
 

 

 

 

Abstract— SHMEM communication library provides a 

low-latency one-side communication paradigm for parallel 

applications to co-ordinate their activity. Hence a trace of 

SHMEM calls is an important tool towards understanding 

and tuning SHMEM applications communication 

performance. Towards this end we present a suite of tools to 

benchmark, trace, and simulate SHMEM communication 

speedily and accurately.  

Specifically, in this paper we present the following three 

tools: (1) ShmemBench – a benchmark generator that 

generates user specified APIs and communication sizes to 

benchmark SHMEM communication, (2) ShmemTracer – a 

lightweight library to trace SHMEM calls in a running 

application, and (3) Shmem Simulator – a tool to accurately 

and speedily simulate SHMEM traces for different target 

HPC systems. The three tools presented provide a powerful 

experimentation tool for users to analyze and optimize 

performance of SHMEM applications. 

I. INTRODUCTION 

Two-sided communication has been the dominant 

protocol for developing high performance applications. 

However the cost of synchronization for point to point 

communication makes it challenging when developing 

systems with more than 100,000 cores. This problem will 

further be exacerbated when scaling for exascale systems 

where core counts may exceed 2
30

. One-sided 

communication has been developed as a response to 

reduce cost of synchronization. One of the earliest 

implementation is the SHMEM one-sided communication 

library, available on Cray and SGI systems, providing a 

low latency mechanism for parallel tasks to co-ordinate 

their activities. One sided communication can take 

advantage of the RMA operations available to perform 

remote load and store operations without interrupting the 

remote processor. Thus, there is increasing research 

interest in using one sided communication such as 

SHMEM, UPC, to develop HPC applications. 

While the choice of using SHMEM over two sided 

communication maybe apparent, however choice of a 

system to run a given SHMEM application may not be so 

apparent. Moreover the choice is not easy to deduce 

without actually running the application or in some cases 

the machine may not exist as maybe the case when 

designing new hardware. In such situations performance 

modeling can help the user decide about the choice of 

machine. For the performance model to be useful it should 

 
 

be accurate and with reasonable speed. To solve this issue 

in this paper we present a set of tools that can be used to 

benchmark, trace, and simulate SHMEM applications. In 

particular we present three tools that provide a powerful 

experimentation tool for users to analyze and optimize 

performance of SHMEM applications and summarized 

below: 

 ShmemBench, a configurable benchmark generator 

that generates C, C++, and Fortran 90 benchmarks. 

This tool takes as input a user specified subset of 

SHMEM APIs and their corresponding message sizes 

and generates as output C, C++, and Fortran90 

benchmarks with the specific APIs; each API call is 

timed. Hence, a user can run the benchmark on a 

target Cray System to benchmark its SHMEM 

communication performance. 

 ShmemTracer, a lightweight tracing library that traces 

SHMEM API calls in a running SHMEM application. 

The library generates trace records for each SHMEM 

call and stores them in a compact binary format. Each 

trace record encapsulates the parameters passed to the 

call and time spent to complete the call. The tracing 

library can be used without binary modification and 

adds very little overhead. Additionally, we also 

provide a reporting utility that converts the binary 

trace into human readable ASCII text. The report 

provides detailed summary of each API call and as 

such users can easily parse the report to generate 

more complex reports. 

 Shmem Simulator, a simulation framework that 

consumes SHMEM traces and applies user specified 

communication models to calculate applications 

communication time on a target system. The 

simulator is developed within the open source PSINS 

framework which is a network simulator for parallel 

architectures. The simulator takes as input SHMEM 

traces and a target system configuration and replays 

the traces and reports an applications communication 

time on the target system.  

The outline of the rest of the paper is as follows: 

Section II describes ShmemBench, Section III describes 

ShmemTracer, and Section IV describes the Shmem 

Simulator. Experiments demonstrating the usability, 

efficiency and accuracy of the Tracer and Simulator are 

described in Section V Finally we discuss related work in 

Section VI and conclusions and future work is discussed 

in Section VII.  

Tools for Benchmarking, Tracing, and Simulating SHMEM 

Applications 

Mitesh R. Meswani
1
, Laura Carrington

1
, Allan Snavely

1
, Stephen Poole

2 

1
San Diego Supercomputer Center, 

2
Oak Ridge National Laboratory 

mitesh@sdsc.edu, lcarring@sdsc.edu, allans@sdsc.edu, stephen.w.poole@ugov.gov 

mailto:mitesh@sdsc.edu
mailto:lcarring@sdsc.edu
mailto:allans@sdsc.edu
mailto:stephen.w.poole@ugov.gov


 

 

 

II. SHMEMBENCH 

ShmemBench is a configurable benchmark generator 

designed to allow a user to verify and validate the 

installation of the ShmemTracer tool. The design of the 

benchmark is shown in Figure 1. The benchmark 

generator, written in python, takes as input a configuration 

file and test templates. The configuration file is used to 

specify one of five classes of SHMEM API calls, 

described below, and supply appropriate parameters for 

them. While, the test templates, one for each SHMEM 

API class, are used to store the static portion of the source 

code as well as place holders to allow the generator to 

write the dynamic portion of the code. Based on the 

configuration the generator produces the corresponding 

source code in C, C++, and Fortran90. The user need only 

compile the source codes and run it on the target system.  

