
Minimizing Lustre Ping Effects at Scale on Cray Systems

Cory Spitz,

I/O File Systems

Cray Inc.

St. Paul, MN

spitzcor@cray.com

Nic Henke, Doug Petesch, and Joe Glenski

Cray Inc.

St. Paul, MN

dpetesch@cray.com, glenski@cray.com, nic@cray.com

Abstract—Cray is committed to pushing the boundaries of

scale of its deployed Lustre file systems, in terms of both client

count and the number of Lustre server targets. However,

scaling Lustre to such great heights presents a particular

problem with the Lustre pinger, especially with routed LNET

configurations used on so-called external Lustre file systems.

There is an even greater concern for LNETs with finely

grained routing. The routing of small messages must be

improved otherwise Lustre pings have the potential to ‘choke

out’ real bulk I/O, an effect we call ‘dead time’. Pings also

contribute to OS jitter so it is important to minimize their

impact even if a scale threshold has not been met that disrupts

real I/O. Moreover, the Lustre idle pings are an issue even for

very busy systems because each client must ping every target.

This paper will discuss the techniques used to illustrate the

problem and best practices for avoiding the effects of Lustre

pings.

Keywords-Lustre; LNET; FGR; jitter; noise; I/O; scaling

I. INTRODUCTION

This paper assumes that the reader is familiar with basic
Lustre concepts. However, enough background should be
given such that the reader can follow the scaling issues. For
more background on Lustre, please refer to the Lustre
Operations Manual.

Over the course of a performance investigation, we
determined that Lustre pings were the root cause of a serious
I/O throughput issue, especially and primarily for routed
LNETs.

For a variety of reasons, it is not easy to change the basic
Lustre ping implementation, so we focused our efforts on
tuning. It was soon clear that there was much ground to be
gained by improving LNET performance. We determined
that many changes were needed to accommodate efficient
routing of small messages on Infiniband fabrics. Because of
the peer credit concept in LNET routing, special tuning effort
is required for configurations that use Fine Grained Routing
(FGR) [1]. However, we discovered that due to limitations
of the Infiniband LNET Network Driver (LND), o2iblnd,
there is a limit to the tuning one can make.

Once we made improvements to the LNET, our focus
turned again to changing the ping behavior. However, since
every client node sets timeouts for ping sends we must be
careful so that we do not inject additional OS noise and
contribute to jitter.

II. BACKGROUND ON LUSTRE PINGS

Lustre uses an ‘obd_ping’ and each ping targets an
‘obd_import’, but essentially clients ping all metadata and
object targets in the filesystem. The pings serve three
purposes. First, a ping is used to detect server health (and
that has a side effect of triggering clients to reinitiate
connections to targets). Second, the server uses the lack of
pings (or other traffic) to infer client health. Finally, servers
add the last_committed value to ping responses, which is
needed for clients using the asynchronous journal commit
feature.

Unfortunately, Lustre pings do not scale well. Because
each client pings each target, we have to deal with O(n*m)
scaling. It is not smart enough to consolidate pings when
there are multiple targets per server, which is very typical.
For current petascale sized systems with component counts
on the order of 25,000 nodes and hundreds of OSTs there
can be tens of millions of pings per ping interval. With FGR
configurations that Cray is exploring and deploying, the
scale we are seeing is about 100,000 pings per OSS and
75,000 pings per router.

Therefore, for even moderately sized systems, there will
be an enormous number of pings sent every ping interval.
The scheduling of those pings is aligned to minimize the
effect of OS jitter. That in turn creates a ping ‘flood’ since
the pings are transmitted simultaneously, which leads to an
acute issue for bulk data transmission.

The ping flood can lead to so-called ‘dead time’ where
bulk I/O processing essentially stops because the system is
choked up with a high volume of concurrent ping messages.
The ‘dead time’ occurs every PING_INTERVAL seconds,
which is the default idle time allotted before pings are
transmitted, which has been configured to 75 seconds on all
Cray systems. In very badly configured system, the ‘dead
time’ can account for up to ten percent of the potential I/O
bandwidth.

