
Running Large Scale Jobs on a Cray XE6 System

Yun (Helen) He and Katie Antypas
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, USA

e-mail: yhe@lbl.gov; kanytpas@lbl.gov

Abstract— Users face various challenges with running and
scaling large scale jobs on peta-scale production systems. For
example, certain applications may not have enough memory
per core, the default environment variables may need to be
adjusted, or I/O dominates run time. Using real application
and benchmark examples, this paper will discuss some of the
run time tuning options for running large scale pure MPI and
hybrid MPI/OpenMP jobs successfully and efficiently on
Hopper, the NERSC production XE6 system. These tuning
options include MPI environment settings, OpenMP threads,
process and memory affinity choices, and IO file striping
settings.

Keywords- running large jobs; XE6; MPI rank reordering;
hybrid MPI/OpenMP; process and memory affinity; huge pages;
IO file striping

I. INTRODUCTION
The peta-scale Cray XE6 system, Hopper [1], is the flagship
production machine at the National Energy Research
Scientific Computing (NERSC) that serves over 4,500 users
in about 650 different projects across a broad range of
science disciplines supported by the Department of Energy
(DOE) Office of Science. Usually there are hundreds of
users logged into the system at any time of the day.

Hopper has 6,384 nodes, and 153,126 cores. It has the peak
performance of 1.28 PFlops, and sustained performance of
~140 Tflops. Total memory is 212 TB. Each compute node
has 2 twelve-core AMD MagnyCours 2.1 GHz processors
(2 sockets). On each socket, there are 2 dies (also called
NUMA domains). There are 4 NUMA nodes per node, and
6 cores per NUMA node. Memory access to a remote
NUMA domain is slower than within the local NUMA
domain (Fig 1). Memory bandwidth ranges from 6.4
GB/sec to 21.3 GB/sec depending on the origin and
destination of the NUMA nodes. Most of the compute
nodes have 32 GB per node (1.33 GB/core) while some
large memory nodes have 64 GB per node (2.67 GB/core).
Hopper uses Lustre as its scratch parallel file system.

NERSC measures the percentage of hours that are devoted
to jobs of different sizes to understand the workload on the
system. Fig 2 shows the raw compute hours (in millions) by
number of cores used on Hopper from January 2011 to

March 2012. Applications on Hopper run at all different
concurrencies. About 40% of total compute time is used by
jobs over 8,192 cores. The percentage was even higher
before charging started on May 1, 2011, since users are
more ambitious in scaling when charging and allocation are
not of concern. At the same time, many users take
advantage of Hopper’s large size to run thousands of
moderately sized jobs.

Figure 1. An illustration of a Hopper compute node. There are 4 NUMA
nodes per node, and 6 cores per NUMA node. Memory access to a remote
NUMA domain is slower than within the local NUMA domain.

When users attempt to scale their scientific applications to
larger concurrencies, they may run into some challenges.
For example, certain applications may not have enough
memory per core, the default environment variables may
need to be adjusted, performance is subject to NUMA
effects, or I/O dominates run time.

We have conducted a survey of NERSC users who run large
scale jobs routinely. The questions in the survey include:
what are their initial obstacles and challenges, and what are
the strategies they have used to ensure the successful
running of the codes. The areas to explore include using
fewer cores per node, trying different MPI environment
settings, testing different MPI rank reordering methods,
using hybrid MPI/OpenMP or different OpenMP
scheduling, measuring NUMA effects, adjusting process
and memory affinity options, huge pages, core
specialization, and IO tunings, etc.

Figure 2. Raw compute hours (in millions) by number of cores used on
Hopper from January 2011 to March 2012. About 40% of total compute
time is used by jobs over 8k cores. The percentage was even higher before
charging started on May 1, 2011.

The goal of this study is to learn about application tuning
successes with real application examples, and to come up
with a few practical tips and run time tuning options for
running large jobs on Hopper [2,3], that can benefit general
users to achieve optimal performance and scaling of their
applications.

