
Lustre at Petascale: Experiences in Troubleshooting and Upgrading

Matt Ezell
High Performance Computing Operations
Oak Ridge National Laboratory and NICS

Oak Ridge, TN
ezellma@ornl.gov

Rick Mohr, John Wynkoop, and Ryan Braby
High Performance Computing Operations

National Institute for Computational Sciences
Oak Ridge, TN

{rmohr,jwynkoop,rbraby}@utk.edu

Abstract—Some veterans in the HPC industry semi-
facetiously define supercomputers as devices that convert
compute-bound problems into I/O-bound problems. Effective
utilization of large high performance computing resources
often requires access to large amounts of fast storage. The
National Institute for Computational Sciences (NICS) operates
Kraken, a 1.17 PetaFLOPS Cray XT5 for the National Science
Foundation (NSF). Kraken’s primary file system has migrated
from Lustre 1.6 to 1.8 and is currently being moved to servers
external to the machine. Additional bandwidth will be made
available by mounting the NICS-wide Lustre file system. Newer
versions of Lustre, beyond what Cray provides, are under
evaluation for stability and performance. Over the past several
years of operation, Kraken’s Lustre file system has evolved to
be extremely stable in an effort to better serve Kraken’s users.

Keywords-Lustre; HPC; Kraken

I. INTRODUCTION

Some veterans in the HPC industry semi-facetiously de-
fine supercomputers as devices that convert compute-bound
problems into I/O-bound problems. Effective utilization of
large high performance computing resources often requires
access to large amounts of fast storage. Recently vendors
have begun talking about the “big data” problem, where
datasets have grown too large to effectively manage with
traditional tools and file systems.

The National Institute for Computational Sciences (NICS)
operates Kraken, a 1.17 PetaFLOPS Cray XT5 for the
National Science Foundation (NSF). Kraken has 112,896
cores, which can easily produce a barrage of data. If not
managed effectively, performance can seriously degrade.
The most common Lustre-related complaint is about perfor-
mance; high utilization results in high I/O demands which
can sometimes lead to performance degradation. This is not
a reflection on the quality of the file system, but rather a
statement about the size of Kraken. Years of production ex-
perience have taught storage administrators at NICS how to
detect suboptimal I/O practices and recommend alternative
techniques.

Kraken’s primary Lustre file system consists of 2.4PB
of DDN hardware capable of over 30GB/sec of streaming
bandwidth. Early in 2012, the system was migrated from

Cray Linux Environment (CLE) 2.2 to 3.1, thereby upgrad-
ing from Lustre 1.6 to 1.8. Bringing the file system to an
updated release allows NICS to continue working towards
the goal of treating all HPC file systems as center-wide
resources. Planning is underway to move Kraken’s internal
Lustre servers to external servers, at which point the existing
Lustre service nodes will be converted to LNET routers.
This externalization will allow Kraken’s original file system
to be mounted on Nautilus, the NICS remote data and
visualization resource. Additionally, a second NICS center-
wide Lustre file system can be mounted on Kraken. This
will increase the total bandwidth available for large science
applications.

The Lustre 1.8.4 client, provided with CLE3.1, has known
interoperability issues with the latest Lustre 2.X releases.
This severely limits NICS’ ability to evolve these critical
center-wide storage resources to take advantage of newer
Lustre improvements. As a result, future work will involve
evaluating more recent versions of Lustre beyond those
officially provided and supported by Cray.

Over the past several years of operation, Kraken’s Lustre
file system has evolved into an extremely stable resource
which better serves Kraken’s users. Ongoing and future
improvements aim to provide optimal facilities for scientific
discovery.

II. ORIGINAL LUSTRE CONFIGURATION ON KRAKEN

Kraken’s Lustre storage hardware consists of 6 racks, each
containing two DDN S2A9900 storage controllers connected
to 560 one-terabyte hard drives. File system access is pro-
vided by 1 Metadata Server (MDS) and 48 Object Storage
Servers (OSSs). Each OSS server provides 7 Object Storage
Targets (OSTs), and each OST uses a 8+2 RAID 6 setup to
protect against drive failures. The MDS and OSS servers are
Cray IO nodes within the XT5 system, and all system nodes
communicate with the Lustre servers using the high-speed
SeaStar network.