Unfortunately, Lustre pings cannot easily be removed.
Not only would it be difficult to replace the functionality, but
also Cray would have to find a general solution in Lustre for
the community. Since the ping serves purposes that are
inherently associated with health data, it can be tempting to
use Cray’s proprietary HSS network and its RAS facilities.
However, this cannot extend to external components as are
the bulk of Cray’s future Lustre product offerings.

The pings are also a source of noise that leads to OS
jitter. Aligning the pings in time has the effect of ganging up
on routers and servers, so we could spread them out over
time. However, that would naturally have consequences for
jitter. Jitter is notoriously tough to measure, so careful
consideration should be made for any changes that impact
OS noise.

Note that the Lustre ‘obd_ping’ should not be confused
with an LNET ping. LNET pings are LNET/LND level
pings that are used to check LNET connectivity.

III. DISCOVERING DEAD TIME

When benchmarking distributed filesystems such as
Lustre, IOR is a natural benchmark to use because it is an
industry standard and it can drive I/O exactly as many
applications do. For example, it can be configured to
read/write single shared files, use a file per process, use
direct I/O, etc.

Whether IOR is used in a fixed data or fixed time format,
a single numerical result is output: the average throughput
for the run. For fixed data runs (the default), the run cannot
complete until the slowest component has finished.
Sometimes there are head-of-line blocking issues or disk
block layout issues that impede progress of some processes.
If those issues or other transient behavior were to occur
during a run, the result would simply be lower average
throughput measured. In other words, IOR can only be as
fast as the slowest element and often the sustained rate is
faster than the reported rate.

Cray benchmarking was investigating just such a case on
a large-scale system where the measured IOR rates were not
meeting expectations. Individual components were
benchmarked and performance was measured. Results
seemed good. Clearly, there was some effect occurring
during runtime. We knew that the performance was often
good, but we were missing why the rated IOR performance
was not closer in value to those that we expected based on
the component testing. At this point, using IOR alone is not
useful for further debugging because we cannot expect rates
to be as simple as in Fig. 1 and IOR does not give you the
real-time view of progress. In addition, backend-monitoring
tools like collectl or LMT cannot tie the data that they collect
to individual jobs or even processes. Therefore, the

performance benchmarking team at Cray instrumented IOR
to sample each processes’ I/O progress.

With IOR instrumented to collect rates at sub-second
intervals on a per process basis, we can begin to investigate
the runtime fluctuations. The insight that we can draw here
is obvious. Fig. 2 shows that something is clearly wrong.

It is now apparent that something is causing all
outstanding I/O to stop on a regular interval. By measuring
the period, we see that it is always 75 seconds. Experienced
Lustre users could immediately recognize the cause as the
Lustre pinger because the period was exactly the
PING_INTERVAL

1
. However, even if we had a strong

hunch as to the cause, we must verify it.

IV. INVESTIGATING DEADTIME

To help us investigate the dynamics of the dead time, we
found it helpful to emplace some telemetry to pull LNET
stats for visualization. For this, we added an OSS and LNET
router plug-in to collectl because collectl data can be easily
visualized using Graphite

2
. The following charts of various

LNET and LND stats shown here were generated from
Graphite and all show a seven-second window into a dead
time interval during an IOR write.

A. Determining the cause of deadtime

At this point, we used the Lustre llstat facility to gather
server side stats. Upon examining the information, it is clear
that the OSSes nearly stop all ost_{write,read} activity in the
ost_io threads. We note the time of a ‘dead time’ incident
and look at the remaining Lustre and LNET stats to see what
other activity occurs then. Now we see that ost threads begin
to process a very large number of pings. Fig. 3 very clearly
shows the relationship.

Digging further into the data, we see that the number of
I/O requests completed by the servers slows to a trickle (as
also seen in Fig. 3). The waittime for ost_io I/O operations
is constant. Further, we see that neither the OSS nor LNET

1
 The default Lustre PING_INTERVAL is obd_timeout/4 or 25 seconds

since obd_timeout defaults to 100 seconds. However, Cray Lustre
modifies obd_timeout to 300 seconds, so the PING_INTERVAL becomes

75 seconds.
2
 Cray will review the OSS and LNET collect plug-ins for possible

distribution.