The rest of the paper is organized as follows: Section II
contains general feedback from our user survey on running
large jobs on Hopper. Section III gives tuning examples of
real user applications and NERSC benchmarks. Section IV
discusses two general system issues that have an impact on
running jobs, especially large jobs. Section V discusses IO
tunings. And Section VI provides a summary of practical
tips for running large jobs on Hopper.

II. USER SURVEY RESULTS

We conducted a “Running Large Scale Jobs on Hopper”
user survey from users who routinely run large jobs using
682+ nodes (16,368+ cores). Jobs over this size receive
charging discount on Hopper. The survey was sent to about
50 users, and over 1/3 responded. Questions included in
the survey and general feedback are:

1. What is the range of large job sizes you typically run?
(number of cores, number of nodes)

The range is from single node to full machine. Some users
conduct scaling studies, and some users debug their codes in
small scale, and run production codes in large scale. Some
codes are mature enough to run in capability mode using the
whole machine.

2. What are the code names and the science areas?
Science areas cover compute science, engineering,
chemistry, material sciences, astrophysics, nuclear physics,
and more.

3. What are the challenges you face of running large jobs on
Hopper? You can talk about any aspect including job
scheduling, job failures, job scaling, run time variation, IO
performance, and many more.

The biggest challenge users mentioned is actually the
difficulty of getting through the queue. The recent
retirement of the NERSC’s other Cray system (Franklin,
XT4) contributes to the crowdedness on Hopper because of
user workload migration.

Other challenges mentioned include:

• No mechanism to control the mapping between
logical topology into physical nodes that the
submitted job was allocated. For example, if the
MPI tasks have a 3D torus, there is no guarantee
that these MPI tasks are perfectly mapped to a true
and compact physical 3D torus.

• The increase of communication overhead and job
variation caused by the above issue.

• Jobs sometimes hung.

• Jobs failed due to not enough memory.

• Parallel IO performance. MPI-IO does not scale
well

4. What kind of scaling results do you see?

Some applications got very good scaling even with 100k+
cores. Some had good scaling until a certain size, such as
32k. Several users provided scaling results and tuning
strategies, which we will include in Section III as user
tuning stories.

5. What kind of job run time variation do you see?

About 20% is normal for most applications. Users do report
seeing stable peak performance. Much larger variations in
IO.

6. What tuning options have you used to improve job
performance/scaling?

6a) Have you tried with different compilers and various
compiler options? If yes, what are the results?

Many users have tried various compilers and flags.
Surprisingly, many chose GNU compiler after comparison.
Some users choose PGI, which is the default compiler on
Hopper. Some users choose Cray compiler, to take
advantage of the UPC and CAF support. Some Pathscale

compiler users migrated to use Cray compiler due to the
lack of the ongoing Pathscale compiler support.

Some of the compiler flags users adopted include:

• PGI: -fast -Mipa=fast,inline -mp=nonuma
• GCC: -O3 -ffast-math -funroll-loops
• CRAY: -O3

6b) Have you tried changing default MPI environment
variables? If yes, what are they and what are the results?

No users have tried to adjust various MPI buffers. We got
lots of insufficient MPICH_UNEX_BUFFER_SIZE or
MPICH_PTL_UNEX_EVENTS error messages for Portals
on XT, but no more Gemini related such errors on XE6.

6c) Have you tried changing default MPI rank ordering? If
yes, what are the results?

Most used MPI environment variable for tuning by users is
MPI rank reordering. This is a simple yet effective run time
tuning option that no source code modification, re-
compilation or re-linking is required.

A couple of user application examples that benefited from
MPI rank reordering will be described in Section III.

6d) Do you use hybrid MPI/OpenMP? If yes, how many
threads per node? How do you choose the number of
threads per MPI task? Do you use first touch memory for
each local thread? Do you have some performance data
with hybrid scaling results with various options?

Yes, some users have tried. They normally use 4 MPI tasks
per node (one MPI task on each NUMA node), and 6
OpenMP threads per MPI task, as we suggested on our
NERSC web site. Users have heard of “first touch”, but
none has actually tried it. One user tried to use other
NUMA control mechanisms with 24 threads, but it proves to
be hard, and performance was not better than with 6 threads.

