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Abstract—The sustained petascale performance of the

Blue Waters system will be demonstrated using a suite

of several applications representing a wide variety of

disciplines important to the scientific community of the US

National Science Foundation. The geometric mean of the

measured floating point rates for these applications run-

ning scientific problems of current interest at scale is used

to compute the sustained petascale performance (SPP),

which is a key acceptance metric for the system. In this

report, we discuss the performance of these applications on

Cray XE hardware. Our elemental modeling methodology

splits each of the codes into a small set of performance-

relevant kernels (typically around 5-7). We analyze those

kernels in detail on the AMD Interlagos architecture to

determine the achieved memory bandwidths and latencies,

communication bandwidths and latencies, and floating

point rates. This allows us to conclude, in a form similar

to the Roofline model, how well each kernel performs with

regards to each of the parameters. For example, if a kernel

is mediocre in peak performance but utilizes 100% of the

memory or network bandwidth, we can conclude that the

kernel is utilizing the architecture well and is memory-

(or communication-) bound. While a low floating point

rate and a low bandwidth utilization suggests optimization

opportunities. Our analyses should also provide us with

insight into application performance on future systems.

I. INTRODUCTION

Assessing productivity and performance of large-

scale supercomputers is a difficult task. Micro-

benchmarks are often used as a proxy to evaluate

how a computing system performs. One problem

with this approach is that application performance

is a very complex problem and microbenchmarks

may overlook important features of the system. For

example, operating system noise was only recently

discovered [1] and an analysis with microbench-

marks is very challenging [2].

Those problems can be avoided by using appli-

cation benchmarks to evaluate system performance.

One such benchmark is the solution of a large

dense system of equations using gaussian elimi-

nation. For decades, the High Performance Lin-

pack (HPL) benchmark has been used to evaluate

and compare supercomputer performance. However,

HPL has a very specific computational structure

and requirements that make it a memory-bandwidth

limited benchmark. However, deficiencies in the

memory- or communication network can be hidden

with growing matrix sizes because HPL supports

cache blocking and requires Θ(N3) floating point

operations for Θ(N2) data movement operations.

It follows that the HPL performance strongly cor-

relates with the system’s peak performance. Thus,

in general, simple application benchmarks such as

HPL, or even HPCC, often do not represent the

varying workload of an HPC system well.

The Blue Waters system is an Cray XE machine

of unprecedented scale and performance. It com-

bines the computational power of hundreds of thou-

sands of AMD Interlagos cores and thousands of

GPUs to exceed a peak performance of 10 petaflops.

Most importantly, Blue Waters strives to deliver

sustained petascale performance for a variety of

applications from the National Science Foundation

(NSF). It is explicitly not a goal of the system to

achieve highest possible HPL or other microbench-

mark performance. Instead, the Blue Waters design

strives to deliver the best balance between CPU,

memory, network, accelerator, and I/O performance

as supported by the Cray XE and XK series.



The heterogeneous design of Blue Waters re-

quires an explicit analysis of how the XE (x86) and

XK (x86+GPU) parts contribute to the sustained

petascale performance of the overall system. It is

also necessary to find the right application mix

to accurately evaluate this heterogeneous system.

To demonstrate the capabilities and sustained per-

formance of Blue Waters, the project team chose

a set of twelve application benchmarks, eight to

demonstrate x86 performance and four to demon-

strate GPU performance. Each of these benchmarks

represents a real science run from beginning to

end, and thus represents typical use of the system.

Those benchmarks form the Sustained Petascale

Performance (SPP) benchmark suite that represents

a typical NSF workload.

In the following sections, we will describe the

SPP benchmark in detail. Then we discuss our

performance modeling strategy to analyze and pre-

dict system performance, followed by a detailed

discussion of all applications in the SPP suite and

their performance characteristics. Due to the nature

of the delivery schedule we have focused our efforts

on the SPP x86 applications for this work.

II. THE SUSTAINED PETASCALE PERFORMANCE

BENCHMARK

The Sustained Petascale Performance (SPP)

benchmark stems from the Sustained System Per-

formance (SSP) metric defined by Kramer as part of

the PERCU project [3]. According to this definition,

a benchmark should serve four purposes:

1) It enables one to compare two different com-

puter systems.

2) It enables one to verify system performance

and numerical solution correctness.