Fig. 1 Idealized IOR rate

Fig 2. Instrumented IOR shows ‘dead time' occurs every 75s

routers are CPU bound. The huge volume of pings means
that with fair distribution, bulk messages will make up only
about one percent of the message traffic during the ping
floods. Therefore, it appears that we cannot saturate the
available disk bandwidth because the pings choke out the
bulk data requests. It is simply the case that we cannot
deliver enough messages to the OSS for processing.

B. Why do pings choke regular I/O?

We quickly turn to investigating the LNET routers to see
why we cannot get the ping messages through efficiently. Is
the problem with either the gnilnd, o2iblnd, or the router
functionality itself?

This is actually a hard question to answer because the
available LNET stats data cannot necessarily paint a
complete picture. For example, there is lack of directional
information for use of the router buffers and there are not
waitqueue times available to indicate how long messages are
sitting in the buffers.

However, LNET does provide information about credit
usage including whether they are oversubscribed and by how
much. At this point, we determine that we are lacking in
peer_credits on the o2iblnd side of the routers. The ‘min’
column in /proc/sys/lnet/peers will show the high water mark
for credit usage. The absolute value of negative values are
by how many credits are oversubscribed. Fig. 4 shows that
we require well above the maximum of 255 peer_credits that
the o2iblnd wire protocol can provide. In some
configurations, we see that we could use an additional 10K
credits! Clearly, we will need to investigate tuning up
peer_credits. Nevertheless, even after allowing more traffic
to flow to a specific host, we still see that we become
dramatically oversubscribed on peer_credits. In fact, the
peer_credit usage in Fig 4 is with peer_credits configured
well beyond the default of eight to 126.

C. Understanding LNET message flow through routers

Since we do not know how long messages are waiting for
buffers or how long they sit in buffers we had to rely on our

collectl telemetry from the existing LNET stats to understand
the message queuing model. We needed to be sure that the
o2iblnd peer_credit consumption was more than an
instantaneous artifact and if there were other problems with
routing. The high and low water marks available from
LNET stats cannot provide that kind of information.

From the charts generated from the data, we can begin to
see how traffic is delayed. For example, Fig. 5 shows the
small_router_buffer usage and the o2iblnd peer credit usage
during a ping storm (since pings are ~200 bytes they use the
small buffers, which are sized at four KiB). The curves
appear to be highly correlated, but we should first understand
the client to server traffic flow to assign meaning.

On Cray clients, messages originate from the gnilnd. The
gnilnd will acquire an interface (called ni, for network
interface) tx credit and peer credit and send directly to a
router. The Gemini hardware allows the gnilnd to release the
credits as soon as the message is in remote memory (without
software intervention.

On the routers, there is a lot of activity as LNET shuttles
messages from one interface to another. First, gnilnd will try
to acquire a router buffer and a peer router buffer credit. If
either fail, it will do an ‘eager receive’ and perform a
memory copy to free up the Gemini HW mailbox resource.
Once it can get all the credits and buffers it needs, it will
copy the message into a router buffer. At this point, the
o2iblnd takes responsibility for moving it out the IB
interface, but the router buffer and peer router buffer credits
are still used. The o2iblnd has to acquire two more credits,
peer and ni tx credits just as the gnilnd did, before it can
transmit the message further. If credit gathering fails, the
transmission is queued until the needed credits are available.
The router buffer and peer router buffer credit cannot be
freed until the tx credit is returned from the next peer
(server). Moreover, there is a cost for memory registration
for RDMA that is avoided with a memory copy. The
o2iblnd developers had determined that nothing under four
KiB was worth incurring that registration cost. So small
messages such as obd_pings are copied instead of RDMA’d.

Fig 4. Oversubscribed o2iblnd peer_credits

Fig 3. OSS writes and pings during dead time

That memory copy has a cost of its own, which can add
additional latency for transmission.