6e) Have you tried with various aprun options, such as -cc, -
S, -ss, for process/memory affinity control? If yes, what are
the results?

Yes, users have tried with these options. The default option
of “-cc cpu” seems to be very good for process affinity, but
“-S”, “-ss” options along with “-N” and “-d” have great
impact on code performance.

The NUMA effect will be illustrated with a NERSC
benchmark in Section III.

6f) Do you have to use fewer cores (than fully packed) per
node in order to run or to get better performance? If yes,
what are the results?

Yes from some users. It is helpful for being able to use more
memory per process and for having fewer processes to share
the memory and interconnect bandwidth. This is another
simple yet effective run time tuning option. A user example
will be described in Section III.

6g) Have you used huge pages? If yes, what are the
results?

None of the users responded have used huge pages
explicitly, although MPI uses huge pages explicitly.

The effects of using huge pages explicitly for two NERSC
benchmarks and the impact from system issues related to
huge pages will be described in Section IV.

6h) Have you used core specialization ("-r" option for
aprun)? If yes, what are the results?

No users responded have tried core specialization. We are
aware of the effect of core specialization on constraining OS
jitter on the designated core, and using just the rest of the
cores for application helped to improve the performance of
an ocean code “POP” [4]. We are also aware of this feature
being helpful for MILC and S3D performance [5], using
two phases of MPI library (one in released version and one
in development branch).

However, we tried this with a couple of applications (one
user application, one NERSC benchmark code). The tests
were done and also independent of any other optimizations
(such as huge pages or malloc settings), and with the two
suggested MPI environment variables
(MPICH_NEMESIS_ASYNC_PROGRESS and
MPICH_INIT_THREAD_SAFETY) being set in the
released xt-mpich2/5.4.4 version, however, we do not see
obvious improvement during production environment.

6i) What IO performance tunings have you tried? Non-
default file striping? Parallel IO? What are the results?

Some users specify one IO write/reader per node. Some
users use MPI-IO. One user achieved 4 times speedup by
using max file striping instead of the default striping (see
details in Section V).

During the user survey, we were able to help some users to
debug their code scaling problems. One such example is: A
user mentioned that his MPI/OpenMP hybrid never scales
better than 1 thread per node. It turned out that he thought
he was using the Cray compiler (with OpenMP enabled
automatically), but without switching the programming
environment module from PrgEnv-pgi to PrgEnv-cray, he is
actually using the PGI compiler with the compiler wrapper
“ftn”, and without adding “-mp” explicitly, OpenMP was
not turned on.

Many users benefited from the questions we asked them,
since they have never heard of some of the tuning options
we mentioned. Many plan to explore these options for their
applications. We provided documentations and tuning
suggestions to them via explicit user communications.

Another tuning option we experimented with but did not ask
in the user survey is to set the system malloc settings:

export MALLOC_MMAP_MAX_=0
export MALLOC_TRIM_THRESHOLD_=536870912

We tried with the above settings on selected user
applications and NERSC benchmarks, but no specific
improvement was seen under production environment.

III. APPLICATIONS TUNING STORIES

Some runtime tuning stories of several user applications and
NERSC benchmarks are described in this section. Since all
the runs were performed under production environment, to
minimize the runtime variation effect caused by the
application placement in the topology, multiple apruns with
different run time options were used in the same batch job,
so that the same set of nodes can be used. Fastest run times
from multiple batch jobs are used in the performance
comparison to mimic dedicated environment.

A. S3D: MPI Rank Reordering
This tuning story is from NERSC users Hemanth Kolla and
Evatt Hawkes [6]. S3D is a code for numerical simulations
of turbulent combustion. In S3D, there is very little global
communication and almost all communication is among
nearest neighbors in the physical space. Reordering MPI
ranks to place ranks that are contiguous in physical space
proved to be beneficial (Fig 3), and the scaling of S3D is
very good all the way up to 130k cores. Using 3,072 cores,
the S3D run time per grid per time step is 176.2 sec using
the default MPI rank ordering, and 165.7 sec with the
custom rank reordering, a difference of 4%. The difference
is bigger with larger jobs using more cores.

