
 1

Understanding the effects of process placement on application performance on an
AMD Interlagos processor

Kalyana Chadalavada, Manisha Gajbe
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, IL, USA

{kalyana, manisha}@ncsa.illinois.edu

Abstract—In this paper, we explore the impact of process
placement on application performance when using an AMD
Opteron bulldozer architecture CPU on a Cray XE6 node. We
conduct a low-level analysis of possible resource contention on
the Interlagos core modules using application kernels to
exemplify target workloads. We will also characterize the
performance of OpenMP threads in dual stream or packed
mode and single stream or unpacked configuration. Using
CrayPat tools and PAPI counters, we attempt to quantify
bottlenecks to efficient utilization of the processors.

Keywords - XE6, bulldozer, application performance

I. INTRODUCTION
The Blue Waters [1] system is a track-1 National Science

Foundation (NSF) super-system being deployed at the
National Center for Supercomputing Applications (NCSA),
will deliver sustained performance of 1 petaflop on a range
of real-world science and engineering applications. This
hybrid Cray XE6/XK architecture, in its final configuration
will contain over 25000 compute nodes connected in a 3D
torus configuration with Cray Gemini network. The Cray
XE6 nodes utilize AMD’s new 16-core Opteron processor
codenamed, the Interlagos processor, providing over 380,000
x86 compute core modules. Each node provides up to 64GB
of DDR3 memory. The Cray XK nodes utilize one AMD
Opteron processor and one accelerator chip. Each XK node
will provide up to 32GB of DDR3 memory. The super-
system provides a Lustre file system with over 1TB/s usable
throughput. An initial deployment of the Blue Waters super-
system called the early science system (ESS), a 1.3+ petaflop
system, is complete.

Petascale Computing Resource Allocations (PRAC) [2]

from the National Science Foundation allows research teams
to work closely with the Blue Waters project team in
preparing their codes. Initial set of more than 25 teams
selected through the PRAC process cover a wide range of
domains including astrophysics, molecular dynamics,
weather science, earthquake system science, magnetosphere
simulations and computational chemistry. A selected set of
the PRAC teams, now called as Science Teams is utilizing

the Blue Waters ESS system to achieve breakthroughs in
their areas of research.

Initial performance analysis has shown significant

variations in application performance based on how the
application threads were mapped to the Interlagos processor
cores. Understanding the factors driving this behavior will be
one of the key aspects in optimizing the wide range of
applications chosen for the Blue Waters super-system. For
this study, we utilized a smaller single rack XE6 system used
as a test and development (TDS) platform.

The remainder of this paper is organized as follows. In

section 2, we describe the AMD Interlagos processor
(Bulldozer Architecture) and Blue Waters compute node
architecture. In Section 3, we describe the methodology
adopted for performance analysis. Section 4 describes the
kernels and applications used and Section 5 has their results.
Finally, Section 6 summarizes this work and comments on
remaining issues we plan to address in the future.

II. SYSTEM ARCHITECTURE
In this section, we describe the bulldozer architecture and

physical packaging as used on the Blue Waters super-system.
Bulldozer is a major redesign of the AMD processor
architecture driving more core density and throughput.
Contemporary x86 designs share last level of cache, memory
controllers and IO interfaces among multiple cores in a
single packaging unit. Breaking away from such practices,
bulldozer is a hierarchical design to share substantial on-chip
resources among multiple cores blurring the traditional
notion of an x86 core. As a result, this architecture offers a
greater level of flexibility to the users on utilizing the various
resources on the processor.

A. AMD ‘Bulldozer’ Architecture

A bulldozer core module (CM) is the building block of
the Interlagos processor. Each core module combines a
shared frontend, two integer units, a single shared floating-
point unit, level 1 cache, and a shared level 2 cache. Figure 1
provides an overview of the bulldozer core module. A single

 2

bulldozer chip (silicon die) contains four bulldozer core
modules. All the core modules on a single bulldozer chip
share a level 3 cache, memory controllers, Hypertransport
links and other system interfaces. There are four 16-bit
Hypertransport links per chip. Each link runs at 6.4
GigaTransfers per second. Figure 2 illustrates the
components on a single bulldozer chip.

