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Abstract—Cray is committed to pushing the boundaries of 

scale of its deployed Lustre file systems, in terms of both client 

count and the number of Lustre server targets.  However, 

scaling Lustre to such great heights presents a particular 

problem with the Lustre pinger, especially with routed LNET 

configurations used on so-called external Lustre file systems.  

There is an even greater concern for LNETs with finely 

grained routing.  The routing of small messages must be 

improved otherwise Lustre pings have the potential to ‘choke 

out’ real bulk I/O, an effect we call ‘dead time’.  Pings also 

contribute to OS jitter so it is important to minimize their 

impact even if a scale threshold has not been met that disrupts 

real I/O.  Moreover, the Lustre idle pings are an issue even for 

very busy systems because each client must ping every target.  

This paper will discuss the techniques used to illustrate the 

problem and best practices for avoiding the effects of Lustre 

pings. 
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I.  INTRODUCTION 

This paper assumes that the reader is familiar with basic 
Lustre concepts.  However, enough background should be 
given such that the reader can follow the scaling issues.  For 
more background on Lustre, please refer to the Lustre 
Operations Manual. 

Over the course of a performance investigation, we 
determined that Lustre pings were the root cause of a serious 
I/O throughput issue, especially and primarily for routed 
LNETs. 

For a variety of reasons, it is not easy to change the basic 
Lustre ping implementation, so we focused our efforts on 
tuning.  It was soon clear that there was much ground to be 
gained by improving LNET performance.  We determined 
that many changes were needed to accommodate efficient 
routing of small messages on Infiniband fabrics.  Because of 
the peer credit concept in LNET routing, special tuning effort 
is required for configurations that use Fine Grained Routing 
(FGR) [1].  However, we discovered that due to limitations 
of the Infiniband LNET Network Driver (LND), o2iblnd, 
there is a limit to the tuning one can make. 

Once we made improvements to the LNET, our focus 
turned again to changing the ping behavior.  However, since 
every client node sets timeouts for ping sends we must be 
careful so that we do not inject additional OS noise and 
contribute to jitter. 

II. BACKGROUND ON LUSTRE PINGS 

Lustre uses an ‘obd_ping’ and each ping targets an 
‘obd_import’, but essentially clients ping all metadata and 
object targets in the filesystem.  The pings serve three 
purposes.  First, a ping is used to detect server health (and 
that has a side effect of triggering clients to reinitiate 
connections to targets).  Second, the server uses the lack of 
pings (or other traffic) to infer client health.  Finally, servers 
add the last_committed value to ping responses, which is 
needed for clients using the asynchronous journal commit 
feature. 

Unfortunately, Lustre pings do not scale well.  Because 
each client pings each target, we have to deal with O(n*m) 
scaling.  It is not smart enough to consolidate pings when 
there are multiple targets per server, which is very typical.  
For current petascale sized systems with component counts 
on the order of 25,000 nodes and hundreds of OSTs there 
can be tens of millions of pings per ping interval.  With FGR 
configurations that Cray is exploring and deploying, the 
scale we are seeing is about 100,000 pings per OSS and 
75,000 pings per router. 

Therefore, for even moderately sized systems, there will 
be an enormous number of pings sent every ping interval.  
The scheduling of those pings is aligned to minimize the 
effect of OS jitter.  That in turn creates a ping ‘flood’ since 
the pings are transmitted simultaneously, which leads to an 
acute issue for bulk data transmission. 

The ping flood can lead to so-called ‘dead time’ where 
bulk I/O processing essentially stops because the system is 
choked up with a high volume of concurrent ping messages.  
The ‘dead time’ occurs every PING_INTERVAL seconds, 
which is the default idle time allotted before pings are 
transmitted, which has been configured to 75 seconds on all 
Cray systems.  In very badly configured system, the ‘dead 
time’ can account for up to ten percent of the potential I/O 
bandwidth. 

Unfortunately, Lustre pings cannot easily be removed.  
Not only would it be difficult to replace the functionality, but 
also Cray would have to find a general solution in Lustre for 
the community.  Since the ping serves purposes that are 
inherently associated with health data, it can be tempting to 
use Cray’s proprietary HSS network and its RAS facilities.  
However, this cannot extend to external components as are 
the bulk of Cray’s future Lustre product offerings. 