The ordering of the ranks in the physical domain is trivial
(X direction first, then Y and finally Z direction). So the
users know which ranks are contiguous to each other in the
physical space (and hence communicate a lot with each
other). A simple perl script is used to generate the custom
MPICH_RANK_REORDER file where each line lays out
the list of ranks that form a physically contiguous 3D
block.

Figure 3. S3D run time per grid per time step using different number of
cores on Hopper. This is weak scaling, so the ideal scaling is flat, and lower
is better for scaling. 30x30x30 cube with c2h2 combustion chemistry. 50
time steps, no IO. (Courtesy of Hemanth Kolla and Evatt Hawkes)

B. PSOCI: Using Fewer Cores per Node
This tuning story is from NERSC user Jeffrey Tilson
(personal communication). PSOCI (Parallel Spin Orbit
Configuration Interaction) is a Chemistry code developed
under the US DOE SciDAC-e award "Enhancing
Productivity of Materials Discovery Computations for Solar
Fuels and Next Generation Photovoltaics". Global Arrays
version 5.0.3 (built with ANL’s armci) with ga++ binding is
used in PSOCI. The user left four cores free per node for
local I/O etc.

Fig 4 shows the comparison of PSOCI run time with or
without using fewer cores per node. Hamilton construction
is phase 1, and Diag is phase 2. Using fewer cores per node,
with 3,000 cores, speedup in phase 1 is 14%, speedup in
phase 2 is 11%; and with 6,000 cores (with a different
problem size), speedup in phase 1 is 6%, speedup in phase 2
is 15%.

Figure 4. PSOCI run time with and without using fewer cores per node.
3,000 core and 6,000 core runs used different problem sizes. (Courtesy of
Jeffrey Tilson)

C. Hybrid MPI/OpenMP with Process and Memory
Affinity

Memory affinity on the compute nodes is not decided by the
memory allocation, but by the initialization. Memory will be
mapped to the NUMA domain that first touches the data and
so it is important to initialize data carefully. This is referred
to as the “first touch” principle. It is essential in hybrid
MPI/OpenMP applications that each thread only accesses
local memory from its local NUMA node to avoid the
NUMA penalty of accessing memory from the remote
NUMA nodes.

The following code example shows how to implement the
“first touch” in an OpenMP parallel region. Local variables
are initialized (not only allocated) in the first parallel region.
Using same number of threads in the following parallel
regions ensures local memory access for these variables.

#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
a[j]=b[j]+d*c[j];}

Fig 5 illustrates of the NUMA effects on Hopper with the
STREAM benchmark [7]. The result shown here is from a
single node, with pure OpenMP, using 1 to 24 threads. With
“first touch” (TouchByAll), the memory bandwidth
increases all the way up to 24 threads. While without “first
touch” (TouchByOne), the memory bandwidth saturates at 6
threads.

Figure 5. NUMA effects on Hopper with the STREAM benchmark. The
result shown here is from a single node, with pure OpenMP, using 1 to 24
threads. (Courtesy of Hongzhang Shan)

It is very hard to do “perfect touch” for real applications. No
real user applications reported from the user survey
implemented “first touch”. NERSC recommends not using
more than 6 threads per node on Hopper to avoid NUMA
effects. Using 4 MPI tasks per node, with 6 OpenMP

threads per MPI task, and initializing local variables from
each thread follows the “first touch” policy naturally.
Memory for the local variables will be contained within the
local NUMA node. In the example of STREAMS
benchmark shown in Fig 5, using 4 MPI tasks with 6 threads
per MPI task will reach the same bandwidth as using 1 MPI
task with 24 threads with perfect first touch (TouchByAll),
but avoid the difficulty of implementing first touch. (The
only benefit of using 24 threads may be to allow more
memory access per MPI task and to have larger and fewer
MPI messages).