The file system is designed to maximize IO bandwidth.
Lustre servers access the OST storage via DDR Infiniband
connections directly to the DDN S2A9900 controllers. Based
on vendor specs, the storage hardware’s peak raw throughput



for sequential reads/writes is 36 GB/s. Benchmarking tests
have shown sustained throughput of up to 31.7 GB/s.

III. OPERATIONAL ISSUES

A. Small I/O

One of the most common issues affecting Lustre per-
formance is sub-optimal IO by user applications. In par-
ticular, applications which perform large numbers of small
read/write requests can have a dramatic impact on the file
system. This often manifests itself as high loads on the
MDS/OSS servers.

While it is not practical to obtain detailed IO statistics
from every node in every batch job, NICS has had significant
success in identifying problem applications by looking at
only high-level IO trends. NICS has a simple script which
obtains the Lustre request history from one or more Lustre
servers and, using information from the batch system about
currently running jobs, calculates the number of Lustre
requests sent by all nodes within each job. The number of
requests can be calculated for all MDS/OSS servers, or any
subset thereof. An example of the script’s output is shown
below:

kraken# ./lustre_requests
Job User Cores Age Count
1850782 userA 3072 00:06 85522
1849593 userB 600 09:10 39986
1850042 userC 2628 11:57 22386
1849819 userD 132 05:59 12368
1849929 userD 132 -- 9994
1849722 userD 132 05:16 6855
1848293 userE 2160 00:52 6835
1850787 userF 120 -- 6481
1849936 userD 132 02:12 5796
1850779 userG 24 00:11 5088

While the output does not make a distinction between dif-
ferent types of requests, it is still very useful for identifying
anomalies. Experience has shown that the most problematic
applications typically have request counts which are 1 or 2
orders of magnitude higher than other jobs on the system.
The large number of requests is frequently an indicator that
the application is performing small IO.

Once a job outlier has been indentified, admins can take a
more targeted approach to investigating the job’s IO pattern.
A common first step is to login to one or more compute
nodes assigned to the batch job and analyze the IO statistics
in two of the files in /proc/fs/lustre/llite/{FSNAME}: stats
and extent stats. The first file provides information about
system calls like open, close, flock, etc. The second file
reports the distribution of sizes for the read/write calls on
the node (which can quickly show when an application may
be performing small IO).

As an example, a user application was generating a
significant number of lustre requests and creating a high load

on some of the lustre servers. When contacted about this,
the user stated that his application only performed modest
amounts of IO about every 5 minutes. The information from
extent stats on one of the compute nodes painted a different
picture and showed frequent small write requests:

kraken# cat extents_stats
snapshot_time: 1325878779.789272

read | write
extents calls % cum% | calls % cum%
0K - 4K: 34 20 20 | 1758 98 98
4K - 8K: 0 0 20 | 0 0 98

8K - 16K: 135 79 100 | 32 1 100

Based on this information, the user was able to identify
a debug flag in his code which was unintentionally enabled.
After disabling the flag, the IO load from his job dropped
dramatically. The user also reported a 5x speedup in his
code.

B. Lock Exhaustion on the MDS

The MDS server stores lock information in memory, and
when there are large numbers of clients, the amount of
memory consumed by locks can become significant. This
becomes particularly important for MDS servers containing
relatively small amounts of memory, such as the XT SIO
service blades with only 8 GB of RAM.

During a recent incident, Kraken’s MDS server began en-
countering OOM errors that recurred after about 4 hours. It
was suspected that a large job was acquiring many locks and
exhausting the memory on the MDS. NICS began tracking
the memory usage of the Lustre locks by capturing the lines
for ldlm locks and ldlm resources in /proc/slabinfo. The
sizes of these slabs steadily increased over time. Just prior
to the last OOM condition, ldlm locks had 1098662 active
slabs while ldlm resources had 6685500 active slabs. At 4K
per slab, the memory usage totaled (1098662 + 668550) *
4K = 7,068,848 KB. This is 87% of the available memory.

On several compute nodes associated with this
large job, NICS captured lock information from
/proc/fs/lustre/ldlm/namespaces/scratch-MDT0000-mdc-
ffff880403026c00. Each compute node had 900+ locks
cached, although only 1 or 2 seemed to be active. Based on
the size of the job, it was clear that these locks accounted
for the memory usage on the MDS.