Figure 1. Bulldozer core module

A single AMD Opteron (Interlagos processor) used on
the Blue Waters Cray XE6 node is a multi-chip module
(MCM) packing two bulldozer chips. The two chips are
connected using one full width and one half-width
Hypertransport link. A single MCM provides as many as
sixteen cores in a single CPU socket. Figure 3 provides an
overview of the Interlagos processor.

Figure 2. Bulldozer chip architecture

The floating-point unit consists of two 128-bit pipelines

and can be fused to function as a single 256-bit pipeline.

Each floating-point unit is capable of executing two 128-bit
SSE instructions or one 256-bit AVX add or multiply
instruction in a single clock cycle. This yields a peak
performance of 4 double precision operations per cycle.

Figure 3. Interlagos processor architecture

Additionally, the floating-point unit also supports a 256-

bit fused multiply-add instruction effectively doubling the
theoretical performance to 8 double precision operations per
cycle and provides improved accuracy.

B. Compute Node Architecture

A Cray XE6 compute node ties together two AMD
Opteron processors, their associated memory banks and a
Cray Gemini network processor. The Cray Gemini network
processor is connected via a full width Hypertransport link to
the first bulldozer chip on the first CPU. Each bulldozer chip
is connected with every other bulldozer chip on the compute
node using the Hypertransport links. However, these
connections are not uniform.

• Two chips on an MCM are connected using one full
width and one half width link for a total of 24-bit
Hypertransport link running at 19.2 GB/s

• Chips 0 and 1 on both MCMs are connected to each
other with a half width, 8-bit hyper transport link
running at 6.4 GB/s

• Chip 0 on one MCM is connected to chip 1 on the
other MCM with a full width, 16-bit hypertransport
link running at 12.8 GB/s

A compute node on the Blue Waters system is configured

with two 16 core Interlagos processors and 64 GB DDR3
memory. From a memory access standpoint, a compute node
is divided in to four non-uniform memory access (NUMA)
domains. Each NUMA domain contains four bulldozer core
modules and 16 GB DDR3 memory. The operating system,
Cray Compute Node Linux (CNL), considers each integer
unit a single core. Hence, up to 32 processes or tasks can be
placed on a single Blue Waters Cray XE6 compute node.
Figure 4 illustrates a single Blue Waters XE6 node.

 3

The impact of NUMA organization on memory
bandwidth and application performance has been
investigated on several other processors including the
previous generations on AMD processors.

Figure 4. Cray XE6 Compute Node Architecture.
Black line indicates full width Hypertransport link and red indicates half

width link

III. TOOLS USED AND DATA COLLECTION

A. Cray Performance Analysis Tool (CrayPat)

Cray provides a multitude of performance analysis tools
on its systems. CrayPat[6], Cray Performance Analysis Tool,
provides a simple interface for program instrumentation, data
capture and basic text reporting. It also provides high-level
summary or observations of possible performance inhibitors.
CrayPat uses PAPI[7], the performance API. This interface
is normally transparent to the user.

There are three steps involved in performance analysis of

codes using CrayPat.

• Instrument your program, to specify what kind of

data you want to collect under what conditions.
• Execute your instrumented program, to generate and

capture the desired data.
• Analyze the collected data

CrayPat provides automatic code instrumentation and an

API to manually control data collection. CrayPat also
provides predefined groups of hardware counters and
function groups.

B. Preparing The Applications For Data Collection

The Cray Compute Node Linux presents a single
bulldozer core module as two distinct cores to the user
applications. To understand the performance impacts of
simultaneously utilizing both the cores in a single bulldozer
core module, we focus on collecting performance counters
for the shared components. Performance counters of interest
include L2 cache, Translation Look aside Buffer (TLB),
floating-point operations etc. We also collect performance
counter data for other important events like L1 data cache
and instructions per cycle.

All the selected codes were compiled with Cray

compilers and libraries. To instrument the target
applications, we utilize CrayPat’s pat_build mechanism.
After initial profiling runs, top two code sections with high
percentage of run time were wrapped with CrayPat API calls
to control performance counter data collection for those
specific code segments. Specifically, we used PAT_record to
toggle data collection.