The “-S” option is especially important for hybrid
MPI/OpenMP applications, since it is needed to spread the
MPI tasks onto different NUMA nodes. Fig 6 demonstrates
the number of MPI tasks per NUMA node with or without
the “-S” option. The upper scheme uses “aprun –n 4 –d 6
…”. Without “-S 1”, all 4 MPI tasks are allocated on the
same NUMA node. The bottom scheme uses “aprun –n 4 –
S 1 –d 6 …”. With “-S 1”, there is only 1 MPI task per
NUMA node. 6 threads will be forked for each MPI task on
each local NUMA node.

Figure 6. Illustration of the “-S” option in aprun. Upper: aprun –n 4 –d 6
…. Without “-S”, all 4 MPI tasks are allocated on the same NUMA node.
Bottom: aprun –n 4 –S 1 –d 6 …. With “-S 1”, there is only 1 MPI task per
NUMA node.

Fig 7 shows the results of a NERSC benchmark GTC [8]
code with hybrid MPI/OpenMP implementation, GTC is a 3-
dimensional code used to study microturbulence in
magnetically confined toroidal fusion plasmas via the
Particle-In-Cell (PIC) method.

A total of 24,576 cores are used. The sweet spot is to use 8
MPI tasks per compute node, with 3 threads per MPI task.
NUMA penalty is seen when 12 threads per compute node
are used. There is no result for 24 threads per node as this
run did not complete correctly. The improvement of using “-
S” to spread out MPI tasks onto different NUMA nodes is
also shown in Fig 7 with 2, 3 and 6 threads (i.e., 12, 8, and 4
MPI tasks) per compute node.

Figure 7. GTC hybrid MPI/OpenMP run time with various nuber of
threads per node, also with and without “-S –ss” option in aprun. 3,000
core and 6,000 core runs used different problem sizes.

D. QLA: Code Tuning
This tuning story is form NERSC user Min Soe [9]. QLA
(Quantum Lattice Gas Algorithm) is a mesoscopic unitary
algorithm code to study quantum turbulence. It reaches
super-linear scaling to 150,000 cores due to low MPI
communication overhead (Fig 8). The strong scaling and
weak scaling tests used different problem sizes. Only 2%
run time difference is seen between using 276 cores and
110k+ cores with the weak scaling test.

There are 3 major steps in the code: unitary collide, stream,
and rotate. Combining first two steps to minimize memory
traffic resulted in 1.6x speedup. Hand tuning by
simplifying expressions to eliminate redundant operations
not recognized by the compilers gained additional 1.4x
speedup. The tuning strategies also included using a
mixture of non-blocking and blocking sends and receives
for communication and computation overlap.

E. MFDn: Code Tunings

This tuning story is from NERSC users Hasan Metin
Aktulga et al. [10,11]. MFDn is a nuclear physics code

used for calculating the structures of light atomic nuclei
based on first principles quantum mechanical model.

Figure 8. Scaling of Qutatum Lattice Gas Algorithm. Top: strong scaling.
Bottom: weak scaling. The problem sizes used for the strong scaling and
weak scaling are different. (Courtesy of Min Soe).

1) MPI Rank Reordering

This application involves computing the lowest eigenvalues
and associated eigenvectors of a large many-body nuclear
Hamiltonian, Hˆ. The Hamiltonian matrix is an extremely
sparse symmetric matrix, but still has many non-zeros so
that parallel processing is needed.

Fig 9 illustrates the different MPI process orderings for the
2D decomposition of the Hamiltonian H using a total of 15
processors, with 5 processors on the diagonal. A total of 4
MPI rank orderings are used: Diagonal Major (DM)
ordering, Column Major (CM) ordering, Balanced Diagonal
Major (BDM) ordering, and Balances Column Major
(BCM) ordering. In order to balance the cardinality of
communication groups, the processors are assigned to the
upper right corners in BDM and BCM orderings.

It shows that topology-aware mapping of tasks and data to
physical processors helps to avoid hot spot and congested
links. For a typical large scale eigenvalues calculation, up to
a factor of 2.5 improvement can be obtained in overall
performance by using a topology-aware mapping (Fig 10).

BCM ordering is the best among all the orderings tested
with various numbers of cores.