The compute nodes had lru size set to 1200 (100 locks
per core) and lru max age set to 9000000 seconds. The high
lru max age was preventing locks from aging out while the
batch job was running, and it was clear that the MDS did not
have the memory to accommodate 1200 locks per compute
node. A rough calculation showed that the MDS should be
able to accommodate 300 locks per compute node. After
the lru size was set to 300, the MDS no longer experienced
OOM conditions.



C. Client Credit Calculation

Lustre uses a “credit system” as a flow control mechanism
between peers. At the Lustre Networking (LNet) layer,
two main parameters exist to control this. The “credits”
parameter controls how many LNet messages can be sent
concurrently over a given network interface (NI), and the
“peer credits” parameter controls how many LNet messages
can be sent concurrently to a single peer. For large file
systems with many clients, this must be carefully tuned to
find a balance between performance and overwhelming the
servers.

The Cray CLE install script, by default, sets the number
of client credits to 2048. This was quickly determined to
be excessive, as Kraken’s OSS server were frequently be-
coming overloaded and unresponsive. Unfortunately, NICS
staff were unable to find specific recommendations providing
a formula to calculate an appropriate number. The number
of credits was slowly reduced to 192 on each compute
node. The aggregate performance was not degraded but the
maximum load on the OSS servers declined. Single-node
performance was slightly limited due to this change.

D. OST Allocation Method

When a new file is created, the MDS server determines
which OSTs the file will be striped across. Lustre uses one
of two possible allocators when making this determination:
Quality of Service (QOS) or Round-Robin (RR). The pri-
mary purpose of the QOS allocator is to keep OST utilization
as uniform as possible. This allocator employs a weighting
mechanism that favors OSTs with the most free space. On
the other hand, the RR allocator is designed to maximize IO
bandwidth by giving preference to OSTs on different OSS
servers.

Lustre’s choice of allocator is determined by the
qos threshold rr tunable parameter [2]. This parameter is
expressed as a percentage with the default value being 17%.
If the difference between the maximum and minimum free
space on any of the OSTs exceeds the threshold, the QOS
allocator is used in an attempt to rebalance OST usage. If
the difference is below the threshold, Lustre considers the
OST usage to be balanced and will use the RR allocator to
improve IO performance.

The distribution of OSTs allocated to a file can impact
IO performance. In an effort to quantify the impact, IOR
benchmarks were run when the file system was idle. Each
test ran on 300 nodes using a POSIX file-per-process pattern
to create files with a stripe count of 1. This configuration
was chosen specifically to achieve maximum IO bandwidth.
During the test, the qos threshold rr parameter was manu-
ally set to 0 and 100 to ensure use of the QOS and RR
allocators respectively. Two IOR tests were run for each
allocator method. The results are shown in Table I. Note:
These results were run with CLE2.2 which used Lustre 1.6.

Table I
IOR POSIX FILE-PER-PROCESS (CLE 2.2, 300 NODES, 1 STRIPE)

Test Max Write (MB/sec) Max Read (MB/sec)
QOS 1 9760 9465
QOS 2 9437 8981
RR 1 29880 18970
RR 2 29987 20486

Table II
IOR POSIX FILE-PER-PROCESS (CLE 2.2, 300 NODES, 4 STRIPES)

Test Max Write (MB/sec) Max Read (MB/sec)
QOS 1 7797 11930
QOS 2 8444 12666
RR 1 9969 16886
RR 2 12653 16590

The performance difference is significant. The max ag-
gregate write speed for the RR-allocated files was over 3x
the write speed for the QOS-allocated files. The max read
speed was more than double.

For each individual process in the IOR test, one can
calculate the amount of time spent performing IO and
determine which OSS/OST handled the IO requests. The
results clearly show that the difference in performance is
due to oversubscription. For the RR allocator, OSTs are
assigned to files in an optimal manner. All OSS nodes
service about the same number of clients (6 or 7), and each
OST is assigned to only a single file. On the other hand, the
QOS allocator will assign the same OST to multiple files,
and some OSS nodes service 10-12 clients while other OSS
nodes service only 3-4.

This data does yield one curious observation. The lower
read performance for the QOS allocator appears to be due
to contention at the OST level. More clients accessing the
same OST results in longer read times. However, the lower
write performance of the QOS allocator seems to be related
to contention at the OSS level. On the same OSS server, an
OST written to by a single client exhibited IO times that
were nearly identical to an OST on the same server which
was written to by 3 or 4 clients.