3) It enables one to monitor performance through

the lifecycle of the system (regression testing).

4) It helps to guide the design of future systems.

To represent the average workload of the Blue

Waters system, we chose a suite of applications

from a variety of disciplines important to the

NSF: Lattice Quantum Chromodynamics (MILC,

Chroma), Materials Science (QMCPACK), Molecu-

lar Dynamics (NAMD), Geophysical Science (VPIC

and SPECFEM3D), Atmospheric Science (WRF),

Astrophysics (PPM), and Computational Chemistry

(NWCHEM, GAMESS).

We refer to the combination of code and com-

putational input problems as a ”benchmark config-

uration”. Eight benchmark configurations represent

the performance of the x86 part of the SPP metric

solving one input problem for each of the eight

applications: MILC, QMCPACK, NAMD, VPIC,

SPECFEM3D, WRF, PPM, and NWCHEM. Four

configurations represent the GPU part solving one

input problem for each of the four applications

Chroma, NAMD, QMCPACK, and GAMESS.

A. Reference FLOP Count

We define the unit for couting the floating point

operations as FLOPS (plural of FLOP) and the ac-

cording rate as FLOPS per second (FLOPS/s). The

performance of the i-th benchmark configuration is

derived from the total number of FLOPS required

to solve the complete problem, the total number

of processing elements used, and the total time.

The required number of FLOPS for this specific

problem, also called reference FLOPS is the min-

imal number of floating point operations required

to solve the input problem on a single core. This

avoids an artificial inflation of the FLOP count

due to scaling (an inflated number of iterations or

redundant computations).

If running the full problem on a single core is

impossible or impractical, one can either run the

full problem on multiple different core counts and

show that the total number of FLOPS required is

independent of the number of cores used, or one can

extrapolate the FLOPS required to execute a large

number of iterations (for an iterative application)

from a smaller number of iterations. To demonstrate

the former, one must run the full application on

at least five different core counts such that the

minimum and maximum differs by at least three

orders of magnitude. For the latter method, an

accurate model for the required number of iterations

and FLOP counts per iteration must exist and the

pre- and postprocessing of the algorithm must be

taken into account separately.

B. The SPP Metric

To define the SPP of the Blue Waters system, we

use the following definitions:

• node type α: the system consists of two types

of nodes α ⊂ {XE,XK}



• node counts N : the system has a specific num-

ber of nodes Nα of each type α.

• benchmark configurations C: an application

and an input set form a benchmark config-

uration. The ordered set CXE of eight con-

figurations represents all XE benchmarks and

the ordered set CXK of four configurations

represents all XK benchmarks.

• per-node performance P : a configuration i has

a specific performance, P i
α, on each node of

type α.

• SPP contribution of configuration i: the SPP

contribution of a configuration i is the per-node

performance P i
α multiplied by the number of

nodes Nα.

The SPP performance of a homogeneous (single

node type) system is defined as the gemoetric mean

of the SPP contributions of all applications. The SPP

performance of a heterogeneous system is defined as

the sum of the SPP contributions for all node types.

Each benchmark must be run on at least 20% of

the total number of available nodes Nα of each type

to measure P i
α, since this represents the anticipated

system usage more closely than full-system jobs.

The total SPP performance for the Blue Waters

system can be computed with
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This number defines the sustained performance

of the full system for a representative workload.

III. PERFORMANCE MODELING

Performance modeling can provide important in-

sights into application performance. It can be used

to predict performance at larger scale, or to un-

derstand scaling with different parameters (e.g.,

changing input problems and sizes and/or changing

execution resources). In the SPP context, we use

performance modeling during system bringup to

evaluate how measured performance of the partial

system compares to the expected performance of

the full system. This makes performance model-

ing a valuable tool during bringup and enables us

to check observed application performance against

semi-analytic predictions.

We use our six-step method that we described

in [4]. The six steps are divided into empirical and

analytical steps. The first four steps are analytical,

i.e., they are determined from the source code or

specified by a domain expert:

1) Identify input parameters that influence run-

time

2) Identify application kernels

3) Determine communication pattern

4) Determine communication / computation

overlap

The last two steps are empirical, i.e., they require

performing a series of benchmarks to substantiate

the empirical or analytical performance models:

1) Determine sequential baseline

2) Determine communication parameters

The performance team at NCSA executed these

steps to create very simple performance models

for each of the SPP applications. Since single-

core performance is essential to reach a high SPP

performance, we also try to assess the resource con-

sumption for each application by counting various

events occurring on the Interlagos cores.