Figure 9. Illustration of 2D decompositin of the Hamiltonian H over
processors in various rank orderings. Total of 15 processors (5 diagonal
processors) in this case. From left to right: Diagonal Major (DM) ordering,
Column Major (CM) ordering, Balanced Diagonal Major (BDM) ordering,
and Balanced Column Major (BCM) ordering. (Courtesy of H. Metin
Aktulga et al.)

Figure 10. Speedup of MFDn with different numbers of total processors
using different MPI rank orderings. BCM ordering is the best. (Courtesy of
H. Metin Aktulga et al.)

2) Overlap Communication and Computation

Overlapping communication and computation is an effective
way to reduce communication overheads in an application.
But this technique could not be applied to applications with
communication dominant MPI collective calls since non-
blocking MPI collective primitives are not available.

Communication and computation overlap can be achieved in
hybrid MPI/OpenMP implementations by designating one
(or more) thread(s) for communication, and the other
threads for computation.

The symmetric SpMV computations in MFDn can be
divided into two subtasks, so certain data dependencies can
be broken, which allows hiding communication during the
SpMV phase. Fig 11 shows the speedup from various
hybrid MPI/OpenMP implementations with overlapping
communication and SpMV computations compared to pure
MPI for the MFDn code.

BCM ordering is used for all tests, and the dynamic
scheduling is used for OpenMP parallel regions. Total of
12,096 MPI processes are used for pure MPI

implementation; and total of 2,016 MPI processes, with 6
threads per MPI task are used for hybrid MPI/OpenMP
implementations.

• Hybrid A: hybrid MPI/OpenMP

• Hybrid B: hybrid A, plus: merge MPI_Reduce and
MPI_Scatter into MPI_Reduce_Scatter, and merge
MPI_Gather and MPI_Bcast into MPI_Allgatherv.

• Hybrid C: Hybrid B, plus: overlap row-group

communications with computation.

• Hybrid D: Hybrid C, plus: overlap (most) column-
group communications with computation.

Figure 11. Speedup of MFDn with hybrid MPI/OpenMP implementations
with overlaping communication and SpMV computations compared to pure
MPI implementation. (Courtesy of H. Metin Aktulga et al.)

IV. ISSUES HAVING LARGE IMPACT ON LARGE JOBS

Large jobs are more sensitive to overall system issues
simply because more nodes are needed. “Bad” nodes in the
system tend to affect large jobs more due to the increased
possibility of any “bad” node being assigned to a large job.
In this section, two system issues that have affected a large
number of large jobs on Hopper are described.

A. Huge Pages Issue

Huge pages can improve memory performance for common
access patterns on large data sets.

Fig 12 shows NERSC benchmarks MILC [12] and GTC run
time with and without huge pages. The benchmark code
MILC represents part of a set of codes written by the MIMD
Lattice Computation (MILC) collaboration used to study
Quantum Chromodynamics (QCD), the theory of the strong
interactions of subatomic physics. GTC 8,192 core and
24,576 core runs used different problem sizes. However,
huge pages effect for these tests is within production
environment variations.

Figure 12. Run time of NERSC benchmarks MILC and GTC with and
without huge pages. GTC 8,192 core and 24,576 core runs used different
problem sizes.

Jobs explicitly use huge pages or large jobs which implicitly
use huge pages by MPI are sometimes affected by not
enough memory for huge pages error on the compute nodes.
From June to Oct 2011, we reported that two NERSC
benchmark applications (MILC and GTC) that use huge
pages only had ~35% success rate.

Right after a system boot, about 30 GB of memory can be
used for 2MB huge pages. But the available huge pages
memory decreases over time due to memory fragmentation
and memory leaks. Cray is actively pursing several bugs
related to this problem. Meanwhile, we modified the local
node health check script to identify these low huge pages
memory nodes, and mark down and warm-boot the nodes
manually. A bug in PMI library was also fixed. Jobs using
huge pages are having much higher success rate now.