Finally, on servers, LNET will not receive a message
until it finds a service buffer in the ptlrpc layer to copy the
message into. Otherwise, it must queue up the message and
wait for buffers to be posted. Only after this copy can
o2iblnd tx credits be returned, which happens via an explicit
SW message. This explicit message means that resource
consumption on the server will cause backups and queuing
into the routers.

Now we can understand that moving messages through
the routers means that we may not only need more
peer_credits on o2iblnd, but also enough router buffers and
peer router buffer credits because they can be consumed for a
relatively long time. Fig. 6 shows the Gemini receive side of
the routers. We can see that there are many router buffers
consumed on the gnilnd side during the dead time. The fact
that these queue quickly indicates to us that clients do not
have difficulty injecting messages into the routers. However,
we do have a problem freeing them since the number of
consumed credits continues to climb during the dead time.
We know that these cannot be freed until the message has
been completely forwarded to the server and the o2iblnd tx
credit has been returned. Then in considering Fig. 5 as well,
in this case where the router buffer usage practically mirrors
the o2iblnd peer credit usage, it indicates that the gnilnd is

not a bottleneck for message flow through routers and that
messages are queuing on o2iblnd peer_credits. The peer
credits are oversubscribed and only as we free tx and peers
for o2iblnd can we begin to achieve higher message
throughput through LNET routers from Cray clients.

V. FGR WITH INFINIBAND

Fig. 7 shows an example of an LNET layer that is finely
routed. If this were a flat network, Cray compute nodes
would round robin messages among all eight routers, which
will create crosstalk in both the HSN and IB fabrics. Cross
talk in the IB fabric can be very expensive if inter-switch
links (ISLs) become over utilized. In reality, using flat
LNET networks means that most traffic travels suboptimal
paths. Use of FGR is designed to use the optimal paths at all
times. With FGR in our example, a compute node will use
only the routers on the red network to communicate with
OSSes 1, 3, and 5 and the blue network to communicate with
OSSes 2, 4, and 6, avoiding the inter-switch link.

FGR presents a special problem for LNET because it was
designed mostly with flat networks in mind. As discussed,
there are per-interface and per-peer credits consumed for
message transmission (and credits and per-peer credits for
router buffers too). Per-peer credits exist so that no one peer
can monopolize all of the resources [2]. Its drawback is that
an interface can consume all of the available credits for a
given endpoint without fully utilizing all of the network
resources. That is, without saturating the network. Yet this
has purpose because the credit mechanism can be a tool that
administrators use to keep Lustre clients from overwhelming
a server. In other words, sometimes throttling network
performance is desirable.

It is rarely a problem in flat LNET networks to under-
saturate the network because there are many possible
endpoints or destinations. With FGR, that set of endpoints is
dramatically reduced and the default peer_credits setting will
limit the overall number of messages that can be inserted
onto the wire. Although there is little to no contention or
crosstalk on the fabric, one must pay careful attention to
tuning up the per peer credit values or the performance will

Fig. 7 Example of FGR routes

Fig 5. Router buffers (L) and o2iblnd peer_credit (R)

Fig. 6 gnilnd peer router buffer consumption (receive)

be less than what can be achieved with a flat network. This
is particularly important when routing to Infiniband networks
because the wire protocol is limited to very few credits. This
is not a problem at all for large writes (Lustre typically
transmits data in one MiB chunks) because a few number of
messages can consume all of the available bandwidth.

VI. TUNING LNET

A. o2iblnd tuning hints

Our main problem is that routers are simply not able to
get enough small messages in flight to either keep up with
the demand or saturate the IB link and that is mainly due to
the lack of peer credits. As already stated, the drawback
with the o2iblnd LND is the small limit for peer_credits and
that they are consumed until there is an explicit SW release
message. The maximum value that can be achieved without
a wire protocol change is 255. There are some other rules
and guides to follow that will further limit the maximum
value.

