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Abstract— Users face various challenges with running and 
scaling large scale jobs on peta-scale production systems. For 
example, certain applications may not have enough memory 
per core, the default environment variables may need to be 
adjusted, or I/O dominates run time. Using real application 
and benchmark examples, this paper will discuss some of the 
run time tuning options for running large scale pure MPI and 
hybrid MPI/OpenMP jobs successfully and efficiently on 
Hopper, the NERSC production XE6 system. These tuning 
options include MPI environment settings, OpenMP threads, 
process and memory affinity choices, and IO file striping 
settings. 
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I. INTRODUCTION  
The peta-scale Cray XE6 system, Hopper [1], is the flagship 
production machine at the National Energy Research 
Scientific Computing (NERSC) that serves over 4,500 users 
in about 650 different projects across a broad range of 
science disciplines supported by the Department of Energy 
(DOE) Office of Science.  Usually there are hundreds of 
users logged into the system at any time of the day. 
 
Hopper has 6,384 nodes, and 153,126 cores.  It has the peak 
performance of 1.28 PFlops, and sustained performance of 
~140 Tflops.  Total memory is 212 TB.  Each compute node 
has 2 twelve-core AMD MagnyCours 2.1 GHz processors  
(2 sockets).  On each socket, there are 2 dies (also called 
NUMA domains).  There are 4 NUMA nodes per node, and 
6 cores per NUMA node.  Memory access to a remote 
NUMA domain is slower than within the local NUMA 
domain (Fig 1).  Memory bandwidth ranges from 6.4 
GB/sec to 21.3 GB/sec depending on the origin and 
destination of the NUMA nodes.  Most of the compute 
nodes have 32 GB per node (1.33 GB/core) while some 
large memory nodes have 64 GB per node (2.67 GB/core).   
Hopper uses Lustre as its scratch parallel file system.  
 
NERSC measures the percentage of hours that are devoted 
to jobs of different sizes to understand the workload on the 
system.  Fig 2 shows the raw compute hours (in millions) by 
number of cores used on Hopper from January 2011 to 

March 2012.  Applications on Hopper run at all different 
concurrencies.  About 40% of total compute time is used by 
jobs over 8,192 cores. The percentage was even higher 
before charging started on May 1, 2011, since users are 
more ambitious in scaling when charging and allocation are 
not of concern.  At the same time, many users take 
advantage of Hopper’s large size to run thousands of 
moderately sized jobs. 
 

      
Figure 1.   An illustration of a Hopper compute node. There are 4 NUMA 
nodes per node, and 6 cores per NUMA node.  Memory access to a remote 
NUMA domain is slower than within the local NUMA domain. 

 
When users attempt to scale their scientific applications to 
larger concurrencies, they may run into some challenges. 
For example, certain applications may not have enough 
memory per core, the default environment variables may 
need to be adjusted, performance is subject to NUMA 
effects, or I/O dominates run time.  
 
We have conducted a survey of NERSC users who run large 
scale jobs routinely. The questions in the survey include: 
what are their initial obstacles and challenges, and what are 
the strategies they have used to ensure the successful 
running of the codes. The areas to explore include using 
fewer cores per node, trying different MPI environment 
settings, testing different MPI rank reordering methods, 
using hybrid MPI/OpenMP or different OpenMP 
scheduling, measuring NUMA effects, adjusting process 
and memory affinity options, huge pages, core 
specialization, and IO tunings, etc. 



 
Figure 2.  Raw compute hours (in millions) by number of cores used on 
Hopper from January 2011 to March 2012. About 40% of total compute 
time is used by jobs over 8k cores.  The percentage was even higher before 
charging started on May 1, 2011. 

The goal of this study is to learn about application tuning 
successes with real application examples, and to come up 
with a few practical tips and run time tuning options for 
running large jobs on Hopper [2,3], that can benefit general 
users to achieve optimal performance and scaling of their 
applications. 
  