B. Hung Jobs Issue

Shortly after CLE4.0UP02 upgrade in Jan 2012, we
received hung jobs report. Many users (50+) were affected,
mostly running large jobs out of wall clock time. Huge
amount of compute hours were wasted, 13.5M core hours
had to be refunded to the users. Cray and NERSC teams
worked intensively and held daily progress meetings for
about a month. 8 “bad” nodes in a state that datagram
packets cannot be received were identified. Rebooting these
nodes helped the situation tremendously. Since the problem
was intermittent, it was not conclusive that a successful job
with one setting meant the problem was resolved. We
worked with many users to test various MPI libraries and
environment settings before Cray provided the two patches
for the kGNI bugs that attributed to the “bad” nodes. No
more hung jobs have been reported since mid March.

V. IO TUNINGS

I/O can also be a potential issue with large scale
applications performance. If IO is not scaling well, then its
time can dominate the run time for a large scale job.

A. MPI-IO Block Size

Good MPI-IO performance continues to be a challenge for
real applications to achieve. This is because scientific
applications often do not write and read data in the method
that is most beneficial for the parallel file system. For
example, a parallel file system like Lustre or GPFS
performs well when large contiguous blocks of data are
written. Applications that do not exhibit this I/O pattern can
suffer in performance. Fig 13 shows the effect of small
block size can have on MPI-IO performance on the Lustre
file system. The results are obtained using the IOR
benchmark [13].

Figure 13. IOR write (top) and read (bottom) performance MPI-IO vs.
Posix file per processor using different block sizes on Hopper scratch
Lustre file system. (Courtesy of Yushu Yao)

In addition to a local Lustre file system on Hopper, NERSC
also mounts a global GPFS based file system. Because
Hopper does not have native GPFS clients on the compute
nodes, it uses an I/O forwarding layer developed by Cray,
called the Data Virtualization Service (DVS). Our initial
testing showed MPI-IO performance to the GPFS based file
system was about the same as on with Lustre. A

collaboration has been formed between Cray and NERSC to
address MPI-IO performance through DVS to the GPFS file
systems.

B. MFDn J-scheme: Lustre File Striping

This IO tuning story is from NERSC users Hasan Metin
Aktulga et al. [14]

The application used here is a flavor of MFDn (called J-
Scheme MFDn) from an out-of-core implementation to an
in-core algorithm (using MPI one-sided primitives) plus
Lustre file striping tunings. File striping is a way to increase
IO performance since writing or reading from multiple
Object Storage Targets (OSTs) simultaneously increases the
available IO bandwidth.

Fig 14 shows J-Scheme MFDn overall run time
(computation plus IO) improved from an out-of-core
implementation to an in-core implementation along with
default and max Lustre file stripings.

• Problem size: 6Li, Nmax = 12, J = 0 to 4
• Total size of all data-blocks: 2.7~10 GB
• Number of blocks: 2.5x105
• Total number of block accesses: 1.1~1.6x108
• Default file striping on Hopper = 2
• Max file striping on Hopper = 156

 % lfs setstripe -c -1

The overall speedup with J = 2 is 30% from out-of-core
default striping to out-of-core max striping.

Figure 14. J-Scheme MFDn overall run time (computation plus IO) with
out-of-core and in-core implementations using default and max file
stripings. (Courtesy of H. Metin Aktulga et al.)

With a much larger problem, the gain with Lustre file
striping is bigger. Fig 15 shows the overall run time for a
larger problem size with default and max file stripings using
out-of-core and in-core implementations.

• Problem size: 6Li, Nmax = 14, J = 3
• Total size of all data-blocks: 67.1 GB
• Number of blocks: 7.4x105
• Total number of block accesses: 7x108

Using max striping instead of default striping results in 4x
speedup in out-of-core's total running time. It also gains 4x
speed up in in-core’s IO time. With the time needed to load
data from disk to distributed memory of processors in in-
core implementation, the overall speedup in total run time is
30%.

Default Striping:

!"#$%&

$$#$%&

' '('(('((('((((

)*+!,-

)*

#$,,+!,-

#$,,

#./+!,-

#./

!"#$%&'(
Default and Max Striping:

Figure 15. J-Scheme MFDn run time with out-of-core and in-core
implementations using default and max file stripings for a larger problem
size. Top: Computation and IO time with default striping. Bottom: Total
run time with default and max stripings. (Courtesy of H. Metin Aktulga et
al.)

