset
of nodes with the dumpd action string “halt,dump”. The
rest of the nodes are treated as though their action was
‘admindown’.

The ‘dumpreboot’ action is, as the name suggests, a
combination of the ‘dump’ and ‘reboot’ actions. Indeed, in
the instance when a node has 2 failing tests, one of them with
the ‘dump’ action and one of them with the ‘reboot’ action,
the node is treated as though it failed with the ‘dumpreboot’
action. When a node fails with this action it is set to the
‘unavail’ state at the end of SM. The node is then added to
set of nodes that are candidates to be dumped. If the node is
chosen for a dump, xtcheckhealth sends an HSS event with
the dumpd action string “halt,dump,reboot”. If the node is
not chosen for a dump, then xtcheckhealth sends an HSS
event with the dumpd action string “reboot”.

The three previous NHC test actions, ‘log’, ‘admindown’,
and ‘die’, each have an associated severity. For example, if
2 tests failed on a compute node, one with the ‘log’ action
and one with the ‘admindown’ action, the ‘admindown’
action took precedence. Similarly, the ‘die’ action took
precedence over all other actions. The three new test actions
have a similar precedence, but there are some complicating
factors. The states are listed along with explanations of their
precedences.

• Die - If a test with the ‘die’ action fails, the node
shutdown is performed in all cases. This does not
interact well with the ‘dump’ action, as a node that has
been shut down has destroyed most of its error state
information.

• Log - Superseded by all other actions
• Admindown - Superseded by all other other actions

with the exception of Log
• Dump or Reboot individually - Supersede the ‘admin-

down’ action and the ‘log’ action. If one test has failed
with the ‘reboot’ action and another has failed with the
‘dump’ action the node is treated as if a test with the
‘dumpreboot’ action had failed.

• DumpReboot - Supersedes all other actions with the
exception of the ‘die’ action.

F. Using Dumpd Without NHC

Dumpd can also be used independently, without NHC.
There is a utility found on both the service nodes and the
SMW called ‘dumpd-request’ that can be used to request
actions of dumpd. A typical usage of dumpd-request would
be:

dumpd-request -a halt,dump,reboot -c c0-0c1s2n3

The -a option tells dumpd-request what series of actions
to request. In the above example a halt, dump, and reboot
are being requested for the cname specified with -c. The -c
option will also take a comma-separated list of cnames. If

an admin has defined additional actions in the dumpd.conf
configuration file then those actions can be used as well.

The following is an example of a custom action. The
following lines are added to dumpd.conf:

[log]
command: echo $cname reboot >> /tmp/my.log
max_cnames: 1

If dumpd-request was then called as in the following:

dumpd-request -a log,reboot -c c0-0c1s2n3

then the command specified for ‘log’ in the dumpd.conf file
would be performed first, followed by a reboot.

G. Use Cases

The following are some typical use cases that may be
encountered.

1) Nodes failing an NHC test are dumped: This use case
goes through the entire sequence of a set of nodes failing
tests that all have the NHC ‘dump’ action. An example of
a real life situation would be an application run across a set
of nodes that hangs upon exit.

In this example the pertinent NHC config file options are:

dumpdon: on
maxdumps: 3
Application: Dump 240 300 0

After an ALPS job exits uncleanly, NHC is called with a
nidlist consisting of all nids in the range 100-200. NHC runs
NM on these nodes, and find that they all fail the application
test. They are all set to ‘suspect’ state. NHC then runs SM
on these nodes, and after 35 minutes they all continue to
fail the application test. All of the nodes are then set to the
‘admindown’ state.

Next, xtcheckhealth must pick some nodes to be rebooted.
The set of possible nodes to be dumped encompasses
the entire list, every nid in the range 100-200. Since the
maxdumps parameter is set to 3, xtcheckhealth picks at
random nids 135, 148, and 188 to be dumped, with corre-
sponding cnames c0-0c1s0n0, c0-0c2s0n0, and c0-0c3s0n0.
xtcheckhealth then sends out dumpd requests for each of
those cnames with the action string “halt,dump”.

On the SMW, the dumpd daemon receives the first HSS
event. It adds the information contained within that event,
including the cname of the node and the action string, into
the database. Dumpd then calls executor to process the
request. After calling executor dumpd receives the next two
events and adds them to the database.

The executor python script starts and sees three requests
in the database. It takes all nodes that have the ‘halt’
action and performs the command defined in dumpd.conf, by
default xtnmi --partition $partition $cname.
Once that command has exited with zero, executor starts on
the next action defined, ‘dump’.

The dump action is defined as follows in dumpd.conf (‘\’
characters have been added to the end of lines that are split
up due to the formatting of this paper).