The rest of the paper is organized as follows: Section II 
contains general feedback from our user survey on running 
large jobs on Hopper.  Section III gives tuning examples of 
real user applications and NERSC benchmarks. Section IV 
discusses two general system issues that have an impact on 
running jobs, especially large jobs. Section V discusses IO 
tunings. And Section VI provides a summary of practical 
tips for running large jobs on Hopper.  
 

II. USER SURVEY RESULTS 
 
We conducted a “Running Large Scale Jobs on Hopper” 
user survey from users who routinely run large jobs using 
682+ nodes (16,368+ cores). Jobs over this size receive 
charging discount on Hopper.  The survey was sent to about 
50 users, and over 1/3 responded.   Questions included in 
the survey and general feedback are: 
 
1. What is the range of large job sizes you typically run? 
(number of cores, number of nodes) 
 
The range is from single node to full machine.  Some users 
conduct scaling studies, and some users debug their codes in 
small scale, and run production codes in large scale.  Some 
codes are mature enough to run in capability mode using the 
whole machine. 
 
2. What are the code names and the science areas? 
Science areas cover compute science, engineering, 
chemistry, material sciences, astrophysics, nuclear physics, 
and more. 
 

3. What are the challenges you face of running large jobs on 
Hopper?  You can talk about any aspect including job 
scheduling, job failures, job scaling, run time variation, IO 
performance, and many more.    
 
The biggest challenge users mentioned is actually the 
difficulty of getting through the queue.  The recent 
retirement of the NERSC’s other Cray system (Franklin, 
XT4) contributes to the crowdedness on Hopper because of 
user workload migration. 
 
Other challenges mentioned include:  
 

• No mechanism to control the mapping between 
logical topology into physical nodes that the 
submitted job was allocated. For example, if the 
MPI tasks have a 3D torus, there is no guarantee 
that these MPI tasks are perfectly mapped to a true 
and compact physical 3D torus.   
 

• The increase of communication overhead and job 
variation caused by the above issue.  
 

• Jobs sometimes hung.   
 

• Jobs failed due to not enough memory. 
 

• Parallel IO performance. MPI-IO does not scale 
well 

 
4. What kind of scaling results do you see? 
 
Some applications got very good scaling even with 100k+ 
cores.  Some had good scaling until a certain size, such as 
32k.  Several users provided scaling results and tuning 
strategies, which we will include in Section III as user 
tuning stories. 
 
5. What kind of job run time variation do you see? 
 
About 20% is normal for most applications. Users do report 
seeing stable peak performance.  Much larger variations in 
IO. 
 
6. What tuning options have you used to improve job 
performance/scaling? 
 
6a) Have you tried with different compilers and various 
compiler options? If yes, what are the results? 
 
Many users have tried various compilers and flags. 
Surprisingly, many chose GNU compiler after comparison. 
Some users choose PGI, which is the default compiler on 
Hopper. Some users choose Cray compiler, to take 
advantage of the UPC and CAF support. Some Pathscale 



compiler users migrated to use Cray compiler due to the 
lack of the ongoing Pathscale compiler support.   
 
Some of the compiler flags users adopted include: 

• PGI: -fast -Mipa=fast,inline -mp=nonuma 
• GCC: -O3 -ffast-math -funroll-loops 
• CRAY: -O3 

 
6b) Have you tried changing default MPI environment 
variables? If yes, what are they and what are the results? 
 
No users have tried to adjust various MPI buffers. We got 
lots of insufficient MPICH_UNEX_BUFFER_SIZE or 
MPICH_PTL_UNEX_EVENTS error messages for Portals 
on XT, but no more Gemini related such errors on XE6. 
 
6c) Have you tried changing default MPI rank ordering?  If 
yes, what are the results? 
 
Most used MPI environment variable for tuning by users is 
MPI rank reordering.  This is a simple yet effective run time 
tuning option that no source code modification, re-
compilation or re-linking is required. 
 
A couple of user application examples that benefited from 
MPI rank reordering will be described in Section III. 
 