We use the term dual stream mode or packed mode to

refer to the run configuration when two application threads
are assigned to a core module, one thread per core. We use
the term single stream mode or unpacked mode to refer to
the run configuration when only one application thread is
assigned to a single core module. We explicitly control
thread and process placement using the aprun command line
options that enforce process affinity.

IV. KERNELS AND APPLICATIONS
In this paper, we have chosen to use computational

kernels from NAS benchmarks, and two scientific
application codes, one from the field of cosmology and the
other from astrophysics. A brief description of all the
selected codes follows :

A. NAS Benchmarks

The NAS Parallel Benchmarks (NPB)[3][4] is a small set
of programs designed to help evaluate the performance of
parallel supercomputers. The benchmarks are derived from
computational fluid dynamics (CFD) applications and
consist of five kernels and three pseudo-applications in the
original "pencil-and-paper" specification. In this paper we
have chosen the OpenMP implementation of NAS
Benchmarks (NPB3.3-OMP).

• LU : Lower-Upper Gauss-Seidel solver
LU is a simulated CFD application that uses symmetric

successive over-relaxation (SSOR) method to solve a seven-
block-diagonal system resulting from finite-difference
discretization of the Navier-Stokes equations in 3-D by
splitting it into block Lower and Upper triangular systems.

 4

• FT : discrete 3D fast Fourier Transform, all-to-all
communication

FT contains the computational kernel of a 3-D fast
Fourier Transform (FFT)-based spectral method. FT
performs three one-dimensional (1-D) FFT’s, one for each
dimension.

B. Cosmology Application : Gadget

GADGET[5] is a code for cosmological N-body/SPH
simulations on massively parallel computers with distributed
memory. It uses an explicit communication model that is
implemented with the standardized MPI communication
interface. The code can be run on essentially all
supercomputer systems presently in use, including clusters of
workstations or individual PCs.

GADGET computes gravitational forces with a

hierarchical tree algorithm (optionally in combination with a
particle-mesh scheme for long-range gravitational forces)
and represents fluids by means of smoothed particle
hydrodynamics (SPH). The code can be used for studies of
isolated systems, or for simulations that include the
cosmological expansion of space, both with and without
periodic boundary conditions. In all these types of
simulations, GADGET follows the evolution of a self-
gravitating collision-less N-body system, and allows gas
dynamics to be optionally included. Both the force
computation and the time stepping of GADGET are fully
adaptive, with a dynamic range that is, in principle,
unlimited.

This code uses, TreePM method, where the tree is used

for short-range gravitational forces only while long-range
forces are computed with a FFT-based particle-mesh (PM)
scheme. Periodic boundary conditions can be computed,
either by means of the Ewald summation technique or based
on the FFT algorithm used in the TreePM scheme.
Simulations that only follow gas dynamics without self-
gravity can be run in periodic boxes with arbitrary aspect
ratios, and also in 2D, if desired. In the context of this paper,
we consider the performance of dual stream gadget runs
relative to the single stream runs.

C. Astrophysics Application : Castro

CASTRO [14], a fully compressible hydrodynamics code
to simulate the explosion phase of a Type Ia supernova.
CASTRO use structured grids with adaptive mesh refinement
(AMR). A time step in CASTRO requires the fully explicit
advance of a hyperbolic system of conservation laws, as well
as the computation of self-gravity. In addition to simulations
of Type Ia supernovae, CASTRO is also being used to study
core-collapse and pair-instability supernovae.

CASTRO is implemented using the BoxLib framework

developed in the Center for Computational Sciences and

Engineering at LBNL. BoxLib is a hybrid C++ / Fortran90
software system that provides support for the development of
parallel structured-grid AMR applications. CASTRO uses a
hybrid MPI-OpenMP model. CASTRO runs successfully on
a wide range of supercomputing systems.

V. RESULTS AND DISCUSSIONS
In this section, we present our experiments and results.

We run each application in dual stream and single stream
mode for varying process counts. We collect and examine
hardware performance counter data and attempt to identify
potential resource contention or lack there of. Results from
single stream mode are used as a reference for comparison.

In figure 5, we examine performance on LU class C

OpenMP benchmark. We present performance data for five
key events: Total time, L2 data cache hit ratio (D2 hit Ratio),
L1+L2 data cache utilization (D1+D2 Utilization), TLB
utilization and L1 data cache misses (D1 misses). The
problem size is maintained at class C for all runs.