In addition to the previous IOR tests, another set of identi-
cal tests were run using files striped across 4 osts. The results
are shown in Table II. In this scenario, there is OSS/OST
contention even when using the RR allocator, resulting in
IO rates which are closer to those of the QOS allocator.
However, the RR allocator equally distributes the contention
so we still find that the RR allocator is outperforming the
RR allocator.

Based on these results, NICS decided to increase the value
of qos threshold rr from 17% to 55% in order to increase
the chance of using the RR allocator.

E. Purging

It is known that Lustre performance may degrade to some
extent when the file system usage becomes very high. In



order to maintain performance and ensure adequate free
space for running jobs, it is necessary to routinely delete
files which have not recently been used. For the purposes of
purging, a file is considered to be “recently used” if it has
been accessed or modified within the last 30 days.

The current purge process is driven by some basic shell
scripts that internally use either the “lfs find” or “find”
commands to locate files with an atime and mtime older than
the purge threshold. These files are then removed from the
file system, and the list of files is logged for future reference.

This approach, while functional, has several significant
drawbacks. Both the “lfs find” and “find” commands gener-
ate extra metadata traffic and are severely limited by the
performance of a single MDS. There is also no way to
continue a purge process which has been interrupted. It
must be restarted from the beginning. This is especially
problematic when the purge is interrupted midway through
a directory tree containing millions of files, many of which
may not even be eligible for purging.

To improve this process, NICS is working to deploy the
ne2scan utility developed by Nick Cardo at NERSC. The
ne2scan tool reads directly from the MDT device (avoiding
additional metadata load) and outputs a list of all files in
the file system with the corresponding metadata. This list of
files can then be fed into a series of other scripts to purge
files which match certain criteria. The ne2scan output could
also be used to identify files with potentially undesirable
traits (very large files with low stripe counts, directories
with excessive numbers of files, etc.) This information could
prove useful in targeting performance issues before they
escalate into file system wide problems.

F. Poorly Striped Files

Poor file striping choices are a common source of prob-
lems for users and administrators. In the majority of cases,
this involves setting the file’s stripe count too low (typically
to 1). The effect on user applications is usually poor IO
performance. Once identified, the problem is easily remedied
by restriping the file, and this simple solution can have a
significant impact on code performance. As an example, a
NICS computational scientist recently worked with a user to
increase the stripe count on their input file from 1 to 10. The
user reported that this simple change decreased the runtime
for their application by about 30%.

Unfortunately, these same striping choices cause more
painful system level problems. One problem that can occur is
high OSS server load. If all the processes in a large parallel
application are simultaneously accessing the same stripe
count 1 file, the target OST quickly becomes overloaded.
Requests to the OST queue up, and the utilization (as
reported by iostat) quickly climbs to 100%. Not only does
this adversely affect IO by other users to this particular OST,
it can choke out IO to all other OSTs on the same OSS

server. (It was this symptom that lead NICS administrators
to identify the user in the above example.)

Another common system problem caused by poor striping
involves filling up OSTs. All too often, users will create large
files with small stripe counts, effectively filling up a small
number of OSTs. If an OST gets too full, it can lead to IO
errors that kill user applications. Having OSTs with high
usage can also force Lustre into using the QoS allocator
instead of the RR allocator. As previously illustrated, this
can result in significant performance degradation for large
streaming IO.

To reduce the negative impact of large files with low
stripe sizes, we closely monitor OST usage. Any OST
with more than a 10% deviation from the average OST
usage becomes suspect and needs to be investigated further.
While an extremely under-utilized OST may be of concern,
the most common scenarios involve extremely over-utilized
OSTs.

When an OST has significantly higher utilization com-
pared to the other OSTs, we execute a script designed to
query the OST for usage based on a list of users in our LDAP
directory for that system. This script, which was developed
in house, helps snapshot all users usage on a given OST.
The list is compared to our total file system usage statistics
and, typically, the offending user is identified as having
disproportionate usage on the suspect OST compared to
his/her overall file system usage. Once we have identified the
offending user, we concentrate on finding the file(s) causing
the OST imbalance. A cursory look in the user’s scratch
directory will usually yield a list of possible problem files
(large archive files are usually identified as the culprits).
However, ‘lfs find’ may also be used to generate a list of
files for a given user on a single OST.