6d) Do you use hybrid MPI/OpenMP?  If yes, how many 
threads per node?  How do you choose the number of 
threads per MPI task?   Do you use first touch memory for 
each local thread?  Do you have some performance data 
with hybrid scaling results with various options? 
 
Yes, some users have tried.  They normally use 4 MPI tasks 
per node (one MPI task on each NUMA node), and 6 
OpenMP threads per MPI task, as we suggested on our 
NERSC web site.  Users have heard of “first touch”, but 
none has actually tried it.  One user tried to use other 
NUMA control mechanisms with 24 threads, but it proves to 
be hard, and performance was not better than with 6 threads. 
 
6e) Have you tried with various aprun options, such as -cc, -
S, -ss, for process/memory affinity control?  If yes, what are 
the results?  
   
Yes, users have tried with these options.  The default option 
of “-cc cpu” seems to be very good for process affinity, but 
“-S”, “-ss” options along with “-N” and “-d” have great 
impact on code performance.  
 
The NUMA effect will be illustrated with a NERSC 
benchmark in Section III. 
 
6f) Do you have to use fewer cores (than fully packed) per 
node in order to run or to get better performance?  If yes, 
what are the results?   

Yes from some users. It is helpful for being able to use more 
memory per process and for having fewer processes to share 
the memory and interconnect bandwidth. This is another 
simple yet effective run time tuning option.  A user example 
will be described in Section III. 
 
6g) Have you used huge pages?   If yes, what are the 
results? 
 
None of the users responded have used huge pages 
explicitly, although MPI uses huge pages explicitly.   
 
The effects of using huge pages explicitly for two NERSC 
benchmarks and the impact from system issues related to 
huge pages will be described in Section IV. 
 
6h) Have you used core specialization ("-r" option for 
aprun)?  If yes, what are the results?   
 
No users responded have tried core specialization. We are 
aware of the effect of core specialization on constraining OS 
jitter on the designated core, and using just the rest of the 
cores for application helped to improve the performance of 
an ocean code “POP” [4]. We are also aware of this feature 
being helpful for MILC and S3D performance [5], using 
two phases of MPI library (one in released version and one 
in development branch). 
 
However, we tried this with a couple of applications (one 
user application, one NERSC benchmark code). The tests 
were done and also independent of any other optimizations 
(such as huge pages or malloc settings), and with the two 
suggested MPI environment variables 
(MPICH_NEMESIS_ASYNC_PROGRESS and 
MPICH_INIT_THREAD_SAFETY) being set in the 
released xt-mpich2/5.4.4 version, however, we do not see 
obvious improvement during production environment. 
 
6i) What IO performance tunings have you tried?  Non-
default file striping?   Parallel IO?  What are the results? 
 
Some users specify one IO write/reader per node. Some 
users use MPI-IO. One user achieved 4 times speedup by 
using max file striping instead of the default striping (see 
details in Section V).  
 
During the user survey, we were able to help some users to 
debug their code scaling problems.  One such example is: A 
user mentioned that his MPI/OpenMP hybrid never scales 
better than 1 thread per node.  It turned out that he thought 
he was using the Cray compiler (with OpenMP enabled 
automatically), but without switching the programming 
environment module from PrgEnv-pgi to PrgEnv-cray, he is 
actually using the PGI compiler with the compiler wrapper 
“ftn”, and without adding “-mp” explicitly, OpenMP was 
not turned on.  



Many users benefited from the questions we asked them, 
since they have never heard of some of the tuning options 
we mentioned. Many plan to explore these options for their 
applications. We provided documentations and tuning 
suggestions to them via explicit user communications. 
 
Another tuning option we experimented with but did not ask 
in the user survey is to set the system malloc settings: 
 
export MALLOC_MMAP_MAX_=0 
export MALLOC_TRIM_THRESHOLD_=536870912 
 
We tried with the above settings on selected user 
applications and NERSC benchmarks, but no specific 
improvement was seen under production environment. 
 