Figure 5. LU Class C benchmark

Performance of dual stream with 2 threads (one core

module) and 16 threads (one Interlagos MCM) fares badly
compared to single stream with 2 threads (two adjacent core
modules) and single stream with 16 threads (two Interlagos
MCMs, one thread per core module).

In dual stream mode with 2 and 16 threads, performance

metrics of shared components display a marked degradation
compared to the single stream mode. We attribute the lower
performance in dual stream mode to contention between the
two threads for these shared resources on the bulldozer core
module.

In the case of dual stream mode with 32 threads, we see

an improvement compared to the performance of single
stream mode with 16 threads. We attribute this to a marked
improvement in D2 hit ratio and D1 misses for the dual
stream 32 thread run. Since the problem size is maintained
constant between the runs, each thread in the 32-thread run

 5

operates on a smaller data set leading to better cache
utilization and improved overall performance.

In figure 6, we present performance data for FT class C
benchmark. We observe the same pattern in this case as in
LU class C benchmark. The 32 thread dual stream run fares
only slightly better than 16 thread single stream run due to
smaller operating data set per thread resulting in significant
reduction in L1 data cache misses.

Figure 6. FT Class C benchmark

In figure 7, we examine the PGADGET results for single

and dual stream cases with 2 and 16 processes and single
stream 32 processes. The input dataset was maintained
constant across all the run configurations. The code is run
using only MPI programming model. Using we CrayPat we
determined the size of operating dataset per thread in each
case as shown in table 1. For this paper, we have used a
sample data set appropriate for a single Blue Waters XE6
node.

We continue to see contention at level 1 and level 2 data

cache in the dual stream 2 and 16 processes run. As the size
of the operating dataset diminishes to 167 MB in case of the
dual stream 32 processes case, we observe significant
improvement in cache utilization, compared to the single
stream 16 processes run. CrayPat reports less than desirable
TLB utilization in all dual stream experiments.

Figure 7. PGADGET Application

Num. MPI Processes Memory per Process
2 2096 MB
16 295 MB
32 167 MB

Table 1. Memory per MPI process

We now present CASTRO performance data.

MPI+OpenMP programming model was utilized in this
experiment to spawn one MPI process and either 8, 16 or 32
OpenMP threads. A single data set was used to collect
performance data for all the configurations. Figure 8
provides performance of each run relative to 8 threads single
stream mode.

In this case, 16-thread dual stream provides 30%
performance improvement over 8-thread single stream
configuration. In both the cases, the application maps
completely to a single Interlagos MCM and has equal access
to processor and system resources.

Figure 8. CASTRO Application

And when utilizing both the Interlagos MCM’s on a Blue

Waters XE6 node, 32-thread dual stream provides a 29%
performance improvement over 16-thread single stream
configuration. Here as well, in both the cases, the application
is mapped completely to both the Interlagos MCM’s on a
single XE6 node and has access to processor and system
resources.

In case of this application, dual stream mode offers better

performance than single stream mode.

From the above experiments, we infer both single stream

and dual stream modes offer their own unique advantages.
Single stream mode offers higher memory bandwidth and
larger caches to applications. Dual stream mode offers higher
concurrency and possibly better resource utilization with
careful cache & TLB management. We have demonstrated
applications that perform better in single stream and
applications that perform better in dual stream modes.
CrayPat and other Cray software offer users with a powerful

 6

set of tools to analyze application codes and identify
performance-inhibiting factors.

VI. SUMMARY AND FUTURE WORK
We have described the Blue Waters super system, its

XE6 node architecture and explored in detail the AMD
Bulldozer architecture and Interlagos CPU.

In order to explore the dual stream and single stream

flexibility of the AMD bulldozer architecture, we configured
and conducted performance analysis runs with two
benchmark kernels and two full-scale applications chosen for
Blue Waters PRAC allocation. We have demonstrated codes
that perform better with single stream mode and codes that
perform better with dual stream mode. We have successfully
employed CrayPat to identify possible resource contention
for the shared components of the Bulldozer architecture.
Although the selected codes do not represent the breadth of
Blue Waters applications, this effort helped us understand
the Bulldozer architecture and various usage scenarios.