A. LibPGT - A simple performance modeling tool

To instrument each kernel of the source code

for performance modeling, we developed a very

lightweight profiling library, LibPGT. LibPGT of-

fers only a very simple interface to start and to end

collection epochs and record execution time for up

to two PAPI performance counters. An epoch covers

a part of the execution time and cannot be nested.

The library collects a trace of the times and

counters for each MPI process and invocation. We

used the statistics package GNU R to interpret and

display the output.

IV. SPP APPLICATIONS

The SPP Applications comprise a set of eight

codes used by Blue Waters science teams running

science problems of current interest. For each sci-

ence area the applications utilize methods and al-

gorithms common to other applications in that area,

and differ mainly in the implementation details, so

that each code is an appropriate representation of

the expected science work in that area.



A. NAMD

NAMD is an application for performing classical

molecular dynamics simulations of biomolecules

that is able to scale to 100 million atoms on hun-

dreds of thousands of processors [5]. Interactions

between atoms in the simulation are parameterized

based on the species of each atom and its chemical

role. The forces on all atoms are integrated by the

explicit, reversible, and symplectic Verlet algorithm

to simulate the dynamic evolution of the system

with a timestep of 1 fs.

The force field includes bond forces among

groups of 2-4 atoms, Lennard-Jones forces, and

short-range and long-range electrostatics. All of

these forces except the long-range electrostatics are

localized and scale well on large distributed com-

puters. The long-range electrostatics are computed

using the FFT-based particle-mesh Ewald (PME)

algorithm, which requires computing two 3-D FFTs

every time step. Since NAMD is designed to overlap

various force computations, with increasing num-

bers of compute nodes, the local computation time

decreases to the point where the all-to-all communi-

cation for the FFT stage dominates execution time.

Reference FLOP counts for NAMD are deter-

mined by instrumenting the code using PAPI [6]

to read hardware FLOP counters between global

barriers inserted for benchmarking purposes. The

benchmark simulation is run on as few processors

as allowed by memory constraints to minimize

redundant operations introduced by parallel exe-

cution. The same procedure may be followed on

systems other than the target system to verify that

similar operation counts are obtained regardless of

architecture and compiler used. The counter data

is compared to execution timings from the same

simulation run on the intended number of cores with

counters turned off to compute the floating-point

performance.

B. MILC

The MIMD Lattice Computation (MILC) collab-

oration [7] has been working in lattice QCD for

some twenty years, and has made a suite of codes

for lattice QCD freely available. The collaboration

uses 10s of millions of service units annually on

US NSF and DOE computers. The code has been

used for hardware diagnostics on the Intel Paragon,

for SPEC CPU2006 and SPEC MPI benchmarks,

as part of the NERSC and NSF benchmarks, and as

one of the applications whose performance needed

to be analyzed for the NSF Tier 1 solicitation (Blue

Waters).

Briefly, the MILC application su3 rmd is used

to create sample gauge configurations that are the

starting point for many physics projects. We are

using the version of the code that implements the R

algorithm for improved staggered quarks. Although

this is no longer the most efficient algorithm, it is

one that has been benchmarked on many computers

and the major kernels are very similar, if not identi-

cal, to those used by more efficient algorithms such

as rational hybrid molecular dynamics algorithm

(RHMD) with Monte Carlo [8]. The essential data

types in this work are three component complex

vectors that represent quarks (matter fields), and

3×3 complex unitary matrices that represent gluons

(force carriers). The quark fields are defined on a 4-

dimensional grid of space-time points. The gluon

variables are defined on the “links” joining grid

points. The most time consuming kernel of the five

typical kernels in production runs is the conjugate

gradient (CG) solver that determines how the mo-

tion of the quarks is affected by the gluons. Compu-

tationally most of the phases (called FL, LL, FF and

GF) are dominated by small, complex 3x3 matrix-

matrix multiplication. The CG phase is composed

of multiplication of complex 3x3 matrices with

complex 3x1 vectors. The data for both cases are

spread sparsely on the local lattice. As the system

is parallelized by decomposing the grid, usually in

all four dimensions, most communications involve

point-to-point communication with the neighboring

processors in a 4-dimensional grid. However, the

conjugate gradient solver also requires global sum-

mations.