[dump]
command: ldump -r xt-hsn@boot-$partition \
-o $dump_dir/$cname.$time $cname
max_cnames: 1
simultaneous: 1
timeout: 1200

In the above, $dump dir is a directory specified earlier in
dumpd.conf and $time is the time stamp when the action is
performed. Since max cnames is set to 1 and simultaneous
is set to 1, this means that only one node can be dumped
at a time. The executor starts on the oldest request in the
database. It performs the ‘dump’ action for each cname in
turn, and then removes the requests from the database. The
executor then exits.

2) Nodes failing an NHC test are rebooted: This use case
goes through the entire sequence of a set of nodes failing
tests that all have the NHC ‘reboot’ action. An example of a
real life situation would be setting the action of the memory
test to ‘reboot’ to have nodes with low memory rebooted.

In this example the pertinent NHC config file options are:

dumpdon: on
maxdumps: 3
Memory: Reboot 20 30 30 1000

After an ALPS job exits uncleanly, NHC is called with a
nidlist consisting of all nids in the range 100-199. NHC runs
NM on these nodes, and find that they all fail the memory
test. They are all set to ‘suspect’ state. NHC then runs SM
on these nodes, and after 35 minutes they all continue to
fail the memory test. All of the nodes are then set to the
‘unavail’ state, since they are all to be rebooted.

xtcheckhealth sends out dumpd requests for each of the
cnames corresponding to nids 100-199 with the action string
“reboot”.

On the SMW, the dumpd daemon receives the first HSS
event. It adds the information contained within that event,
including the cname of the node and the action string, into
the database. Dumpd then calls executor to process the
request. After calling executor dumpd receives the next 99
events and adds them to the database.

The executor python script starts and sees some number of
requests in the database, depending on how quickly dumpd
can place requests in the database.

The reboot action is defined as follows in dumpd.conf (‘\’
characters have been added to the end of lines that are split
up due to the formatting of this paper).

[reboot]
command: $dumpdbin/runpty xtbootsys \
--partition $partition --reboot \
--compute-loadfile CNL0 --reason \
"Automatic reboot done by dumpd at \
time $time" $cname

max_cnames: 50
simultaneous: 1
accumulation_time: 10
timeout: 1200

A note about the ‘runpty’ program above. Since xtbootsys
is a TCL script, it will exit if backgrounded or called without
a terminal. Since dumpd is a daemon, there is no terminal
for xtbootsys to use. The runpty binary sets up a pseudo-
terminal that xtbootsys then uses to run.

Since the ‘reboot’ action has an accumulation time of
10 seconds, executor will wait for 10 seconds after the
last request with the reboot action has been received before
proceeding with the reboot. This is to stop a situation where
a reboot is started on 1 or 2 early requests even though
a large nubmer of requests may be coming very shortly.
The executor will not wait for the accumulation time if the
number of requests for a reboot is the same or larger than
max cnames.

The executor starts the reboot on the first 50 nodes
to be entered into the database. xtbootsys is called and
successfully reboots the nodes. Once xtbootsys returns ex-
ecutor removes the successful requests from the database
and reboots the next chunk of 50 nodes. Once they have
finished the executor removes the requests from the database
and exits.

3) Nodes failing an NHC test are both dumped and
rebooted: This use case goes through some of the sequence
of a set of nodes failing a test that has the NHC action
‘dumpreboot’. An example of this might be tracking down
a bug that causes apinit, the ALPS daemon on the compute
node, to become unresponsive. With ‘dumpreboot’ a dump
will be taken, but the nodes will also be returned to service.

In this example the pertinent NHC config file options are:

dumpdon: on
maxdumps: 1
Alps: DumpReboot 30 60 30

After an ALPS job exits uncleanly, NHC is called with
a nidlist consisting of all nids in the range 100-199. NHC
runs NM on these nodes, and find that they all fail the alps
test. They are all set to ‘suspect’ state. NHC then runs SM
on these nodes, and after 35 minutes they all continue to fail
the alps test. All of the nodes are then set to the ‘unavail’
state, since they are all to be rebooted eventually.

xtcheckhealth randomly chooses one nid to be dumped,
in accordance with the limit set in maxdumps. A dumpd
request is sent for the cname associated with that nid with
the action string “halt,dump,reboot”. The rest of the nids
have requests sent with their corresponding cnames and the
action string “reboot”.

The definitions of ‘halt’, ‘dump’, and ‘reboot’ have been
reproduced in earlier use cases and so will not be reproduced
here. On the SMW, dumpd gets the first request and places
it in the database. Dumpd then starts the executor script and

continues to place requests in the database when they are
received.