III. APPLICATIONS TUNING STORIES 
 

Some runtime tuning stories of several user applications and 
NERSC benchmarks are described in this section.  Since all 
the runs were performed under production environment, to 
minimize the runtime variation effect caused by the 
application placement in the topology, multiple apruns with 
different run time options were used in the same batch job, 
so that the same set of nodes can be used.  Fastest run times 
from multiple batch jobs are used in the performance 
comparison to mimic dedicated environment.  
 

A. S3D: MPI Rank Reordering  
This tuning story is from NERSC users Hemanth Kolla and 
Evatt Hawkes [6].  S3D is a code for numerical simulations 
of turbulent combustion.  In S3D, there is very little global 
communication and almost all communication is among 
nearest neighbors in the physical space. Reordering MPI 
ranks to place ranks that are contiguous in physical space 
proved to be beneficial (Fig 3), and the scaling of S3D is 
very good all the way up to 130k cores.  Using 3,072 cores, 
the S3D run time per grid per time step is 176.2 sec using 
the default MPI rank ordering, and 165.7 sec with the 
custom rank reordering, a difference of 4%.  The difference 
is bigger with larger jobs using more cores. 
 
The ordering of the ranks in the physical domain is trivial 
(X direction first, then Y and finally Z direction). So the 
users know which ranks are contiguous to each other in the 
physical space (and hence communicate a lot with each 
other).  A simple perl script is used to generate the custom 
MPICH_RANK_REORDER file where each line lays out 
the list of ranks that form a physically contiguous 3D 
block.   
 

    
 
Figure 3.  S3D run time per grid per time step using different number of 
cores on Hopper. This is weak scaling, so the ideal scaling is flat, and lower 
is better for scaling. 30x30x30 cube with c2h2 combustion chemistry. 50 
time steps, no IO. (Courtesy of Hemanth Kolla and Evatt Hawkes) 

B. PSOCI: Using Fewer Cores per Node 
This tuning story is from NERSC user Jeffrey Tilson 
(personal communication). PSOCI (Parallel Spin Orbit 
Configuration Interaction) is a Chemistry code developed 
under the US DOE SciDAC-e award "Enhancing 
Productivity of Materials Discovery Computations for Solar 
Fuels and Next Generation Photovoltaics". Global Arrays 
version 5.0.3 (built with ANL’s armci) with ga++ binding is 
used in PSOCI. The user left four cores free per node for 
local I/O etc.  
 
Fig 4 shows the comparison of PSOCI run time with or 
without using fewer cores per node. Hamilton construction 
is phase 1, and Diag is phase 2. Using fewer cores per node, 
with 3,000 cores, speedup in phase 1 is 14%, speedup in 
phase 2 is 11%; and with 6,000 cores (with a different 
problem size), speedup in phase 1 is 6%, speedup in phase 2 
is 15%. 
 
 

   
 
Figure 4.  PSOCI run time with and without using fewer cores per node. 
3,000 core and 6,000 core runs used different problem sizes.  (Courtesy of 
Jeffrey Tilson) 



C. Hybrid MPI/OpenMP with Process and Memory 
Affinity 

Memory affinity on the compute nodes is not decided by the 
memory allocation, but by the initialization. Memory will be 
mapped to the NUMA domain that first touches the data and 
so it is important to initialize data carefully.  This is referred 
to as the “first touch” principle.  It is essential in hybrid 
MPI/OpenMP applications that each thread only accesses 
local memory from its local NUMA node to avoid the 
NUMA penalty of accessing memory from the remote 
NUMA nodes. 
 
The following code example shows how to implement the 
“first touch” in an OpenMP parallel region.  Local variables 
are initialized (not only allocated) in the first parallel region.  
Using same number of threads in the following parallel 
regions ensures local memory access for these variables. 
 

#pragma omp parallel for  
for (j=0; j<VectorSize; j++) {  
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;} 
 
#pragma omp parallel for 
for (j=0; j<VectorSize; j++) { 
a[j]=b[j]+d*c[j];} 

 
Fig 5 illustrates of the NUMA effects on Hopper with the 
STREAM benchmark [7].  The result shown here is from a 
single node, with pure OpenMP, using 1 to 24 threads. With 
“first touch” (TouchByAll), the memory bandwidth 
increases all the way up to 24 threads. While without “first 
touch” (TouchByOne), the memory bandwidth saturates at 6 
threads. 