Once a problem file is identified, its stripe count and
size is confirmed using ‘lfs getstripe’ and ‘stat’. If the
situation is not critical, we ask the user to re-create the file
using a stripe count that is more appropriate to the file size
(typically 1 stripe for every 50-100 GB). This balances the
load well across multiple OSTs without causing performance
penalties for smaller files. Because Lustre does not support
dynamic re-striping, the only method for fixing the striping
is to copy the original file to a new file with the necessary
stripe count, and rename the new file over the original file.
This is a labor intensive process for the user and good
documentation is important. Nevertheless, often times the
user will not respond in a timely fashion and operations
staff will intervene and perform the procedure for the user
in order to remedy the problem in a timely fashion.

This approach is extremely time intensive and inefficient.
NICS hopes to improve the process by using the output
from ne2scan to preemptively identify files with sub-optimal
striping. This will enable faster detection and remediation of
problem files than is currently available.



G. Monitoring

Effectively monitoring a large Lustre file system can be
extremely difficult. Catastrophic failures are simple to spot,
but identifying performance issues may be more elusive.

Kraken’s Lustre is currently located inside the Cray, with
the servers being XT service nodes. Their only network
interface is the internal SeaStar connection. This makes
monitoring difficult, as the central NICS monitoring system
cannot directly communicate with the Lustre servers. To
remedy this, NICS has created scripts that run on Kraken’s
boot node to aggregate and proxy requests to the central
Nagios server. The first script, check lustre ping, simply
makes sure that all of the servers are able to respond to
a ping request within a specified time period. The next one,
called check lustre load, is intended to ensure the load is at
a reasonable level. High loads may be indicitive a problem
on the server or a user performing poor I/O.

To track down poor I/O patterns, the lustre requests
script described in Section III-A is used to determine likely
candidates for an I/O review.

NICS has enabled very basic monitoring of bandwidth
and IOPS for the file system in it’s existing configuration
by utilizing statistics available from the DDN disk arrays
directly. NICS has configured our monitoring system to use
the DDN S2A API to collect statistics directly from the DDN
controllers. This data is then stored in Cacti, a common Open
Source graphing package based on RRDTool. Performance
data is polled every five minutes via a Perl script NICS
developed in house based on documentation provided by
DDN. This script creates a socket connection to each of
Kraken’s twelve DDN controllers. This data is then stored
in an RRD format and aggregated using custom data input
methods in Cacti. The data for each controller, as well as the
aggregate of all controllers, is displayed in standard Cacti
graphs (see Figure 1). Additionally, NICS uses some of the
data manipulation functions of Cacti to calculate and graph
the average I/O size sent to the DDN controllers. While
this does not give instantaneous performance information,
mainly due to the large time window between samples,
it does allow very broad generalizations of Lustre disk
performance for a given time period. This data is helpful
for trending and basic health monitoring, but is only a point
in time snapshot of the disk subsystem and must be taken
in context.

Monitoring the DDN storage controllers is achieved
through the use of the DDN application programming in-
terface. This is a socket-based protocol that allows data to
be programmatically obtained from the controllers. Scripts
have been developed to alert on failed disks, failed power
supplies, and other error conditions.

Figure 1. Cacti Graphs

IV. CLE 3.1 UPGRADE EXPERIENCES

A. CLE 3.1 Features

CLE 3.1 is a major software upgrade from CLE 2.2. One
major difference is the base operating system version: CLE
2.2 ran on SuSE Linux Enterprise Server (SLES) 10, while
CLE 3.1 is based on SLES 11. Additionally, the Lustre
client and server versions are upgraded from 1.6.5 (plus Cray
patches) to 1.8.4. Due to the large number of changes, a full
reinstall is required.

B. Athena Test Shot

Athena was a 48 cabinet Cray XT4 system that was
co-allocated with Kraken. It had an 80TB Lustre file sys-
tem served by Fibre Channel RAID devices. Athena was
decomissioned to users in 2011, but two cabinets were
left powered on to facilitate software testing. Athena was
upgraded from CLE 2.2 to CLE 3.1 while preserving the
Lustre file system. No significant issues were encountered,
giving hope that the upgrade would go smoothly.

C. Early Kraken Test Shots

Since the Cray software infrastructure supports multiple
software roots, an alternate root on Kraken was upgraded
to CLE 3.1. During several test shots, NICS staff booted
into this alternate root to allow the computational scientists
to build software packages and libraries under the upgraded



operating system. Because of worries that files created under
Lustre 1.8 might not be compatible under Lustre 1.6, the
scratch Lustre file system was not mounted.