The pings are also a source of noise that leads to OS 
jitter.  Aligning the pings in time has the effect of ganging up 
on routers and servers, so we could spread them out over 
time.  However, that would naturally have consequences for 
jitter.  Jitter is notoriously tough to measure, so careful 
consideration should be made for any changes that impact 
OS noise. 

Note that the Lustre ‘obd_ping’ should not be confused 
with an LNET ping.  LNET pings are LNET/LND level 
pings that are used to check LNET connectivity. 

III. DISCOVERING DEAD TIME 

When benchmarking distributed filesystems such as 
Lustre, IOR is a natural benchmark to use because it is an 
industry standard and it can drive I/O exactly as many 
applications do.  For example, it can be configured to 
read/write single shared files, use a file per process, use 
direct I/O, etc. 

Whether IOR is used in a fixed data or fixed time format, 
a single numerical result is output: the average throughput 
for the run.  For fixed data runs (the default), the run cannot 
complete until the slowest component has finished.  
Sometimes there are head-of-line blocking issues or disk 
block layout issues that impede progress of some processes.  
If those issues or other transient behavior were to occur 
during a run, the result would simply be lower average 
throughput measured.  In other words, IOR can only be as 
fast as the slowest element and often the sustained rate is 
faster than the reported rate. 

Cray benchmarking was investigating just such a case on 
a large-scale system where the measured IOR rates were not 
meeting expectations.  Individual components were 
benchmarked and performance was measured.  Results 
seemed good.  Clearly, there was some effect occurring 
during runtime.  We knew that the performance was often 
good, but we were missing why the rated IOR performance 
was not closer in value to those that we expected based on 
the component testing.  At this point, using IOR alone is not 
useful for further debugging because we cannot expect rates 
to be as simple as in Fig. 1 and IOR does not give you the 
real-time view of progress.  In addition, backend-monitoring 
tools like collectl or LMT cannot tie the data that they collect 
to individual jobs or even processes.  Therefore, the 

performance benchmarking team at Cray instrumented IOR 
to sample each processes’ I/O progress. 

With IOR instrumented to collect rates at sub-second 
intervals on a per process basis, we can begin to investigate 
the runtime fluctuations.  The insight that we can draw here 
is obvious.  Fig. 2 shows that something is clearly wrong. 

It is now apparent that something is causing all 
outstanding I/O to stop on a regular interval.  By measuring 
the period, we see that it is always 75 seconds.  Experienced 
Lustre users could immediately recognize the cause as the 
Lustre pinger because the period was exactly the 
PING_INTERVAL

1
.  However, even if we had a strong 

hunch as to the cause, we must verify it. 

IV. INVESTIGATING DEADTIME 

To help us investigate the dynamics of the dead time, we 
found it helpful to emplace some telemetry to pull LNET 
stats for visualization.  For this, we added an OSS and LNET 
router plug-in to collectl because collectl data can be easily 
visualized using Graphite

2
.  The following charts of various 

LNET and LND stats shown here were generated from 
Graphite and all show a seven-second window into a dead 
time interval during an IOR write. 

A. Determining the cause of deadtime 

At this point, we used the Lustre llstat facility to gather 
server side stats.  Upon examining the information, it is clear 
that the OSSes nearly stop all ost_{write,read} activity in the 
ost_io threads.  We note the time of a ‘dead time’ incident 
and look at the remaining Lustre and LNET stats to see what 
other activity occurs then.  Now we see that ost threads begin 
to process a very large number of pings.  Fig. 3 very clearly 
shows the relationship. 

Digging further into the data, we see that the number of 
I/O requests completed by the servers slows to a trickle (as 
also seen in Fig. 3).  The waittime for ost_io I/O operations 
is constant.  Further, we see that neither the OSS nor LNET 

                                                           
1
 The default Lustre PING_INTERVAL is obd_timeout/4 or 25 seconds 

since obd_timeout defaults to 100 seconds.  However, Cray Lustre 
modifies obd_timeout to 300 seconds, so the PING_INTERVAL becomes 

75 seconds. 
2
  Cray will review the OSS and LNET collect plug-ins for possible 

distribution. 