 
Figure 5.  NUMA effects on Hopper with the STREAM benchmark.  The 
result shown here is from a single node, with pure OpenMP, using 1 to 24 
threads. (Courtesy of Hongzhang Shan) 

It is very hard to do “perfect touch” for real applications. No 
real user applications reported from the user survey 
implemented “first touch”.  NERSC recommends not using 
more than 6 threads per node on Hopper to avoid NUMA 
effects.  Using 4 MPI tasks per node, with 6 OpenMP 

threads per MPI task, and initializing local variables from 
each thread follows the “first touch” policy naturally.  
Memory for the local variables will be contained within the 
local NUMA node. In the example of STREAMS 
benchmark shown in Fig 5, using 4 MPI tasks with 6 threads 
per MPI task will reach the same bandwidth as using 1 MPI 
task with 24 threads with perfect first touch (TouchByAll), 
but avoid the difficulty of implementing first touch. (The 
only benefit of using 24 threads may be to allow more 
memory access per MPI task and to have larger and fewer 
MPI messages). 
 
The “-S” option is especially important for hybrid 
MPI/OpenMP applications, since it is needed to spread the 
MPI tasks onto different NUMA nodes.  Fig 6 demonstrates 
the number of MPI tasks per NUMA node with or without 
the “-S” option.  The upper scheme uses “aprun –n 4 –d 6 
…”. Without “-S 1”, all 4 MPI tasks are allocated on the 
same NUMA node.  The bottom scheme uses “aprun –n 4 –
S 1 –d 6 …”. With “-S 1”, there is only 1 MPI task per 
NUMA node.  6 threads will be forked for each MPI task on 
each local NUMA node. 
 

 
 

                
Figure 6.  Illustration of the “-S” option in aprun.  Upper: aprun –n 4 –d 6 
…. Without “-S”, all 4 MPI tasks are allocated on the same NUMA node. 
Bottom: aprun –n 4 –S 1 –d 6 …. With “-S 1”, there is only 1 MPI task per 
NUMA node.  



Fig 7 shows the results of a NERSC benchmark GTC [8] 
code with hybrid MPI/OpenMP implementation, GTC is a 3-
dimensional code used to study microturbulence in 
magnetically confined toroidal fusion plasmas via the 
Particle-In-Cell (PIC) method. 
 
A total of 24,576 cores are used. The sweet spot is to use 8 
MPI tasks per compute node, with 3 threads per MPI task. 
NUMA penalty is seen when 12 threads per compute node 
are used. There is no result for 24 threads per node as this 
run did not complete correctly. The improvement of using “-
S” to spread out MPI tasks onto different NUMA nodes is 
also shown in Fig 7 with 2, 3 and 6 threads (i.e., 12, 8, and 4 
MPI tasks) per compute node. 
 
   

       
Figure 7.  GTC hybrid MPI/OpenMP run time with various nuber of 
threads per node, also with and without “-S –ss” option in aprun. 3,000 
core and 6,000 core runs used different problem sizes.  

D. QLA: Code Tuning  
This tuning story is form NERSC user Min Soe [9]. QLA 
(Quantum Lattice Gas Algorithm) is a mesoscopic unitary 
algorithm code to study quantum turbulence. It reaches 
super-linear scaling to 150,000 cores due to low MPI 
communication overhead (Fig 8).  The strong scaling and 
weak scaling tests used different problem sizes.  Only 2% 
run time difference is seen between using 276 cores and 
110k+ cores with the weak scaling test. 
 
There are 3 major steps in the code: unitary collide, stream, 
and rotate.  Combining first two steps to minimize memory 
traffic resulted in 1.6x speedup.   Hand tuning by 
simplifying expressions to eliminate redundant operations 
not recognized by the compilers gained additional 1.4x 
speedup.  The tuning strategies also included using a 
mixture of non-blocking and blocking sends and receives 
for communication and computation overlap. 
 