D. ib srp with scsidev-emulation

Unlike fibre channel devices that are typically seen with-
out any configuration, Infiniband devices require the system
to “log in” before the device is usable. Infiniband uses the
SCSI RDMA Protocol (SRP) to allow the use of SCSI
devices over Infiniband. Under CLE 2.2, NICS used a startup
script to manually login to each device. While this worked,
NICS decided to use the more standard srp daemon for the
CLE 3.1 install.

With CLE 2.2, Cray supported the scsidev program to
provide persistent device naming. Under CLE 3.1, scsidev
was considered deprecated, prompting Cray to develop sc-
sidev emulation. scsidev emulation is a set of udev rules
and helper scripts that mimicked the behavior of scsidev.
When the kernel adds new sd devices, it will spawn the
script /lib/udev/udev scsidev.sh to look up the appropriate
alias. This script, in turn, uses sginfo to determine the serial
number of the device. Unfortunately, for Inifiniband SRP
devices, sginfo does not appear to work from within udev
when a device is first added. It complains and fails to return
a serial number, causing scsidev emulation to fail. As a
workaround, a startup script was created to call udev-trigger
later in the boot process to setup the appropriate persistent
device names.

E. MDS Hardware Incompatibility

The metadata server backend storage target (MDT) for
Kraken’s file system was originally part of an LSI boot
RAID device, but it was quickly upgraded to a DDN EF2915
fibre channel device [1]. The DDN MDT had approximately
3.5TB of space available for the file system’s metadata.
During Kraken’s early test shots with CLE 3.1, simple
verification was performed to ensure that the block device
was present. As mentioned earier, no attempts were made to
mount the Lustre devices for fear of creating incompatible
files.

NICS determined that Kraken would go live with CLE
3.1 on February 2nd, 2012. After all the service nodes had
booted, Lustre began to start. Quickly, NICS staff noticed
a problem. While the OSTs were able to mount, they were
failing to connect to the MDS. In fact, it did not appear that
the MDS had mounted correctly. Looking more closely at
the console logs, a set of troublesome messages was found:

READ CAPACITY(16) failed
Result: hostbyte=0x07 driverbyte=0x00
Use 0xffffffff as device size
4294967296 512-byte hardware sectors:

(2.19 TB/2.00 TiB)

Apparently, the 3.5TB MDT was only being seen as a 2TB
device. Clearly, this was a major issue that was preventing
the file system from coming online. NICS contacted Cray
for assistance and began scrambling to understand what was
going wrong. Initially, it was believed that the QLogic driver
that shipped with CLE 3.1 was incompatible with the DDN
EF2915. With no clear path forward to resolving the issue,
NICS decided to revert to CLE 2.2 and return to production.

Upon further investigation, NICS staff found evi-
dence that the issue was in the SuSE kernel, not the
QLogic driver. In the kernel’s drivers/scsi/sd.c the func-
tion sd read capacity had changed. Specifically, cmd[13]
= 12; had changed to cmd[13] = 13; and the
scsi_execute_request() function used length 13 in-
stead of 12 when it was trying to do a READ CAPACITY(16).
In debugging, NICS staff noticed the QLogic QLA2xxx
driver dropping frames noting that it dropped 0x1 of 0xd
(1 of 13) bytes.

In parallel to this, NICS was working with DDN to de-
termine if a firmware upgrade would improve the situation.
DDN quickly determined that there was no firmware update
to address this issue. DDN reproduced the problem on a
white-box SLES 11sp1 machine connected to an EF2915
running the latest firmware. It was unlikely that any new
EF2915 firmware would be created because the device was
past its end-of-life.

This left NICS with two options. First, Cray could revert
some of the kernel scsi code back to the version present in
SLES10. This was considered infeasible because NICS did
not want a one-off kernal and nobody at Cray is an expert
in this part of the kernel. The other option was to change
the hardware on our MDT to a device that understood larger
SCSI commands. NICS worked with DDN to acquire a DDN
EF3015 device that was setup in RAID 10 mode. During a
downtime, the dd command was used to copy the data from
the old device to the new one.

F. Production with CLE 3.1

The final steps to complete the Kraken upgrad to CLE
3.1 were completed on March 8th 2012. Kraken has run in
production on CLE 3.1 with Lustre 1.8 since then. So far,
no significant Lustre issues have been discovered.