The Bulldozer architecture also provides greater level of

flexibility in the floating-point unit. It supports 128-bit SSE,
AVX and 256-bit FMA4 instructions. More studies are
needed to specifically target the shared floating-point unit
and understand the effects of dual and single stream modes
with a mix of SSE, AVX and FMA instructions. Identifying
code constructs that cause floating point unit contention will
be helpful in preparing petascale applications for Blue
Waters.

We will continue to investigate additional features of the
AMD Interlagos CPU, the Bulldozer architecture, Blue
Waters compute and accelerated node architecture and the
Gemini interconnect. In the near future, we plan to
experiment with the shared floating-point unit and the
Gemini interconnect to explore the performance aspects and
optimization techniques.

ACKNOWLEDGMENT
This research is part of the Blue Waters sustained-

petascale computing project, which is supported by the
National Science Foundation (award number OCI 07-25070)
and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign, its National
Center for Supercomputing Applications, Cray, and the
Great Lakes Consortium for Petascale Computation.

The authors would like to thank the following: Gregory

Bauer from NCSA for useful discussions, Kentaro Nagamine,
Dept. of Physics & Astronomy, University of Nevada, Las
Vegas for providing the PGadget code and members of the Type
Ia Supernovae PRAC team, Andy Nonaka at Lawrence
Berkeley National Laboratory, Chris Malone at University of
California Santa Cruz for providing the CASTRO code, input
sets and for working with us in porting the code to the Blue
Waters system.

REFERENCES

[1] Blue Waters : http://www.ncsa.illinois.edu/BlueWaters/
[2] PRAC : http://www.ncsa.illinois.edu/BlueWaters/prac.html
[3] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and

M. Yarrow, “The NAS Parallel Benchmarks 2.0,” NAS Technical
Report NAS-95-020, NASA Ames Research Center, Moffett Field,
CA, 1995. http://science.nas.nasa.gov/Software/NPB.

[4] H. Jin, M. Frumkin, J. Yan, “The OpenMP Implementation of NAS
Parallel Benchmarks and Its Performance”, NAS Technical Report
NAS-99-011, NASA Ames Research Center, Moffett Field, CA, 1999.

[5] GADGET: A code for cosmological simulations of structure
formation, Springel, V. 2005, MNRAS, 364,	
 1105

[6] CrayPat: Cray Performance Analysis Tool, http://docs.cray.com
[7] Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P. 2000. A

Portable Programming Interface for Performance Evaluation on
Modern Processors. International Journal of High Performance
Computing Applications 14(3):189–204

[8] Vaughan, C., Rajan, M., Barrett, R. F., Doerfler, D., Pedretti, K.,
(2011). “Investigating the Impact of the Cielo Cray XE6 Architecture
on Scientific Application Codes”, Proceedings, IEEE International
Parallel and Distributed Processing Symposium, Workshop on Large-
Scale Parallel Processing (LSPP), Anchorage, Alaska.

[9] How to make best use of the AMD Interlagos processor, White Paper,
Numerical Algorithms Group Ltd, November 2011.

[10] Ted Barragy, Bulldozer Overview, Titan Workshop, ORNL, 2012
[11] Software Optimization Guide for AMD Family 15h Processors,

Publication No. 47414, Rev 3.06, January 2012
[12] K. Antypas, Y. He, “Transitioning Users from the Franklin XT4

System to the Hopper XE6 System”, CUG Procceedings, Fairbanks,
Alaska, May 23, 2011

[13] Vaughan, C. T. (2011). “Application Characteristics and Performance
on a Cray XE6,” Proceedings, Cray User Group Meeting, Fairbanks,
Alaska.

[14] A. Almgren, J. Bell, D. Kasen, M. Lijewski, A. Nonaka, P. Nugent,
C. Rendleman, R. Thomas, and M. Zingale. MAESTRO, CASTRO,
and SEDONA – Petascale codes for astrophysical applications.
Proceedings of SciDAC 2010, July 2010.

[15] GADGET : A code for Collisionless and gasdynamical cosmological
simulations, Springel V., Yoshida N., White S. D. M., 2001, New
Astronomy, 6, 51