Fig.  1 Idealized IOR rate 

Fig 2.  Instrumented IOR shows ‘dead time' occurs every 75s 



routers are CPU bound.  The huge volume of pings means 
that with fair distribution, bulk messages will make up only 
about one percent of the message traffic during the ping 
floods.  Therefore, it appears that we cannot saturate the 
available disk bandwidth because the pings choke out the 
bulk data requests.  It is simply the case that we cannot 
deliver enough messages to the OSS for processing. 

B. Why do pings choke regular I/O? 

We quickly turn to investigating the LNET routers to see 
why we cannot get the ping messages through efficiently.  Is 
the problem with either the gnilnd, o2iblnd, or the router 
functionality itself? 

This is actually a hard question to answer because the 
available LNET stats data cannot necessarily paint a 
complete picture.  For example, there is lack of directional 
information for use of the router buffers and there are not 
waitqueue times available to indicate how long messages are 
sitting in the buffers. 

However, LNET does provide information about credit 
usage including whether they are oversubscribed and by how 
much.  At this point, we determine that we are lacking in 
peer_credits on the o2iblnd side of the routers.  The ‘min’ 
column in /proc/sys/lnet/peers will show the high water mark 
for credit usage.  The absolute value of negative values are 
by how many credits are oversubscribed.  Fig. 4 shows that 
we require well above the maximum of 255 peer_credits that 
the o2iblnd wire protocol can provide.  In some 
configurations, we see that we could use an additional 10K 
credits!  Clearly, we will need to investigate tuning up 
peer_credits.  Nevertheless, even after allowing more traffic 
to flow to a specific host, we still see that we become 
dramatically oversubscribed on peer_credits.  In fact, the 
peer_credit usage in Fig 4 is with peer_credits configured 
well beyond the default of eight to 126. 

C. Understanding LNET message flow through routers 

Since we do not know how long messages are waiting for 
buffers or how long they sit in buffers we had to rely on our 

collectl telemetry from the existing LNET stats to understand 
the message queuing model.  We needed to be sure that the 
o2iblnd peer_credit consumption was more than an 
instantaneous artifact and if there were other problems with 
routing.  The high and low water marks available from 
LNET stats cannot provide that kind of information. 

From the charts generated from the data, we can begin to 
see how traffic is delayed.  For example, Fig. 5 shows the 
small_router_buffer usage and the o2iblnd peer credit usage 
during a ping storm (since pings are ~200 bytes they use the 
small buffers, which are sized at four KiB).  The curves 
appear to be highly correlated, but we should first understand 
the client to server traffic flow to assign meaning. 

On Cray clients, messages originate from the gnilnd.  The 
gnilnd will acquire an interface (called ni, for network 
interface) tx credit and peer credit and send directly to a 
router.  The Gemini hardware allows the gnilnd to release the 
credits as soon as the message is in remote memory (without 
software intervention. 

On the routers, there is a lot of activity as LNET shuttles 
messages from one interface to another.  First, gnilnd will try 
to acquire a router buffer and a peer router buffer credit.  If 
either fail, it will do an ‘eager receive’ and perform a 
memory copy to free up the Gemini HW mailbox resource.  
Once it can get all the credits and buffers it needs, it will 
copy the message into a router buffer.  At this point, the 
o2iblnd takes responsibility for moving it out the IB 
interface, but the router buffer and peer router buffer credits 
are still used.  The o2iblnd has to acquire two more credits, 
peer and ni tx credits just as the gnilnd did, before it can 
transmit the message further.  If credit gathering fails, the 
transmission is queued until the needed credits are available.  
The router buffer and peer router buffer credit cannot be 
freed until the tx credit is returned from the next peer 
(server).  Moreover, there is a cost for memory registration 
for RDMA that is avoided with a memory copy.  The 
o2iblnd developers had determined that nothing under four 
KiB was worth incurring that registration cost.  So small 
messages such as obd_pings are copied instead of RDMA’d.  