The MILC code has long-established flop counts

for the major kernels and there are flags that can be

set at compile time to print the time and flop rate

for each of those kernel calls. These performance

numbers are very useful for monitoring running

jobs and have frequently been helpful in identifying

system problems. MILC has also used single node

benchmarks of the CG phase and microbenchmark

results for point-to-point communication to predict

whether it will be possible to overlap message



passing with computation in the CG phase. Several

studies analyze and compare the performance of

MILC on different architectures [9], [10], [11]. For

su3 rmd the amount of work is determined by

several input parameters with the fundamental unit

of work being a step. The flop counts per step

depend on the lattice dimension and the number of

CG iterations per step which depend on lattice size,

physical parameters and convergence tolerances.

C. PPM

PPM is used to study flash events in early gener-

ation stars which result in expulsion into the early

interstellar medium of heavy elements formed in

the so-called s-process. These flash events are not

explosive, in that the star does not disintegrate as

a result, but they are indeed violent. Simulations

of these events with enormous grids, up to 40963

cells, are used to compute in very accurate detail

the global convection above the helium burning

shell. These simulations provide values of coeffi-

cients needed in simplified statistical models of the

turbulent convection, entrainment of gas from above

the convection zone, and, at later times during the

flash event, turbulent combustion of this entrained

gas in the convection zone. These turbulence models

are simulated as subgrid-scale models on grids up

to 10243.
The dominant phase in PPM is the advec-

tion/ppmmf routine. Within this routine the domi-

nant loops involve data movement. The code em-

ploys methods for cache line flushing, volatile vari-

ables, and data prefetching to improve L1 data

cache utilization. Empirical comparisons to triv-

ial benchmarks (e.g. OpenMP parallelized matrix

multiplication) show that artificially inflating the

computational intensity relative to the amount of

memory references results in obtaining estimates

of theoretical upper bounds on FLOP rate per-

formance. A recent performance analysis by the

developers [12] provides the compute structure in

detail.

CrayPAT and PGT library were used to gather

hardware counter data and FLOP rates. These num-

bers were found to differ slightly from the hand-

counted rates calculated in the code; most likely

due to compiler optimizations that eliminate certain

operations. Due to the shear size of the routine and

number of times it is called in a typical small modest

benchmark, we had to be skillful at gathering fine-

grained data, in order to avoid introducitng signifi-

cant overhead from the instrumentation.

D. QMCPACK

QMCPACK uses quantum monte carlo methods

(VMD and DMC) to solve the quantum many-body

problem for particular atomic structure inputs. A

number of random walkers (each a complete rep-

resentation of the input state that randomly ”walks”

around) is used to stochastically sample the energy

domain in an attempt to find the lowest energy state

within a statistical uncertainty that can be used to

describe the system. Longer simulations can be run

to reduce the uncertainty and refine the results.

A dominant kernel in QMCPACK is the ein-

spline routine that involves 64 basis elements using

piecewise cubic polynomials, matrix-vector prod-

ucts with 2 FLOPS per load and a Value-Gradient-

Hessian at 20 FLOPS per load. The particle-by-

particle update kernels are mostly BLAS-like opera-

tions using SIMD. QMCPACK implements a hybrid

MPI+OpenMP programming model with commu-

nication being primarily point-to-point with some

global allreduces. The frequency of communication

is such that nearly ideal scaling is achieved on up

to 200K cores [13]. The FLOP counts have been

obtained empirically using CrayPat and libPGT.

E. WRF

The Weather Research and Forecasting (WRF)

Model [14] is a next-generation mesoscale numeri-

cal weather prediction system designed to serve both

operational forecasting and atmospheric research

needs. It features multiple dynamical cores, a 3-

dimensional variational (3DVAR) data assimilation

system, and a software architecture allowing for

computational parallelism and system extensibility.

WRF is suitable for a broad spectrum of applica-

tions across scales ranging from meters to thousands

of kilometers.

The WRF-ARW core [15] is based on an Eulerian

solver for the fully compressible nonhydrostatic

equations, cast in flux (conservative) form, using

a mass (hydrostatic pressure) vertical coordinate.