The executor sees one request with the first action ‘halt’
(this would be the node to be dumped) and starts that
command. It also sees several requests with the action
‘reboot’. It waits until 50 of those have been entered into the
database and starts the reboot command. Just after the reboot
command starts the halt command finishes. The executor
then starts on the next action for that request, which is
dump. The dump command finishes 2 minutes later with
the prior reboot still outstanding. After 5 more minutes the
reboot finishes. The executor now sees 50 nodes queued for
a reboot and starts a reboot command. When that finishes
sucecssfully the requests are removed from the database.

4) Using dumpd.conf to shut down nodes before reboots:
This use case involves a little more advanced use of dumpd,
but can be useful in certain situations. This use case specifi-
cally deals with using the dumpd configuration file to cleanly
shut down nodes prior to a reboot.

The following is added to dumpd.conf to define the new
‘shutdown’ action:

[shutdown]
command: xtcli shutdown $cname
max_cnames: 50
simultaneous: 1
accumulation_time: 1
timeout: 60

What is required now is a way to always have the
‘shutdown’ action run before the ‘reboot’ action. This can be
accomplished by adding ‘pre: shutdown’ to the end of
the ‘reboot’ definition in dumpd.conf. The ‘reboot’ definition
would then look like so:

[reboot]
command: $dumpdbin/runpty xtbootsys \
--partition $partition --reboot \
--compute-loadfile CNL0 --reason \
"Automatic reboot done by dumpd at \
time $time" $cname
max_cnames: 50
simultaneous: 1
accumulation_time: 10
timeout: 1200
pre: shutdown

For every new request in the database, executor will
add the ‘shutdown’ action before the ‘reboot’ action. This
means that for every request received after the configuration
file is changed, the action string “halt,dump,reboot” will
be changed to “halt,dump,shutdown,reboot” and the action
string “reboot” will be changed to “shutdown,reboot”.

There is an analagous ‘post’ option as well that runs spec-
ified actions after the defined action. Be warned, however,
that dumpd enforces the rule that you cannot run anything
after a reboot.

H. Admin / dumpd collisions

Occasionally, there may be times when an admin wishes
to reboot a node that dumpd has in its queue or has started an
action on. Dumpd makes a best effort to avoid this collision
by monitoring for a specific HSS event signaling the reboot
of a node. If dumpd detects one of these events it removes
that node entirely from its request database. Any currently
executing actions on that node will run to completion in case
other nodes in that action could be successful.

Two ldumps may non-destructively dump one node si-
multaneously, so no effort is made to avoid dump collisions.
There are some variables in dumpd.conf that can stop dumps
from being taken if a specified amount of space has already
been used for dumps. Please note that this is a relatively soft
limit, as the size of a dump cannot be accurately known in
advance. If a hard limit on the number of dumps taken is
required, a separate disk partition purely for dumps may be
a good alternative.

I. Practices to Avoid

It is important to remember that a reboot is not always a
panacea, and can indeed be counter-productive in certain
situations. A good example is setting NHC to request a
reboot on the failure of the file system test. If the file system
is a remote file system such as lustre or DVS, it is extremely
unlikely that a reboot of a compute node will cause the file
system to function normally when the compute node comes
up. Most likely every time the node comes up the file system
will still cause test failures, which can cause node to be
rebooted multiple times in a row. This is not desirable in
most situations.

Dumps can take up quite a large amount of space on an
SMW, and there are pathological situations on the compute
node where the kernel uses too much memory that can
cause dumps even larger than normal. Because of this the
max dumps parameter in the NHC configuration file should
be set quite low, perhaps in the low single digits, or even just
to 1. The likelihood of additional information being present
in multiple dumps is usually quite low, especially since NHC
chooses nodes to dump at random.

IV. CONCLUSION

The isolation and fix of a scaling issue in NHC allowed
the normal mode run time to be decreased by up to two
orders of magnitude.

Automatic dumping and rebooting functionality present
in NHC and the new SMW daemon, dumpd, help increase
automation of the common admin tasks of dumping and
rebooting.

	NHC Introduction
	Node Health Scaling Performance
	Motivation
	Curve Fitting and Gnuplot Overview
	More Thorough Investigation
	Isolating the Linearity
	Scaling Fix
	Comparison of Old and New Scaling

	Automatic Dump and Reboot
	Design Goals
	What is a dump?
	Reboot Information
	Dumpd SMW Daemon
	NHC Integration
	Using Dumpd Without NHC
	Use Cases
	Nodes failing an NHC test are dumped
	Nodes failing an NHC test are rebooted
	Nodes failing an NHC test are both dumped and rebooted
	Using dumpd.conf to shut down nodes before reboots

	Admin / dumpd collisions
	Practices to Avoid

	Conclusion