First, peer_credits must be less than or equal to twice the
value of the concurrent_sends tunable. Unfortunately,
another esoteric feature, map_on_demand, needs to be
configured to allow concurrent_sends to be greater than 63.
The map_on_demand tunable has side effects for bulk
RDMA transmission, so it is best left un-configured.

Therefore, the best and highest value we can reach is to
set concurrent_sends to 63 and peer_credits to 126, which is
done by adding the following to modprobe.conf:

Since we are not able to push peer_credits as high as we

would like, these recommendations hold for both flat and
FGR LNETs.

Note that peer_credits must agree across all o2iblnd
peers! That means that any changes made must be
instantiated simultaneously across the common fabric peers.

B. Router tuning hints

For routers, we need to ensure that we have reserved
enough router buffers and peer router buffer credits for each
interface. Fortunately, router buffers just consume memory,
so we are free to add many more. Since LNET routers run
on nodes that do not provide other services we should feel
free to consume a lot of memory.

Especially for the four KiB small_router_buffers, the
default number of credits is massively undersized. For large
Cray systems, the client side should dominate since there are
many more clients than servers. The gnilnd defaults to 16
peer router buffer credits.

3
 Therefore, the maximum number

of small router buffers that could be consumed by the gnilnd
side by default is (num_clients * 16). We are recommending
16K buffers, which at four KiB per buffer only consumes 64
MiB. LNET stats make it easy to see if that is enough. After

3
 The gnilnd does not tune peer router buffers separately as the o2iblnd

can. The number of peer router buffers configured is based on the

peer_credits, which defaults to 16. Otherwise, it can be configured by
enabling the lnet module parameter, peer_buffer_credits.

some production workload, check /proc/sys/lnet/buffers. A
negative ‘min’ value gives the high water mark for how
many credits the router was oversubscribed. If so, simply
increase the number of router buffers since only the amount
of memory consumed will be limiting.

For the IB side of the router, the number of o2iblnd peer
router buffer credits can be tuned by configuring
peer_buffer_credits. Since we recommend tuning o2iblnd
peer_credits to 126 servers cannot ever land more messages
than that into the router buffers. Therefore, we should
choose to set peer_buffer_credits to 126 as well because with
the client side dominating the number of router buffers, there
is no reason to limit the number consumed on the IB side of
the router.

Therefore, the best recommendations to be included into
the router modprobe.conf would be:

Remember that peer_credits must agree across all
o2iblnd peers! That means that any changes made must be
instantiated simultaneously across the common fabric peers.

C. Results with LNET tuning

Tuning credits does reduce the measured dead time.
However, we conducted some scaling tests by leveraging
‘fake scaling’ where we simply mount file systems multiple
times on each client. Because the ping algorithm is not very
smart, it will generate additional ping load to each target.
After tuning, we generated about 45 million pings per
PING_INTERVAL. Fig. 8 shows that the dead time is still
present, but it is drastically reduced.

VII. PINGS AND OS JITTER

It seems obvious that we could also eliminate the dead
time by spreading the Lustre pings out in time so that their
effect was not felt so acutely. However, pings are aligned in
the first place to minimize jitter. We must be careful not to
trade one problem for a more severe one.

We had an opportunity to explore the ping effects on
noise when ORNL reported that global barrier times had
increased immensely after upgrading to CLE 3.1 from CLE

Fig. 8 Dead time is reduced but still present at scale

2.2. CLE 2.2 uses Lustre 1.6.5 and CLE 3.1 used 1.8.2. See
Bug 771347 for details. It was also determined that the
problem did not manifest unless the Spider file system was
mounted. Moreover, the problem was experienced when the
file system was not in use. Between 1.6.x and 1.8.x, the
obd_ping algorithm changed to more strongly align pings to
the current time modulo PING_INTERVAL boundary. In
1.6.x, pings were coalesced into a single interrupt, but the
pings could offset based on the idle period. In addition, the
1.8.x algorithm added a callback facility to run functions
when the ping timer expired. Currently the only use of the
callback facility is the async journal commit feature. If these
functions were long running, then perhaps they were the
source of the new jitter. Since the async journal commit
feature could be avoided by avoiding buffered writes, we
could try undoing the change.