Prognostic variables for this solver are column mass

of dry air (mu), velocities u, v and w (vertical



velocity), potential temperature, and geopotential.

Non-conserved variables (e.g. temperature, pressure,

density) are diagnosed from the conserved prognos-

tic variables. The solver uses a third-order Runge-

Kutta time-integration scheme coupled with a split-

explicit 2nd-order time integration scheme for the

acoustic and gravity-wave modes.

The main solver routine contains C preprocess-

ing hooks for benchmark timers. This native func-

tionality was expanded (and some erroneous logic

corrected) in order to fully capture all relevant

timing statistics. After this was tested, PGT library

epoch markers were implemented to mirror the

native microsecond timers. These were run and their

agreement validated. This enabled FLOP rates to be

calculated for each critical section, for any desired

MPI rank. CrayPAT was earlier used to gather basic

profiling and detailed FLOP counts, which were

found to be in agreement with the finer grained

instrumentation. The PGT markers were also used

at loop level granularity internal to several (WSM5,

WSM6, Morrison) microphysics schemes to com-

pare the relative performance of these kernels.

F. SPECFEM3D

The SPECFEM3D series of codes simulate the

seismic wave propogation in the earth, represent-

ing the globe using a finite element mesh. While

some of the codes model a region of the earth in

isolation, SPECFEM3D GLOBE is used to model

propogation of waves from earthquakes through the

entire earth, and is specifically designed to scale to

systems with hundreds of thousands of processor

threads. The code inputs seismagraphs and inverts

them to synthesise what the displacement was at

the epicenter of the earthquake. This is used, among

other things, to model the displacement of a close-

by earthquake to understand how buildings need

to be constructed to withstand earthquakes. The

SPECFEM3D GLOBE application was a Gordon-

Bell Finalist for the 2008 ACM/IEEE conference on

Supercomputing [16].

We have run SPECFEM3D GLOBE on the early

Blue Waters hardware. SPECFEM3D GLOBE has

been run on up to 4107 XE nodes with over 130,000

processor threads. We have obtained counter data

with both NCSA’s PerfSuite [17] and CrayPAT.

The two primary phases of the code com-

pute internal forces and related acceleration vec-

tors [16] in each spectral element of the mesh: com-

pute element tiso and compute element iso. These

two routines have a very similar structure, with

small matrix-matrix products being the dominant

operations.

G. NWCHEM

The purpose of electronic structure calculations

is to predict physical properties of chemical sys-

tems by solving fundamental quantum mechanical

Schroedinger equation when experimental data are

not available or difficult to obtain, and when highly

reliable theoretical predictions are of paramount

importance.

The SPP benchmark in NWChem uses coupled

cluster theory for numerical accounting of electron

correlation effects in molecular simulations. As a

real-science application the SSP tests will be exe-

cuted on DNA fragments and water clusters.

DNA is the carrier of genetic information of all

living organisms. The DNA structure incorporates

replication, genetic data storage and retrieval, mu-

tation and repair mechanisms, structure variability,

strength, and flexibility, among the long list of

other unique properties specific to this molecule.

Unraveling the mechanism of functioning of DNA is

amongst the top pharmacological and bioengineer-

ing priorities. Gaining atomic-level understanding

of structure and function of DNA requires the

availability of accurate electronic structure methods

such as coupled cluster, which is implemented in

the NWChem package.

Water clusters are another example where the

progress in understanding physics of water in its

different forms is impossible without the access

to highly accurate electronic structure calculations.

Such simulations are necessary in order to explain

anomalous properties of water and to calibrate

approximate computational methods, which are of

great importance for biophysics, atmospheric and

environmental sciences. Coupled cluster methods

are the only theoretical tools that can reliably predict

binding energy in water clusters.

For the coupled-cluster calucations in NWChem

with the inputs discussed above, the main computa-

tional kernels in the coupled cluster method are 1)



self-consistent field (SCF) 2) integral transformation

from atomic orbital (AO) to molecular orbital (MO)

basis 3) single excitations 4) double excitations 5)

triple excitations

These kernels were profiled by calling built-in

performance measurement subroutines in NWChem

using the PAPI flips() function to measure the

number of FLOPS. CrayPAT is unable to perform

sampling experiments due to the very complicated

internal structure of NWChem. However, CrayPAT

tracing results fully agree with the data obtained

from manually coded performance measurements.