Fig 4.  Oversubscribed o2iblnd peer_credits 

Fig 3.  OSS writes and pings during dead time 



That memory copy has a cost of its own, which can add 
additional latency for transmission. 

Finally, on servers, LNET will not receive a message 
until it finds a service buffer in the ptlrpc layer to copy the 
message into.  Otherwise, it must queue up the message and 
wait for buffers to be posted.  Only after this copy can 
o2iblnd tx credits be returned, which happens via an explicit 
SW message.  This explicit message means that resource 
consumption on the server will cause backups and queuing 
into the routers. 

Now we can understand that moving messages through 
the routers means that we may not only need more 
peer_credits on o2iblnd, but also enough router buffers and 
peer router buffer credits because they can be consumed for a 
relatively long time.  Fig. 6 shows the Gemini receive side of 
the routers.  We can see that there are many router buffers 
consumed on the gnilnd side during the dead time.  The fact 
that these queue quickly indicates to us that clients do not 
have difficulty injecting messages into the routers.  However, 
we do have a problem freeing them since the number of 
consumed credits continues to climb during the dead time.  
We know that these cannot be freed until the message has 
been completely forwarded to the server and the o2iblnd tx 
credit has been returned.  Then in considering Fig. 5 as well, 
in this case where the router buffer usage practically mirrors 
the o2iblnd peer credit usage, it indicates that the gnilnd is 

not a bottleneck for message flow through routers and that 
messages are queuing on o2iblnd peer_credits.  The peer 
credits are oversubscribed and only as we free tx and peers 
for o2iblnd can we begin to achieve higher message 
throughput through LNET routers from Cray clients. 

V. FGR WITH INFINIBAND 

Fig. 7 shows an example of an LNET layer that is finely 
routed.  If this were a flat network, Cray compute nodes 
would round robin messages among all eight routers, which 
will create crosstalk in both the HSN and IB fabrics.  Cross 
talk in the IB fabric can be very expensive if inter-switch 
links (ISLs) become over utilized.  In reality, using flat 
LNET networks means that most traffic travels suboptimal 
paths.  Use of FGR is designed to use the optimal paths at all 
times.  With FGR in our example, a compute node will use 
only the routers on the red network to communicate with 
OSSes 1, 3, and 5 and the blue network to communicate with 
OSSes 2, 4, and 6, avoiding the inter-switch link. 

FGR presents a special problem for LNET because it was 
designed mostly with flat networks in mind.  As discussed, 
there are per-interface and per-peer credits consumed for 
message transmission (and credits and per-peer credits for 
router buffers too).  Per-peer credits exist so that no one peer 
can monopolize all of the resources [2].  Its drawback is that 
an interface can consume all of the available credits for a 
given endpoint without fully utilizing all of the network 
resources.  That is, without saturating the network.  Yet this 
has purpose because the credit mechanism can be a tool that 
administrators use to keep Lustre clients from overwhelming 
a server.  In other words, sometimes throttling network 
performance is desirable. 

It is rarely a problem in flat LNET networks to under-
saturate the network because there are many possible 
endpoints or destinations.  With FGR, that set of endpoints is 
dramatically reduced and the default peer_credits setting will 
limit the overall number of messages that can be inserted 
onto the wire.  Although there is little to no contention or 
crosstalk on the fabric, one must pay careful attention to 
tuning up the per peer credit values or the performance will 

Fig. 7 Example of FGR routes 

Fig 5.  Router buffers (L) and o2iblnd peer_credit (R) 

Fig. 6  gnilnd peer router buffer consumption (receive) 



be less than what can be achieved with a flat network.  This 
is particularly important when routing to Infiniband networks 
because the wire protocol is limited to very few credits.  This 
is not a problem at all for large writes (Lustre typically 
transmits data in one MiB chunks) because a few number of 
messages can consume all of the available bandwidth. 