We created three experimental Lustre clients to
determine if we could isolate one of the changes as the
source of the degradation. The combinations were aligned
pings with callbacks (default 1.8.x behavior), aligned pings
without callbacks, unaligned pings with callbacks, and
unaligned pings without callbacks (the default 1.6.x
behavior).

Unfortunately, OS jitter is a hard thing to measure and
even harder to correct. If we improved intra-node jitter, then
we do not necessarily improve inter-node jitter as all the
interrupts on CPUs within a node could occur at the same
time, but at different times compared to other nodes.
However, it does seem clear that if we degrade intra-node
jitter, then inter-node jitter would also have to degrade. We
are interested in inter-node jitter because that is what leads to
large barrier times.

Jitter can be counter intuitive though. It is not
necessarily a win to strongly align interrupts within nodes if
those interrupts are going to take a long or variable amount
of time (compared to more frequent, shorter, deterministic
interrupts). Further, some applications are sensitive to inter-
node jitter, while others are sensitive to intra-node jitter.

Our experiments showed that the journal commit
callbacks were not a significant source of intra-node noise.
Therefore, we must conclude that the strong alignment of
pings was the source of the degradation in system wide
barrier performance. However, Cray’s limited scale testing
(after all Cray does not own a Jaguar sized system) was
inconclusive. We saw that there was a very small difference
in barrier performance between the options. We are looking
to get access to a larger system for further investigation. In
the meantime, we will not be making changes to ping timing
despite the reports of degradation because of the perceived
value of aligning pings.

Clearly, it would be simplest to remove pings altogether
so as to solve the jitter problem and dead time problem at
once.

VIII. CONCLUSION

The Lustre ping problem is quite complex and the
problem is compounded on modern Cray system with routed
Lustre file systems with FGR. LNET tuning in IB is needed
to reduce the dead time. The recommendations provided
here for LNET tuning will reduce the dead time spent
handling idle Lustre pings.

IX. FUTURE WORK

Besides further investigation of the 1.6.x style ping timer,
there are other ideas that the authors would like to explore.
First, removing the extra memory copies on routers is worth
examining because it could have benefits for other small
message traffic like metadata loads.

There are some stopgap measures to explore before
outright removal of the pings. We will continue to explore
the issues surrounding ping timers and jitter. Next, we could
look into reducing the number of pings, both in scale and in
frequency. If we lower the frequency, we still suffer from
dead time, just not as often, but that has side effects for
inferring server and client health.

However, clearly the biggest payoff would be to
eliminate pings altogether. RIKEN and Fujitsu have
removed some pings on the K computer through a custom
solution detecting node health out of band from Lustre [3].
They plan to release these changes to the Lustre community.
But, current and future Cray Lustre file system deployments
will be loosely coupled routed environments where it won’t
be possible to tightly couple client and server (as Cray did
with a custom imperative recovery feature beginning in CLE
3.1).

With the advent of imperative recovery supported by the
MGS (as of Lustre 2.2) it may be easier to remove the
reliance on RPC timeouts and pings for node health, which
should make it easier to remove the ping functionality.

ACKNOWLEDGMENT

The authors would like to thank ORNL, John Carrier, and
especially Dave Dillow for their work in LNET routing;
Isaac Huang for helping us to understand LNET and o2iblnd
tuning; Whamcloud for their work on imperative recovery;
Jeff Garlough for driving test runs; and finally Dave Hensler
for his perspectives on OS noise and jitter.

REFERENCES

[1] D. Dillow, G. Shipman, S. Oral, Z. Zhang, “I/O congestion avoidance
via routing and object placement,” Proc. Cray User Group, 2011

[2] Lustre 2.x Filesystem: Operations Manual, Section 31.1.4.

[3] Current Status of FEFS for the K Computer, LUG 2012, Shinji
Sumimoto,

http://www.opensfs.org/wp-content/uploads/2011/11/LUG2012-FJ-
20120426.pdf

