

Lustre at Petascale: Experiences in Troubleshooting and Upgrading

CUG 2012

Stuttgart, Germany

Matthew Ezell – ORNL, HPC Systems Administrator Rick Mohr – NICS, HPC Systems Administrator John Wynkoop – NICS, HPC Systems Administrator Ryan Braby – NICS, HPC Operations Group Lead

NATIONAL INSTITUTE FOR COMPUTATIONAL SCIENCES

National Institute for Computational Sciences University of Tennessee

- NICS runs three production machines
 - Keeneland (HP GPU Cluster)
 - Nautilus (SGI UltraViolet)
 - Kraken (Cray XT5)

NATIONAL

SCIENCES

5100

INSTITUTE FOR COMP**UT**ATIONAL

Kraken XT5

Current Kraken Configuration

Cabinets	100
Interconnect	SeaStar2 3D Torus
Peak Speed	1173 Teraflops
Compute processor type	AMD 2.6 GHz Istanbul-6
Compute cores	112,896
Compute nodes	9,408
Memory per node	16 GB (1.33 GB/core)
Total memory	147 TB

Overview

- Troubleshooting Lustre Issues at NICS
- Upgrading Kraken to CLE 3.1 / Lustre 1.8.4
- Future Plans

Kraken Lustre Hardware

6 Couplets of DDN S2A9900-10 Shelves

Kraken Lustre Hardware

- Currently internal
 - -Although there are plans in the works to change this
- Peak of 36GB/sec, demonstrated performance over 30GB/sec with IOR

Lustre Credits

- Lustre uses a "credit system" as a flow control mechanism between peers
- "credits" controls how many LNet messages can be sent concurrently over a given network interface (NI)
- "peer credits" controls how many LNet messages can be sent concurrently to a single peer
- The Cray CLE install script, by default, sets the number of client credits to 2048

Lustre Credits

- Kraken's OSS server were frequently becoming overloaded and unresponsive
- Unfortunately, NICS staff were unable to find specific recommendations providing a formula to calculate an appropriate number
- The number of credits was slowly reduced to 192 on each compute node
 - The aggregate performance was not degraded but the maximum load on the OSS servers declined
 - Single-node performance was slightly limited due to this change.

Small I/O

- Kraken's DDN Controllers are optimized for large, streaming IO operations (namely 1MB)
- Some jobs read and write many small requests, causing a very high load on the OSS servers
- How do you tell which jobs are performing "poor I/O"?

Small I/O

- Lustre keeps a ring-buffer request history containing NID and opcode
- Use *apstat* info to correlate this to jobs

<pre>kraken# ./lustre_requests</pre>				
Job	User	Cores	Age	Count
1850782	userA	3072	00:06	85522
1849593	userB	600	09:10	39986
1850042	userC	2628	11:57	22386
1849819	userD	132	05:59	12368
1849929	userD	132		9994
1849722	userD	132	05:16	6855
1848293	userE	2160	00:52	6835
1850787	userF	120		6481
1849936	userD	132	02:12	5796
1850779	userG	24	00:11	5088

Small I/O

• How can you tell if a job is just doing a lot of I/O compared to a lot of "bad" I/O?

kraken# cat extents stats snapshot time: 1325878779.789272 write read extents calls % cum% | calls % cum% 0K - 4K: 34 20 20 | 1758 98 98 4K - 8K: 0 0 20 0 0 98 8K - 16K: 135 79 100 | 32 1 100

MDS Lock Exhaustion

- The MDS must keep track of granted locks
- Compute nodes keep a LRU of locis
- Kraken's compute nodes cached 1200 locks (100 locks per core) with Iru max age set to 9000000 seconds
 - Although ALPS "flushes" Lustre after each aprun
- The MDS was OOMing because there were too many locks outstanding
- LRU set to 300 to avoid the issue

OST Allocation Method

- Lustre has two methods to choose where to place stripes of files
 - Quality of Service (QOS) attempts to even OST utilization
 - Round-Robin (RR) tries to spread out allocations, maximizing bandwidth
- The method currently in use depends on *qos_threshold_rr* and the difference in minimum and maximum OST utilization

OST Allocation Method

Table IIOR POSIX FILE-PER-PROCESS (CLE 2.2, 300 NODES, 1 STRIPE)

Test	Max Write (MB/sec)	Max Read (MB/sec)
QOS 1	9760	9465
QOS 2	9437	8981
RR 1	29880	18970
RR 2	29987	20486

Table IIIOR POSIX FILE-PER-PROCESS (CLE 2.2, 300 NODES, 4 STRIPES)

