
Analyses and Modeling of Applications Used

to Demonstrate Sustained Petascale

Performance on Blue Waters

Greg Bauer, Torsten Hoefler, Bill Kramer, Bob Fiedler

All used images belong to the owner/creator!

2/29

The State of Performance Measurements

• Most used metric: Floating Point Performance

• That’s what limited performance in the 80’s!

• Systems were balanced, peak was easy!

• FP performance was the limiting factor

• Architecture Update (2012):

• Deep memory hierarchies make systems highly

unbalanced

• Caches mitigate the effect by exploiting

algorithmic structure and data locality

3/29

Rough Computational Algorithm Classification

• High locality, moderate locality, low locality

• Highly Structured

• Dense linear algebra

• FFT

• Stencil

• Semi-structured

• Adaptive refinements

• Sparse linear algebra

• Unstructured

• Graph computations

4/29

How do we assess performance?

• Microbenchmarks

• Libraries (DGEMM, FFT)

• Communication (p2p, collective)

• …

• Application Microbenchmark

• HPL (for historic reasons?)

• NAS (outdated)

• …

• Applications

5/29

We still somehow agree on FLOPS

• … because that’s what we always did

• And it’s an OK metric

• But the benchmarks should reflect the workload

• “Sustained performance”

• Cf. “real application performance”

• In the Blue Waters context

• “Sustained Petascale Performance” (SPP)

• Reflects the NSF workload

6/29

The SPP Metric

• Enables us to

• compare different computer systems

• Verify system performance and correctness

• Monitor performance through lifetime

• Guide design of future systems

• It has to represent the “average workload” and

must still be of manageable size

• We chose ten applications (8 x86, 4 GPU)

• Performance is geometric mean of all apps

7/29

Blue Waters in a Nutshell

• XE6 with AMD Interlagos 2.3-2.6 (3.0?) GHz

• ~390k BD modules, ~780k INT cores

• XK6 with Kepler GPUs

• ~3k

• Gemini Torus

• Very large (23x24x24), BB-challenged, torus

• How do we make sure the (heterogeneous)

system is ready to fulfill it’s mission?

• Well, confirm a certain SPP number (> 1PF!)

8/29

Validating a System Model – Memory I

• Stride-1 word load/store/copy (32 MiB data):

• 1 int core r/w/c: 3.8 / 4 / 3 GB/s

• 16 int cores (1 IL) r/w/c: 32 / 16 / 9.6 GB/s

• 32 int cores (2 IL) r/w/c: 32 / 16 / 9.6 GB/s

• Comments:

• Very high fairness between cores

• Very low variance between measurements

 Measured with Netgauge 2.4.7, pattern memory/stream

9/29

Validating a System Model – Memory II

• CL latency (random pointer chase, 1 GiB data):

• 1 int core: 110 ns

• 16 int cores (1 IL): 257 ns

• 32 int cores (2IL): 258 ns

• Comments:

• High fairness between cores

• Low variance between measurements

Measured with Netgauge 2.4.7, pattern memory/pchase

10/29

Validating a System Model – Memory III

• Random word access bandwidth (32 MiB data):

• 1 int core r/w/c: 453 / 422 / 228 MiB/s

• 16 int cores (1 IL) r/w/c: 241 / 119 / 77 MiB/s

• 32 int cores (2IL) r/w/c: 241 / 119 / 77 MiB/s

• Comments:

• Very high fairness between cores

• Very low variance between measurements

Measured with Netgauge 2.4.7, pattern memory/rand

11/29

Validating a System Model – Network Scaling

• Effective Bisection Bandwidth and Variance

• Expect (3D torus bisection limit): 7.5 TB/s

32 processes per node 1 process per node

Measured with Netgauge 2.4.7, pattern ebb

12/29

Validating a System Model – Network Scaling

• Average random latency and variance

32 processes per node 1 process per node

50 us

5 us

Measured with Netgauge 2.4.7, pattern ebb

13/29

Validating a System Model – Collectives
• Large message (4k) alltoall performance

• Model: unclear (depends on mapping etc.)