The main computational cost in the coupled

cluster method comes from the huge number of

matrix multiplication operations performed in the

code (kernels 3-5). The matrix multiplications are

implemented via calls to the BLAS DGEMM rou-

tine. The amount of floating point operations are

proportional to N4, N5, N6, and N7 for kernels 1,

2, 3+4, and 5, respectively, where N is number of

basis functions. The kernels are computed one after

another. Kernels 1, 3 and 4 are iterative, which leads

to frequent and expensive gather operations. Kernel

2 needs all AO integrals on every compute node,

requiring substantial communication. Kernels 1, 2,

and 3 have relatively little work to do in comparison

to the amount of work for kernels 4 and 5, leading to

load imbalance. The computational cost of kernel 5

increases as N2 relative to the cost of kernel 4. Thus

as the systems become larger, the load imbalance

between kernels 4 and 5 increases.

The theoretical model for the amount of FLOPS

for kernels 3+4 only is given in Stanton et al[18] as

0.5n4N2 + 0.25n2N4 + 4n3N3 + nN4 + 6n2N3 +
10n3N2 + n4N where n is number of occupied

molecular orbitals and N is number of virtual

molecular orbitals. The actual implementation of the

coupled clusted method in NWChem is described in

R. Kobayashi et al [19], so the above formula can

be validated and corrected, if necessary.

H. VPIC

We are currently evaluating the VPIC particle-

in-cell plasma physics application as a member of

the SPP application suite. It is a well-performing

application [20] that has been run at many HPC

centers.

TABLE I

OBSERVED PERFORMANCE COUNTERS

Meaning Counter

Floating point instructions

completed (f )

PAPI FP OPS

Total instructions

completed (i)

PAPI TOT INS

Memory accesses (loaded

cache lines, (c)

perf::PERF COUNT HW

CACHE LL:MISS+

DATA PREFETCHER:ALL

Total loads/stores (ls) PAPI L1 DCA

Stall cycles (st) INSTRUCTION FETCH STALL

V. APPLICATION CHARACTERIZATION

We will now show some representative examples

for our application classification and the identifica-

tion of kernels. In the early stages of this project, we

focus on the single-core performance of each kernel

and how effectively it uses the available system. The

first step is to identify the kernels based on hardware

counter data measuring the Instructions Per Cycle

(IPC) while the code executes.

Our method of choice for this is to generate IPC

traces and identify regions of similar behavior. We

use LibPGT to generate such traces. LibPGT simply

registers an alarm to be woken up at a given interval

and collects the number of retired instructions and

the number of cycles for this interval. It then records

the IPC at the end of each interval and optionally

also records a stack trace to identify the functions

involved in a certain kernel.

For each kernel, we derive performance charac-

teristics, i.e., how well each kernel is using the

hardware subsystems. To do this, we collect several

PAPI present event and native event counters for

each phase (see Table I).

With another parameter time (t), we can compute

the following performance characteristics for each

kernel from those counters: (1) instruction rate

(MIPS): i
t
, (2) floating point rate f

t
(MFLOPS/s),

(3) memory bandwidth c·cl size
t

(MiBPS), (4) com-

putational intensity (CI) f

ls
, (5) arithmetic intensity

(AI) f

c·cl size
. Additional derived parameters are

instructions per cycle (IPC) and the effective clock

frequency in GHz (effGHz).

It is useful to compare the application kernel

performance characteristics to those of well-known

kernels. For the simple kernels the derived param-



TABLE II

PERFORMANCE CHARACTERISTICS FOR SIMPLE KERNELS

kernel MIPS MFLOPS/s MiBPS CI AI IPC effGHz

triad s 300 407 3958 1.1 0.1 0.1 2.3

triad l 241 156 1574 1.0 0.1 0.1 2.6

stencil s 1089 2508 9172 1.4 0.3 0.5 2.3

stencil l 181 458 1684 1.4 0.3 0.1 2.6

dgemm l 3690 7940 3297 5.0 2.4 1.6 2.3

reg int 2000 0 0 0.0 0.0 0.8 2.6

eters are presented in Table II. For the kernels the

problem size is specified with s indicating small or

in-cache and l indicating large or out-of-cache. All

integer cores in an AMD Interlagos die (there are

two die per processor) were used when collecting

the data for the table. The stencil kernel is a standard

5-point stencil, and the register int kernel refers

to a problem that uses only registers with integer

operations. In general the effective clock frequency

follows the problem size, except for the register

case. For the case of the small stencil the effective

clock frequency changed from 2.3 GHz to 2.45 GHz

to 2.58 GHz as the number of integer cores used

on an Interlagos die went from 8 (all cores) to 4 (1

core per Bulldozer module) to 1. This is an example

of AMD’s Turbo CORE frequency scaling, which

(although not demonstrated here) is able to increase

the clock frequency even when all integer cores are

loaded.