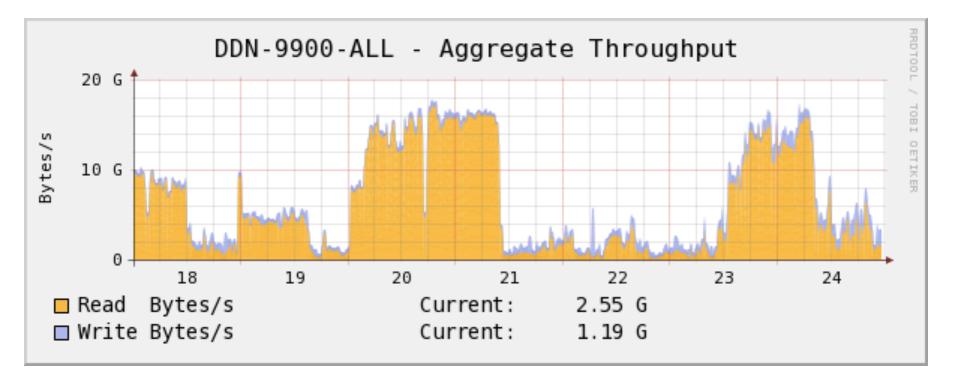
Test	Max Write (MB/sec)	Max Read (MB/sec)
QOS 1	7797	11930
QOS 2	8444	12666
RR 1	9969	16886
RR 2	12653	16590

Poorly Striped Files

- Users can easily fill up an OST
 - Usually from someone running "tar" with default striping
 - Typically pushes us into QOS allocator
- Use "Ifs df" to determine which OSTs are full
- Use "Ifs quota" to determine which user is causing the problem
- Use "Ifs find" to determine which file(s)
- Re-stripe the file

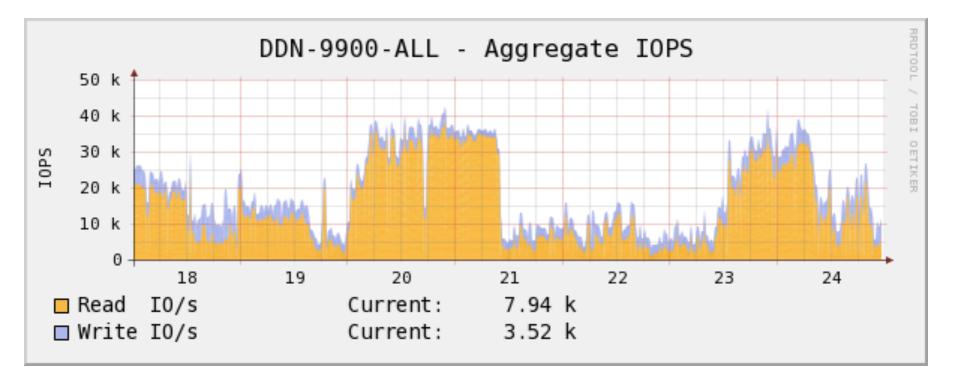
Purging

- "Users will fill up any file system you give them"
- Files not accessed in 30 days are eligible for purging
- Currently use scripts based on "Ifs find"
- Looking into taking advantage of "ne2scan" output

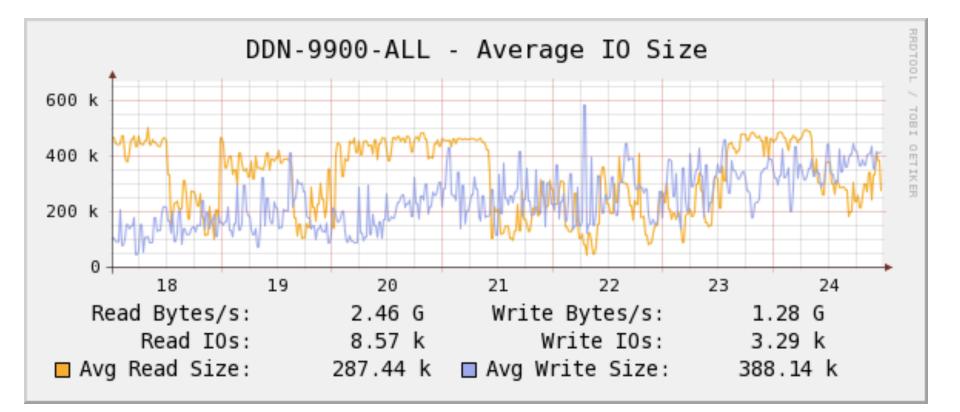


Monitoring

- Simple scripts integrated into Nagios
- Performance monitoring by Cacti



Aggregate Throughput



Aggregate IOPS

Average IO Size

Comparing CLE2.2 to CLE 3.1

- CLE 2.2:
 - SLES 10
 - Lustre 1.6.5
 - Past end-of-life

- CLE 3.1
 - SLES 11
 - -Lustre 1.8.4
 - End-of-life

A full re-install is required to migrate

Athena Test Installation

- 48 Cabinet XT4 decommissioned to users in 2011
- 2 cabinets left powered on for a test system
 - -24 compute blades
 - -24 service blades
- Installed CLE 3.1 while preserving the Lustre 1.6 file system
- It "just worked"