E.  MFDn: Code Tunings 
 
This tuning story is from NERSC users Hasan Metin 
Aktulga et al. [10,11].  MFDn is a nuclear physics code 

used for calculating the structures of light atomic nuclei 
based on first principles quantum mechanical model.  
 
 

         
 

        
 
Figure 8.  Scaling of Qutatum Lattice Gas Algorithm.  Top: strong scaling.  
Bottom: weak scaling. The problem sizes used for the strong scaling and 
weak scaling are different. (Courtesy of Min Soe).  

1) MPI Rank Reordering 
 
This application involves computing the lowest eigenvalues 
and associated eigenvectors of a large many-body nuclear 
Hamiltonian, Hˆ.  The Hamiltonian matrix is an extremely 
sparse symmetric matrix, but still has many non-zeros so 
that parallel processing is needed.  
 
Fig 9 illustrates the different MPI process orderings for the 
2D decomposition of the Hamiltonian H using a total of 15 
processors, with 5 processors on the diagonal. A total of 4 
MPI rank orderings are used: Diagonal Major (DM) 
ordering, Column Major (CM) ordering, Balanced Diagonal 
Major (BDM) ordering, and Balances Column Major 
(BCM) ordering.  In order to balance the cardinality of 
communication groups, the processors are assigned to the 
upper right corners in BDM and BCM orderings. 
 
It shows that topology-aware mapping of tasks and data to 
physical processors helps to avoid hot spot and congested 
links. For a typical large scale eigenvalues calculation, up to 
a factor of 2.5 improvement can be obtained in overall 
performance by using a topology-aware mapping (Fig 10).  



BCM ordering is the best among all the orderings tested 
with various numbers of cores.  
 

 
Figure 9.  Illustration of 2D decompositin of the Hamiltonian H over 
processors in various rank orderings. Total of 15 processors (5 diagonal 
processors) in this case.  From left to right: Diagonal Major (DM) ordering, 
Column Major (CM) ordering, Balanced Diagonal Major (BDM) ordering, 
and Balanced Column Major (BCM) ordering. (Courtesy of H. Metin 
Aktulga et al.)  

 

     
Figure 10.  Speedup of MFDn with different numbers of total processors 
using different MPI rank orderings. BCM ordering is the best. (Courtesy of 
H. Metin Aktulga et al.)  

 
2) Overlap Communication and Computation 
 
Overlapping communication and computation is an effective 
way to reduce communication overheads in an application.   
But this technique could not be applied to applications with 
communication dominant MPI collective calls since non-
blocking MPI collective primitives are not available. 
 
Communication and computation overlap can be achieved in 
hybrid MPI/OpenMP implementations by designating one 
(or more) thread(s) for communication, and the other 
threads for computation.  
 
The symmetric SpMV computations in MFDn can be 
divided into two subtasks, so certain data dependencies can 
be broken, which allows hiding communication during the 
SpMV phase.  Fig 11 shows the speedup from various 
hybrid MPI/OpenMP implementations with overlapping 
communication and SpMV computations compared to pure 
MPI for the MFDn code.  
 
BCM ordering is used for all tests, and the dynamic 
scheduling is used for OpenMP parallel regions.  Total of 
12,096 MPI processes are used for pure MPI 

implementation; and total of 2,016 MPI processes, with 6 
threads per MPI task are used for hybrid MPI/OpenMP 
implementations. 
 

• Hybrid A: hybrid MPI/OpenMP 
 

• Hybrid B: hybrid A, plus: merge MPI_Reduce and 
MPI_Scatter into MPI_Reduce_Scatter, and merge 
MPI_Gather and MPI_Bcast into MPI_Allgatherv. 

 
• Hybrid C: Hybrid B, plus: overlap row-group 

communications with computation. 
 