VI. TUNING LNET 

A. o2iblnd tuning hints 

Our main problem is that routers are simply not able to 
get enough small messages in flight to either keep up with 
the demand or saturate the IB link and that is mainly due to 
the lack of peer credits.  As already stated, the drawback 
with the o2iblnd LND is the small limit for peer_credits and 
that they are consumed until there is an explicit SW release 
message.  The maximum value that can be achieved without 
a wire protocol change is 255.  There are some other rules 
and guides to follow that will further limit the maximum 
value. 

First, peer_credits must be less than or equal to twice the 
value of the concurrent_sends tunable.  Unfortunately, 
another esoteric feature, map_on_demand, needs to be 
configured to allow concurrent_sends to be greater than 63.  
The map_on_demand tunable has side effects for bulk 
RDMA transmission, so it is best left un-configured. 

Therefore, the best and highest value we can reach is to 
set concurrent_sends to 63 and peer_credits to 126, which is 
done by adding the following to modprobe.conf:  
 

 
Since we are not able to push peer_credits as high as we 

would like, these recommendations hold for both flat and 
FGR LNETs. 

Note that peer_credits must agree across all o2iblnd 
peers!  That means that any changes made must be 
instantiated simultaneously across the common fabric peers. 

B. Router tuning hints 

For routers, we need to ensure that we have reserved 
enough router buffers and peer router buffer credits for each 
interface.  Fortunately, router buffers just consume memory, 
so we are free to add many more.  Since LNET routers run 
on nodes that do not provide other services we should feel 
free to consume a lot of memory. 

Especially for the four KiB small_router_buffers, the 
default number of credits is massively undersized.  For large 
Cray systems, the client side should dominate since there are 
many more clients than servers.  The gnilnd defaults to 16 
peer router buffer credits.

3
  Therefore, the maximum number 

of small router buffers that could be consumed by the gnilnd 
side by default is (num_clients * 16).  We are recommending 
16K buffers, which at four KiB per buffer only consumes 64 
MiB.  LNET stats make it easy to see if that is enough.  After 

                                                           
3
 The gnilnd does not tune peer router buffers separately as the o2iblnd 

can.  The number of peer router buffers configured is based on the 

peer_credits, which defaults to 16.  Otherwise, it can be configured by 
enabling the lnet module parameter, peer_buffer_credits. 

some production workload, check /proc/sys/lnet/buffers.  A 
negative ‘min’ value gives the high water mark for how 
many credits the router was oversubscribed.  If so, simply 
increase the number of router buffers since only the amount 
of memory consumed will be limiting. 

For the IB side of the router, the number of o2iblnd peer 
router buffer credits can be tuned by configuring 
peer_buffer_credits.  Since we recommend tuning o2iblnd 
peer_credits to 126 servers cannot ever land more messages 
than that into the router buffers.  Therefore, we should 
choose to set peer_buffer_credits to 126 as well because with 
the client side dominating the number of router buffers, there 
is no reason to limit the number consumed on the IB side of 
the router. 

Therefore, the best recommendations to be included into 
the router modprobe.conf would be: 
 

Remember that peer_credits must agree across all 
o2iblnd peers!  That means that any changes made must be 
instantiated simultaneously across the common fabric peers. 

C. Results with LNET tuning 

Tuning credits does reduce the measured dead time.  
However, we conducted some scaling tests by leveraging 
‘fake scaling’ where we simply mount file systems multiple 
times on each client.  Because the ping algorithm is not very 
smart, it will generate additional ping load to each target.  
After tuning, we generated about 45 million pings per 
PING_INTERVAL.  Fig. 8 shows that the dead time is still 
present, but it is drastically reduced.  

VII. PINGS AND OS JITTER 

It seems obvious that we could also eliminate the dead 
time by spreading the Lustre pings out in time so that their 
effect was not felt so acutely.  However, pings are aligned in 
the first place to minimize jitter.  We must be careful not to 
trade one problem for a more severe one. 