32 processes per node 1 process per node

10 MB/s/proc 20x

Measured with Netgauge 2.4.7, pattern nbcolls

14/29

The SPP Application Mix

• Representative Blue Waters applications:

• NAMD – molecular dynamics

• MILC, Chroma – Lattice Quantum Chromodynamics

• VPIC, SPECFEM3D – Geophysical Science

• WRF – Atmospheric Science

• PPM – Astrophysics

• NWCHEM, GAMESS – Computational Chemistry

• QMCPACK – Materials Science

15/29

Upping my FLOPS (if I was a vendor)

• Algorithms may have different FLOP counts

• Slow time to solution but high FLOPS (dense LA)

• Same time to solution, more FLOPS

• Single of half FLOPS (esp. GPUs)

• Redundant FLOPS for parallel codes

• Performance counters are thus not reliable!

• Just count the observed, not the necessary

FLOPS

16/29

Reference FLOP Counts

• We establish “reference FLOP count”

• Specific to an input problem

• Ideally established analytically

• Or (if necessary) on reference code on x86

• Single-core run (or several parallel runs)

• Input problem needs to be clearly defined

• Set the right expectations

• Real, complete science run vs. maximum FLOPS

17/29

The Grand Modeling Vision

• Our very high-level strategy consists of the

following six steps:

1) Identify input parameters that influence runtime

2) Identify application kernels

3) Determine communication pattern

4) Determine communication/computation overlap

5) Determine sequential baseline

6) Determine communication parameters

Empiric

Analytic

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning , SC11

18/29

A Simplified Modeling Method

• Fix input problem (omit step 1)

• No fancy tools, simple library using PAPI (libPGT)

• Determine performance-critical kernels

• We demonstrate a simple method to identify kernels

• Analyze kernel performance

• Using black-box counter approach

• More accurate methods if time permits

• Establish system bounds

• What can be improved? Are we hitting a bottleneck?

19/29

Performance Counter Sanity Checks

• Running small test kernels to check counters

• s=small, l=large

• Stream: 2 GB/s per integer core

• LL_CACHE_MISSES are L2 misses!?

• Still a proxy metric (use with caution!)

20/29

NAMD

• Dynamic scheduling

complicates model

• Excellent cache

locality

• PME performs well

but will slow down at

scale (alltoall)

• Good IPC

21/29

• Five phases, CG most

critical at scale

• Low FLOPs and IPC

• Turbo boost seems

to help here!

• Low FLOPs are under

investigation (already

using SSE)

MILC

22/29

PPM

• Many micro-phases

• Hard to instrument

• Very highly optimized

by science team

• Cache blocking

• High FLOP rate

• High locality

23/29

QMCPACK

• Variational Monte

Carlo initializes

• Performance issues

are investigated

• Diffusion Monte

Carlo:

• load balance (LB)

• update walker (uw)

24/29

WRF

• Microphysics dominates

• Low performance, many

branches

• Planet Boundary Layer

also problematic

• Turbo Boost helps!

• Runge Kutta is fast

• High locality

25/29

SPECFEM3D

• Two phases, both do

small mat-mat mult

• Internal forces perform

well

26/29

NWCHEM

• Highly optimized

• Even running in

turbo boost!

• Very good locality

• Steps 3+4 decent

• Step 5 close to peak!

27/29

Some Early Conclusions

• Average AI: 0.43 FLOPS/B (min: 0.1, max: 1.8)

• Required AI: 8 GF/s / 4 GB/s 4 FLOPS/B

• Average Effective Frequency: 2.40 GHz

• Anticipated frequency: 2.45 GHz

• Did anybody see the P0 state in practice?

• Average FLOP rate: 1.48 GF (min: 398 GF

(WRF), max: 6.876 GF (NWCHEM))

• 15% of peak

• Standard deviation: 1.37 GF (!!!)

28/29

Conclusions & Future Work

• We analyzed performance of

several SPP applications

• Discovered some issues with CLE

• Kernel classification through IPC works well

• Not automatic yet

• Kernel profiling works mostly

• Need better/more interpretation of counters

• Extending towards communication models

• “MPI counters”, congestion, etc.

29/29

Acknowledgments

• Thanks to

• Gregory Bauer (pulling together the data)

• Victor Anisimov, Eric Bohm, Robert Brunner, Ryan

Mokos, Craig Steffen, Mark Straka (SPP PoCs)

• Bill Kramer, Bill Gropp, Marc Snir (general

modeling ideas/discussions)

• The Cray performance group (Joe Glenski et al.)

• The National Science Foundation