• Hybrid D: Hybrid C, plus: overlap (most) column-
group communications with computation. 

 

        
Figure 11.  Speedup of MFDn with hybrid MPI/OpenMP implementations 
with overlaping communication and SpMV computations compared to pure 
MPI implementation. (Courtesy of H. Metin Aktulga et al.)  

IV. ISSUES HAVING LARGE IMPACT ON LARGE JOBS 
 

Large jobs are more sensitive to overall system issues 
simply because more nodes are needed.  “Bad” nodes in the 
system tend to affect large jobs more due to the increased 
possibility of any “bad” node being assigned to a large job. 
In this section, two system issues that have affected a large 
number of large jobs on Hopper are described. 

 

A. Huge Pages Issue 
 
Huge pages can improve memory performance for common 
access patterns on large data sets. 
 
Fig 12 shows NERSC benchmarks MILC [12] and GTC run 
time with and without huge pages. The benchmark code 
MILC represents part of a set of codes written by the MIMD 
Lattice Computation (MILC) collaboration used to study 
Quantum Chromodynamics (QCD), the theory of the strong 
interactions of subatomic physics. GTC 8,192 core and 
24,576 core runs used different problem sizes. However, 
huge pages effect for these tests is within production 
environment variations. 



 
 

            
 
Figure 12.   Run time of NERSC benchmarks MILC and GTC with and 
without huge pages. GTC 8,192 core and 24,576 core runs used different 
problem sizes. 

 
Jobs explicitly use huge pages or large jobs which implicitly 
use huge pages by MPI are sometimes affected by not 
enough memory for huge pages error on the compute nodes. 
From June to Oct 2011, we reported that two NERSC 
benchmark applications (MILC and GTC) that use huge 
pages only had ~35% success rate.  
 
Right after a system boot, about 30 GB of memory can be 
used for 2MB huge pages.  But the available huge pages 
memory decreases over time due to memory fragmentation 
and memory leaks. Cray is actively pursing several bugs 
related to this problem. Meanwhile, we modified the local 
node health check script to identify these low huge pages 
memory nodes, and mark down and warm-boot the nodes 
manually. A bug in PMI library was also fixed. Jobs using 
huge pages are having much higher success rate now. 
 

B. Hung Jobs Issue 
 
Shortly after CLE4.0UP02 upgrade in Jan 2012, we 
received hung jobs report.  Many users (50+) were affected, 
mostly running large jobs out of wall clock time. Huge 
amount of compute hours were wasted, 13.5M core hours 
had to be refunded to the users.  Cray and NERSC teams 
worked intensively and held daily progress meetings for 
about a month. 8 “bad” nodes in a state that datagram 
packets cannot be received were identified.  Rebooting these 
nodes helped the situation tremendously. Since the problem 
was intermittent, it was not conclusive that a successful job 
with one setting meant the problem was resolved. We 
worked with many users to test various MPI libraries and 
environment settings before Cray provided the two patches 
for the kGNI bugs that attributed to the “bad” nodes.  No 
more hung jobs have been reported since mid March.  
 
 

V. IO TUNINGS 
 

I/O can also be a potential issue with large scale 
applications performance. If IO is not scaling well, then its 
time can dominate the run time for a large scale job.  
 

A. MPI-IO Block Size 
 

Good MPI-IO performance continues to be a challenge for 
real applications to achieve.  This is because scientific 
applications often do not write and read data in the method 
that is most beneficial for the parallel file system.  For 
example, a parallel file system like Lustre or GPFS 
performs well when large contiguous blocks of data are 
written.  Applications that do not exhibit this I/O pattern can 
suffer in performance.   Fig 13 shows the effect of small 
block size can have on MPI-IO performance on the Lustre 
file system.  The results are obtained using the IOR 
benchmark [13]. 
 