VI. SUMMARY

Running large scale jobs on a large system is very
challenging. The goal of this study is to come up with some
practical tips for our general users by learning from our
selected user successful stories and staff benchmarking
experiences. Effective run time tuning options are most
welcome since they do not need to recompile or re-link the
application codes.

In summary, some of the tips are:

• Experiment with different compilers and compiler
flags.

• MPI rank reordering is a simple and effective run
time tuning method if you know your application’s
communication pattern well.

• Try to use fewer cores per node to allow more

memory access and more memory and interconnect
bandwidth per process.

• Hybrid MPI/OpenMP is encouraged on Hopper
since it also reduces the memory footprint.
NERSC suggests not to use more than 6 threads on
one node. Aprun options process (-S) and memory
affinity options (-ss) are essential to ensure the
MPI tasks being spreaded out across different
NUMA domains.

• Consider overlapping communication and

computation in hybrid MPI/OpenMP.

• Advanced tuning options such as using huge pages
are worth trying.

• Tune block sizes for MPI-IO; Use different stripe

sizes for large Lustre files.

ACKNOWLEDGMENT
We would like to thank many NERSC users who
participated in Running Large Jobs on Hopper user survey
and provided valued feedback on various aspects. Special
thanks to Hemanth Kolla, Evatt Hawkes, Jeffrey Tilson,
Min Soe, Hasan Metin Aktulga, and Pieter Maris for
providing performance tuning stories and test cases. We
would like to thank Hongzhang Shan for the STREAM
NUMA effect plot and Yushu Yao for the MPI-IO
performance plot.

The authors are supported by the Director, Office of
Science, Advanced Scientific Computing Research, U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231. This work used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department
of Energy.

REFERENCES

[1] NERSC Web pages for Hopper:
http://www.nersc.gov/users/computational-
systems/hopper/

[2] Hopper Performance and Optimizations web page:
http://www.nersc.gov/users/computational-
systems/hopper/performance-and-optimization/

[3] Hopper Run Time Tuning Options web page:
http://www.nersc.gov/users/computational-systems/hopper/running-
jobs/runtime-tuning-options

[4] C. Carroll. Cray Operating Systems Road Map. Proceedings of Cray
User Group 2010, Edinburgh, UK.

[5] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella. Leveraging the
Cray Linux Environment Core Specialization Feature to Realize MPI
Asynchronous Progress on Cray XE Systems. Proceedings of Cray
User Group 2012, Stuttgart, Germany.

[6] J.H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E.R. Hawkes,
S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende and C.S. Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D, 2009, Computational
Science & Discovery, 2:015001.

[7] STREAM benchmark: http://www.cs.virginia.edu/stream
[8] GTC: http://w3.pppl.gov/theory/proj_gksim.html
[9] G. Vahala, M. Soe, B. Zhang, L. Vahala, J. Carter, and S. Ziegeler.

Unitary Qubit Lattice Simulations of Multiscale Phenomena in
Quantum Turbulence. Proceesings of SuperComputing 2011, Seattle,
WA.

[10] H.M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J.P. Vary. Topology-
aware Mappings for Large-Scale Eigenvalue Problems. Submitted to
Euro-Par 2012. International European Conference on Parallel and
Distributed Computing.

[11] H.M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J.P. Vary. Scalable
Eigensolver for Multi-core Platforms. Submitted to SC2012. The
International Conference for High Performance Computing,
Networking, Storage and Analysis.

[12] MILC: http://www.physics.indiana.edu/~sg/milc.html
[13] IOR code: http://computing.llnl.gov. Scalable I/O Benchmark Project.

Download: http://sourceforge.net/projects/ior-sio/
[14] H. M. Aktulga. On Reducing I/O Overheads in Large-Scale Invariant

Subspace Projections. Workshop on Algorithms and Programming
Tools for Next-Generation High-Performance Scientific Software.,
HPSS 2011, in the context of Euro-Par 2011, August 29, 2011,
Bordeaux, France.