We now show IPC traces and how we derive

the kernels and their performance characteristics.

Unless noted otherwise, the sample interval is 4 ms

and applications were run with one MPI task or one

OpenMP thread per AMD Interlagos integer core.

A. NAMD

Currently we have only a cursory IPC trace and

aggregate counter data for NAMD. The goal is

to provide performance data on the bonded, non-

bonded and particle-mesh Ewald (PME) phases of

the code. The counter data is in the process of

being collected using the internal PAPI calls already

in the code. Some changes were needed to allow

for the use of native events. As NAMD employs

the Charm++ framework and as such is inherently

asynchronous and adaptive, it is difficult to view

the execution of the phases in a sequential manner.

The traditional rates and parameters in Table III are
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Fig. 1. An IPC trace for NAMD.

in line with the current understanding of NAMD’s

performance. The asynchronous nature of execution

appears to skew the effective clock rate measure-

ment.

TABLE III

KERNEL PERFORMANCE CHARACTERISTICS FOR NAMD

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

nonbonded 2460 1377 7506 1.1 0.2 1.1 2.3

PME 1772 1408 3299 1.7 0.4 0.8 2.3

bonded 1617 723 1821 0.8 0.4 0.7 2.3

integrate 1394 581 4573 0.8 0.1 0.6 2.3
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Fig. 2. An IPC trace for the su3 rmd application is show for 2

steps. The 5 phases are labeled.



B. MILC

We ran MILC in the optimal configuration with

one MPI task per integer core (16 tasks per Interla-

gos CPU) with a local lattice of 6x6x6x6. Figure 2

shows the IPC trace and annotated phases for 2

steps of the su3 rmd application. The number of

iterations for the CG phases are small due to the

overall small total lattice size.

TABLE IV

KERNEL PERFORMANCE CHARACTERISTICS FOR MILC

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

LL 1123 707 3179 1.1 0.2 0.5 2.2

FL 1475 1425 3233 1.9 0.4 0.6 2.4

FF 1305 1057 2055 1.2 0.5 0.5 2.4

GF 1414 1087 3719 1.4 0.3 0.6 2.4

CG 1353 1082 3051 1.7 0.4 0.6 2.5

The MILC code consists of five different

phases with different performance characteris-

tics/signatures: LL, FL, FF, GF, CG. Table IV shows

the performance characteristics for each kernel. The

FL phase has the highest floating point rate and also

the highest computational intensity. Its arithmetic

intensity is average, pointing towards very high

locality. LL is lower in all regards but not a key

routine overall. The most important routine, CG,

performs two floating point operations per loaded

word from main memory but loads nearly three

words for each floating point operation from caches.

Its overall performance is 1 GFLOPS/s and with an

effective clock frequency of 2.4 GHz.

C. PPM

The IPC trace for PPM is shown in Figure 3,

where a sawtooth structure is seen for each evalua-

tion of the ppmmf kernel.

TABLE V

KERNEL PERFORMANCE CHARACTERISTICS FOR PPM

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

ppmmf 1784 3351 2839 3.0 1.1 0.7 2.4

The overall characteristics for PPM are shown in

Table V. The high FLOP rate is a result of the cache-

blocked and nearly cache-contained design of the

data structures, and a high computational intensity.
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Fig. 3. An IPC trace for PPM. The repeated ppmmf phase is

labeled.
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Fig. 4. An IPC trace for the qmcpack application is show for

some VMC steps and DMC steps. The DMC phases LB and uw

are labeled.