 

              
 

           
 
Figure 13.  IOR write (top) and read (bottom) performance MPI-IO vs. 
Posix file per processor using different block sizes on Hopper scratch 
Lustre file system.  (Courtesy of Yushu Yao) 

In addition to a local Lustre file system on Hopper, NERSC 
also mounts a global GPFS based file system.  Because 
Hopper does not have native GPFS clients on the compute 
nodes, it uses an I/O forwarding layer developed by Cray, 
called the Data Virtualization Service (DVS).  Our initial 
testing showed MPI-IO performance to the GPFS based file 
system was about the same as on with Lustre. A 



collaboration has been formed between Cray and NERSC to 
address MPI-IO performance through DVS to the GPFS file 
systems. 
 

B. MFDn J-scheme: Lustre File Striping 
 
This IO tuning story is from NERSC users Hasan Metin 
Aktulga et al. [14] 
 
The application used here is a flavor of MFDn (called J-
Scheme MFDn) from an out-of-core implementation to an 
in-core algorithm (using MPI one-sided primitives) plus 
Lustre file striping tunings. File striping is a way to increase 
IO performance since writing or reading from multiple 
Object Storage Targets (OSTs) simultaneously increases the 
available IO bandwidth.   
 
Fig 14 shows J-Scheme MFDn overall run time 
(computation plus IO) improved from an out-of-core 
implementation to an in-core implementation along with 
default and max Lustre file stripings.  
 

• Problem size:  6Li, Nmax = 12, J = 0 to 4 
• Total size of all data-blocks: 2.7~10 GB 
• Number of blocks: 2.5x105 
• Total number of block accesses: 1.1~1.6x108 
• Default file striping on Hopper = 2 
• Max file striping on Hopper = 156 

               % lfs setstripe -c -1 
 
The overall speedup with J = 2 is 30% from out-of-core 
default striping to out-of-core max striping. 
 

     
 
Figure 14.  J-Scheme MFDn overall run time (computation plus IO) with 
out-of-core and in-core implementations using default and max file 
stripings. (Courtesy of H. Metin Aktulga et al.) 

With a much larger problem, the gain with Lustre file 
striping is bigger.  Fig 15 shows the overall run time for a 
larger problem size with default and max file stripings using 
out-of-core and in-core implementations. 

 
• Problem size:  6Li, Nmax = 14, J = 3 
• Total size of all data-blocks: 67.1 GB 
• Number of blocks: 7.4x105 
• Total number of block accesses: 7x108 

 
Using max striping instead of default striping results in 4x 
speedup in out-of-core's total running time. It also gains 4x 
speed up in in-core’s IO time. With the time needed to load 
data from disk to distributed memory of processors in in-
core implementation, the overall speedup in total run time is 
30%. 
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Figure 15.  J-Scheme MFDn run time with out-of-core and in-core 
implementations using default and max file stripings for a larger problem 
size. Top: Computation and IO time with default striping.  Bottom: Total 
run time with default and max stripings. (Courtesy of H. Metin Aktulga et 
al.) 

VI. SUMMARY 
 

Running large scale jobs on a large system is very 
challenging.  The goal of this study is to come up with some 
practical tips for our general users by learning from our 
selected user successful stories and staff benchmarking 
experiences.  Effective run time tuning options are most 
welcome since they do not need to recompile or re-link the 
application codes.  
 
In summary, some of the tips are: 
 

• Experiment with different compilers and compiler 
flags. 
 

• MPI rank reordering is a simple and effective run 
time tuning method if you know your application’s 
communication pattern well. 

 
• Try to use fewer cores per node to allow more 

memory access and more memory and interconnect 
bandwidth per process. 

 



• Hybrid MPI/OpenMP is encouraged on Hopper 
since it also reduces the memory footprint.  
NERSC suggests not to use more than 6 threads on 
one node.  Aprun options process (-S) and memory 
affinity options  (-ss) are essential to ensure the 
MPI tasks being spreaded out across different 
NUMA domains. 

 
• Consider overlapping communication and 

computation in hybrid MPI/OpenMP. 
 

• Advanced tuning options such as using huge pages 
are worth trying. 

 
• Tune block sizes for MPI-IO; Use different stripe 

sizes for large Lustre files.  
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