Early Kraken Test Shots

- Wanted to test the OS before moving there in production
- The Lustre file system is internal, so it gets upgraded also!
 - Not sure we are ready for that
 - Worried about incompatibilities
- Solution: don't mount Lustre

IB SRP and scsidev

- CLE 2.2 had "scsidev" to provide persistent device names
- This is now deprecated
- Cray created a udev rule and script called "scsidev-emulation"
- It doesn't work for new devices
- Solution: re-trigger udev later in the boot

MDS Hardware Incompatibility

- Originally used a DDN EF2915
 - -RAID6, not the best for metadata
 - Device is approximately 3.5TB
- Ran into one small problem:

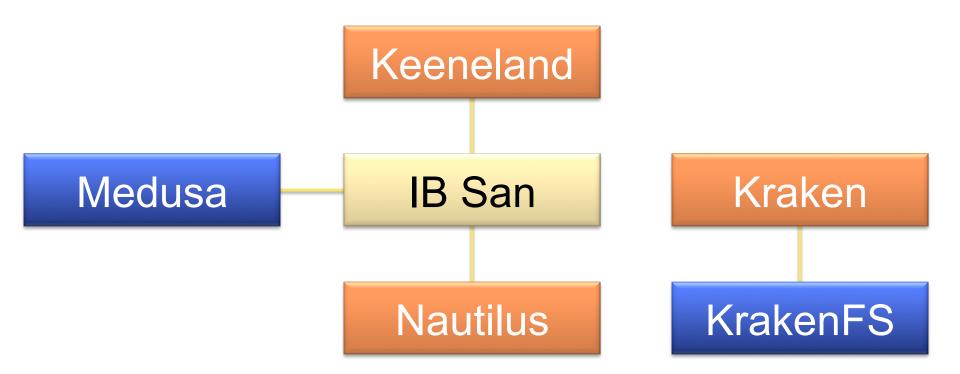
```
READ CAPACITY(16) failed
Result: hostbyte=0x07 driverbyte=0x00
Use 0xffffffff as device size
4294967296 512-byte hardware sectors: (2.19 TB/2.00 TiB)
```


MDS Hardware Incompatibility

- DDN provided new hardware
 - DDN EF3015
 - RAID10, much better for metadata
- Had to do a block-level 'dd' to transfer the data

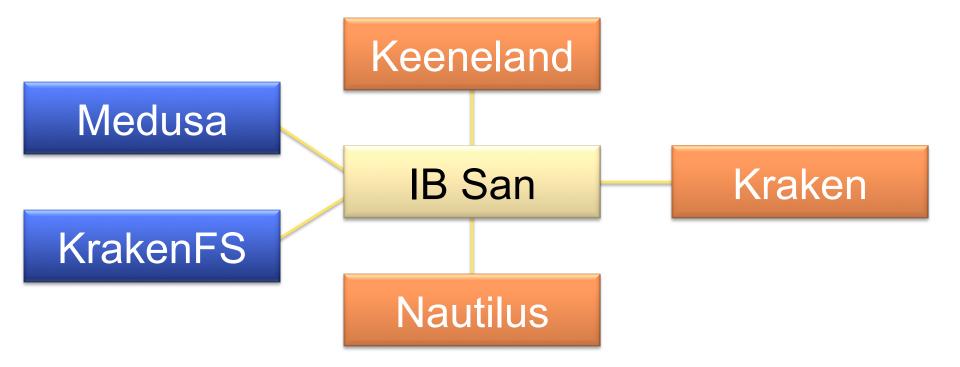
Production with CLE 3.1

Seems to be working as expected



Path Forward

- Want to mount the site-wide Medusa file system on Kraken
- Want to externalize Kraken's file system
- Chicken and the egg problem



Current Topology

Future Topology

New Lustre Version

Bug ID	779592				
Summary	CLE3.1 Interoperability with External Lustre 2.1 Servers				
Created	12/15/2011 9:36:00 AM	Product	CLE		
Status	RESOLVED	Component	Lustre		
Resolution	WONTFIX	Version	3.1.UP03		
Severity	urgent	Hardware	XT5		
Keywords		os	Service Node (SeaStar)		
Class	Software	Fixed In			
Change IDs		Clones			

Questions?

Feel free to contact me at ezellma@ornl.gov