We had an opportunity to explore the ping effects on 
noise when ORNL reported that global barrier times had 
increased immensely after upgrading to CLE 3.1 from CLE 

Fig. 8  Dead time is reduced but still present at scale 



2.2.  CLE 2.2 uses Lustre 1.6.5 and CLE 3.1 used 1.8.2.  See 
Bug 771347 for details.  It was also determined that the 
problem did not manifest unless the Spider file system was 
mounted.  Moreover, the problem was experienced when the 
file system was not in use.  Between 1.6.x and 1.8.x, the 
obd_ping algorithm changed to more strongly align pings to 
the current time modulo PING_INTERVAL boundary.  In 
1.6.x, pings were coalesced into a single interrupt, but the 
pings could offset based on the idle period.  In addition, the 
1.8.x algorithm added a callback facility to run functions 
when the ping timer expired.  Currently the only use of the 
callback facility is the async journal commit feature.  If these 
functions were long running, then perhaps they were the 
source of the new jitter.  Since the async journal commit 
feature could be avoided by avoiding buffered writes, we 
could try undoing the change. 

We created three experimental Lustre clients to 
determine if we could isolate one of the changes as the 
source of the degradation.  The combinations were aligned 
pings with callbacks (default 1.8.x behavior), aligned pings 
without callbacks, unaligned pings with callbacks, and 
unaligned pings without callbacks (the default 1.6.x 
behavior). 

Unfortunately, OS jitter is a hard thing to measure and 
even harder to correct.  If we improved intra-node jitter, then 
we do not necessarily improve inter-node jitter as all the 
interrupts on CPUs within a node could occur at the same 
time, but at different times compared to other nodes.  
However, it does seem clear that if we degrade intra-node 
jitter, then inter-node jitter would also have to degrade.  We 
are interested in inter-node jitter because that is what leads to 
large barrier times. 

Jitter can be counter intuitive though.  It is not 
necessarily a win to strongly align interrupts within nodes if 
those interrupts are going to take a long or variable amount 
of time (compared to more frequent, shorter, deterministic 
interrupts).  Further, some applications are sensitive to inter-
node jitter, while others are sensitive to intra-node jitter. 

Our experiments showed that the journal commit 
callbacks were not a significant source of intra-node noise.  
Therefore, we must conclude that the strong alignment of 
pings was the source of the degradation in system wide 
barrier performance.  However, Cray’s limited scale testing 
(after all Cray does not own a Jaguar sized system) was 
inconclusive.  We saw that there was a very small difference 
in barrier performance between the options.  We are looking 
to get access to a larger system for further investigation.  In 
the meantime, we will not be making changes to ping timing 
despite the reports of degradation because of the perceived 
value of aligning pings. 

Clearly, it would be simplest to remove pings altogether 
so as to solve the jitter problem and dead time problem at 
once. 

VIII. CONCLUSION 

The Lustre ping problem is quite complex and the 
problem is compounded on modern Cray system with routed 
Lustre file systems with FGR.  LNET tuning in IB is needed 
to reduce the dead time.  The recommendations provided 
here for LNET tuning will reduce the dead time spent 
handling idle Lustre pings. 

IX. FUTURE WORK 

Besides further investigation of the 1.6.x style ping timer, 
there are other ideas that the authors would like to explore.  
First, removing the extra memory copies on routers is worth 
examining because it could have benefits for other small 
message traffic like metadata loads. 

There are some stopgap measures to explore before 
outright removal of the pings.  We will continue to explore 
the issues surrounding ping timers and jitter.  Next, we could 
look into reducing the number of pings, both in scale and in 
frequency.  If we lower the frequency, we still suffer from 
dead time, just not as often, but that has side effects for 
inferring server and client health. 

However, clearly the biggest payoff would be to 
eliminate pings altogether.  RIKEN and Fujitsu have 
removed some pings on the K computer through a custom 
solution detecting node health out of band from Lustre [3].  
They plan to release these changes to the Lustre community.  
But, current and future Cray Lustre file system deployments 
will be loosely coupled routed environments where it won’t 
be possible to tightly couple client and server (as Cray did 
with a custom imperative recovery feature beginning in CLE 
3.1). 

With the advent of imperative recovery supported by the 
MGS (as of Lustre 2.2) it may be easier to remove the 
reliance on RPC timeouts and pings for node health, which 
should make it easier to remove the ping functionality.  
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