V. NICS GLOBAL FILE SYSTEM GOALS

As NICS has grown through the additions of the RDAV
and Keeneland projects, it has become clear that users would
benefit from having a parallel file system that is available
on all of the HPC resources at NICS. This would ease
data management and reduce data replication. The RDAV
and Keeneland projects have already taken a significant step
towards this with the deployment of Medusa file system at
NICS. Medusa is a Lustre file system served off of DDN
10K based storage with external OSS servers connected to a



QDR IB SAN. RDAV and Keeneland systems are connected
to this SAN and they share this single parallel file system.

A. Path Forward

Unfortunately, Kraken has so far been unable to share
this file system with the other systems. CLE 2.2 on Kraken
used a Lustre 1.6 client, whereas Medusa was running 1.8
servers. Providing sufficient bandwidth from Kraken to the
SAN while maintaining the Lustre file system served from
the SIO nodes is problematic. There are a finite number
of SIO nodes, the majority of which are used to serve the
current Kraken Lustre file system.

Following the CLE 3.1 upgrade on Kraken, NICS is now
running Lustre 1.8 versions on both Lustre file systems at
NICS. Also four Infiniband connections have been run from
Kraken to the SAN. This has allowed us to begin testing of
mounting the Medusa file system on Kraken.

B. Expanding the Medusa File System

NICS is also working on expanding the Medusa file
system to reach a peak bandwidth of 40 GB/s and a capacity
of approximately 2PB. With this expansion NICS will add
more Infiniband connections between Kraken and our SAN,
and the mounts of the medusa file system on Kraken will
move from testing to production.

C. Externalizing Kraken’s File System

NICS is currently deploying external servers that will
be used as new Object Storage Servers to externalize the
Kraken file system. After the Medusa file system is in stable
production on Kraken, NICS will convert the current SIO
nodes in Kraken that are running as Object Storage Servers
into LNET routers. The new external Object Storage Servers
will be connected to the existing Object Storage Targets. The
MDS will be moved from an SIO node to an external server
and the file system will then be on the SAN and accessible
by all the production HPC systems at NICS. The expectation
is that all of this can be done without losing any user data
on the file system.

VI. FUTURE WORK

As usual the future is sure to present many interesting
challenges. After finishing moving the existing Kraken file
system to an external Lustre file system and mounting both
production file systems on all the production compute plat-
forms at NICS, there are interesting tasks ahead. Currently

CLE 3.1 is the last planned release of software from Cray
to support the SeaStar Interconnect in Kraken. This means
our current 1.8 version of Lustre on Kraken will be the
last version supported by Cray. Yet, there are features and
improvements in the Lustre 2.2 code that we may want for
production use. At some point, NICS will need to make a
decision to either stay with Lustre 1.8 on all systems or
develop a plan for safely upgrading to a Lustre 2.2 client on
Kraken.

Managing multiple production Lustre file systems
mounted on the mixture of system types at NICS may
present interesting challenges. The issues described previ-
ously of tracking down poorly behaved user IO will now
span multiple production systems. Further, it is fairly clear
that with multiple production systems mounting the same
parallel file systems that contention issues between users
and systems may become a recurring theme. Thankfully, it
is expected that this can be mitigated through quality of
service settings in the Infiniband software layer.

VII. CONCLUSION

The Lustre file system on Kraken is a stable, high per-
formance choice for user data storage. While performance
issues do occur, NICS staff members actively work to
identify and fix these issues. Over time, NICS staff has
gained valuable knowledge in tuning and troubleshooting.
The result has been continued improvement in file system
reliability and speed. With the recent upgrade from CLE
2.2 to 3.1, Kraken’s Lustre file system is now at a semi-
modern version. NICS is also pursuing the option of mov-
ing the Lustre servers off the Cray hardware to external
hosts, and repurposing the existing OSS service nodes as
LNET routers. By externalizing the file system, Kraken
failures would no longer directly impact the Lustre servers.
The external Lustre servers would also be better equipped
(hardware-wise) than the current Cray service blades, which
should further improve stability and performance.

REFERENCES

[1] John Walsh, Troy Baer, Victor Hazlewood, Junseong Heo, Rick
Mohr. Large Lustre File System Experiences at NICS. Cray
User Group 2009.

[2] Lustre 1.8 Operations Manual. June 2010.