D. QMCPACK

The QMCPACK application was run with 2 MPI

tasks per Bulldozer module, i.e. 16 MPI tasks per

Interlagos processor. The IPC trace in Figure 4

shows steps near the end of the Variational Monte

Carlo (VMC) phase and steps at the beginning of the

Diffusion Monte Carlo (DMC) phase. The dominant

DMC and VMC phases show similar structure with

an average IPC of 0.8, but the DMC has regions

where the IPC jumps to 1.2, moving the average

IPC to 0.9 as a whole. The two phases of the

DMC phase are labeled as load-balance (LB) and

update-walker (uw). Table VI provides the overall

and phase-specific performance.



TABLE VI

KERNEL PERFORMANCE CHARACTERISTICS FOR QMCPACK

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

ALL 2083 943 1933 1.1 0.5 0.9 2.3

uw 1902 1177 2433 1.5 0.5 0.8 2.3

LB 3155 0 18 0.0 0.0 1.4 2.3

E. WRF

The top 5 compute phases for WRF are shown

in Figure 5 and detailed in Table VII. The micro-

physics phase (MP) phase dominates a typical step,

followed by the planet boundary layer (PBL) and

two sections of the Runge-Kutta step: scalar update

(RKs) and time averaging (RKt).
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Fig. 5. An IPC trace for the WRF application is show for 3

steps. The dominant phases are labeled.

TABLE VII

KERNEL PERFORMANCE CHARACTERISTICS FOR WRF

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

MP 2647 590 1288 0.5 0.5 1.0 2.6

PBL 2197 566 4511 0.5 0.1 0.9 2.6

RKt 1328 2695 11842 2.0 0.2 0.6 2.3

RKs 1764 1120 4967 0.8 0.2 0.7 2.5

F. SPECFEM3D GLOBE

Two IPC traces for SPECFEM3D GLOBE are

shown in Figure 6 and Figure 7 with the later

providing a close up detail of several time steps

where the different phases of a step are labeled. As

mentioned above the two phases are similar in struc-

ture and instruction mix, with the difference being in

the data layout. Table VIII shows reasonable floating

point performance, and that the power demands on

the processor cause the effective frequency to be at

the lower setting.
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Fig. 6. An IPC trace for the SPECFEM3D GLOBE application

showing startup and compute steps.
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Fig. 7. A closeup of the IPC trace for the SPECFEM3D GLOBE

application is shown with the phases within a step labeled.

TABLE VIII

KERNEL PERFORMANCE CHARACTERISTICS FOR

SPECFEM3D GLOBE

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

tiso 1973 2010 1197 1.9 1.8 0.8 2.3

forces 1602 1736 4577 1.5 0.4 0.7 2.3

iso 1474 1396 1617 1.6 0.9 0.6 2.3



G. NWCHEM

NWCHEM was run with 1 process per Bulldozer

module, i.e., 8 processes per Interlagos processor.

The IPC trace clearly shows three different phases

(the first two phases are too short to be visible in

the plot).
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Fig. 8. An IPC trace for NWCHEM. The phases are labeled.

In Table IX detailed counter collection for phases

1 and 2 exhibit a rather low computational in-

tensity and locality, and thus have low floating

point performance. The phases 3+4 (singles and

doubles) improve on phases 1 and 2, running at

about 1.3 GFLOPS/s. The triples phase 5 entails

large numbers of dense matrix multiplications and

thus achieves a very high performance of nearly 7

GFLOPS/s with an effective clock frequency of 2.6

GHz.

TABLE IX

KERNEL PERFORMANCE CHARACTERISTICS FOR NWCHEM

phase MIPS MFLOPS/s MiBPS CI AI IPC effGHz

1 2616 431 5464 0.3 0.1 1.0 2.6

2 2660 398 4818 0.3 0.1 1.0 2.6

3+4 2463 1246 6030 0.9 0.2 1.0 2.6

5 4156 6876 15583 3.5 0.4 1.6 2.6

VI. SUMMARY AND CONCLUSIONS

We described a new, more realistic metric to

assess the performance of a supercomputer for a typ-

ical computing center workload. We gave a specific

example of this metric with eight applications, and

discussed in detail both the codes and the science

performed by each science team, as well as the most

critical application performance characteristics.

We then demonstrated our method to identify ker-

nels in an application and to assess the performance

characteristics of each of the kernels using hardware

performance counter data.

Our analysis is an important first step towards a

detailed understanding of each application’s perfor-

mance and a good classification of the representative

workload.
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