The configuration file has the following format. Each 

line specifies the test number, test class, number of 

elements to transfer, and stride. The test number is used to 

uniquely identify the test and thus allowing a user to test 

the same test class with different transfer size and strides. 

The test class specifies one of five tests: #1 – shmem put 

calls, #2 – shmem get calls, #3 – collective calls including 

reductions broadcasts and barriers, #4 – synchronization 

calls include fence, quiet, and wait calls, and finally #5 – 

atomic operations. The transfer size specifies the number 

of elements to be used by put, get, and collective calls; it 

is ignored by synchronization and atomic calls. The stride 

is used for strided iput and iget calls; stride is ignored for 

other calls. A typical configuration file is shown in figure 

2. In this figure we specify 3 tests, test 1 and test 3 are 

used to specify put calls to transfer 100, 5000 elements 

and stride 1, 4 respectively, while test 2 is used to specify 

collective calls to transfer 900 elements. 

 
Figure 1. High-level design and flow of information of ShmemBench. 

  

 
Figure 2. ShmemBench Configruation. 

III. SHMEMTRACER 

ShmemTracer is a tracing tool to collect information 

about SHMEM events in a running application. The tracer 

is built as a shared library and uses the LD_PRELOAD 

mechanism to trace SHMEM events. Briefly each 

SHMEM api call made by a task is captured by the tracer 

library, and the relevant parameters are stored in an event 

record and the tracer then redirects to allow the original 

SHMEM call to proceed. Those calls are timed, within the 

tracer and are also included in the event trace record.  

The tracer has been designed to be flexible. The events 

of interest are listed in an XML specification file. To 

specify an event to be traced, relevant information about 

the event parameters are included in the XML 

specification file. The most relevant tags and an example 

specification for shmalloc is shown in figure 3. Based on 

the specification a python script then constructs the event 

wrappers. Thus, adding or deleting an event is easily 

facilitated by the XML specification and promotes greater 

code maintainability. 

 

 
Figure 3. XML Specification for Tracer. 

 

For each event to be traced, the tracer builds an event 

wrapper with the same function signature. When the tracer 

library is loaded using LD_PRELOAD, the function calls 

are first redirected to the tracer. The event wrappers store 

the arguments for each call in an event record. The calls 

are then redirected to call the original SHMEM library 

and those calls are timed and recorded in the event trace. 

Additionally, the tracer also times spent between SHMEM 

communication events, or CPU time called as CPUBurst. 

To gather CPUBurst events, the library uses timers at the 

end and the beginning of each SHMEM routine 

replacement so that when a SHMEM function is called, 

the time spent since the end of the last SHMEM call to the 

current call is recorded in the trace. 

Given n parallel SHMEM tasks, the tracer generates n 

trace files, one for each task. In order to inspect the traces 

we have provided a utility called shmembin2txt which 

parses the binary trace file and produces a user readable 

ASCII text report file. This file contains for each event the 

parameters passed to the SHMEM function and also 

reports the wall clock time spent executing the particular 

function call. A user may gather valuable statistics by 

parsing the ASCII report file.  

In order to run simulations, the n binary trace files are 

post processed by another utility called shmem2PSINS 

which converts the trace and converts into a format that 

can be read by the network Simulator. The conversion 

utility reads the n trace files and repackages the events 

into a single trace file which can then be passed as input 

Benchmark 

Generator 

TESTNUM TESTCLASS   NELEMS  STRIDE 

1           1                 100       1 

2           3                  900       1 

3           1                5000       4 

 

TAG  DESCRIPTION 

Function Declares the name of the SHMEM API 

Arg   The arguments accepted by the function 

Trace  The trace record destination to store argument 

 <function ret="void*"> shmemalloc 

      <arg type="size_t"> size </arg> 

      <trace dest="bytes"> size </trace> 

 </function> 

Configuration Test Templates 

C, C++, F90 

Benchmarks 



 

 

 

to the SHMEM Simulator. In addition to the events the 

conversion utility also performs certain book keeping 

operations that are required by the SHMEM simulator. 

IV. SHMEM SIMULATOR 

Shmem Simulator is an event simulator and developed 

as part of the PSINS [1] framework. The flow of 

information in the network simulator for SHMEM is 

shown in figure 4. The simulator takes as input SHMEM 

communication event traces of an application and 

parameters that model the target machine and replays the 

trace in the simulator. The simulator simulates both the 

computation and communication time of an application 

and at the end of the simulation provides detail statistics 

and predicted runtime. 

 

 
Figure 4. Design of SHMEM Simulator and flow of information. 

 

 
Figure 5. Simulation architecture. 

 

The original PSINS framework supported only 

simulation of MPI communication and in this research we 

have added support for SHMEM. The SHMEM 

simulation shares many components of the MPI 

simulation such as the representations of the target 

machine described in Section VA and the general event 

queue implementation of the simulation described in 

Section VB. The major difference between MPI and 

SHMEM simulation is the communication model which is 

described in Section VC. Additionally we also developed 

a parser for SHMEM traces. 

A. Machine Representation 

To simulate the target system, the network simulator 

assumes that the machine is composed of compute nodes 

interconnected by global buses as shown in figure 5. Each 

compute node is made up of processing elements that are 

connected to the global buses by ingoing and outgoing 

links. The description of the machine model is flexible 

and the user can configure the number of each individual 

elements. Hence, for example the user can specify 

different speeds for each individual processing element or 

specify different number of ingoing and outgoing bus 

links. This flexibility allows the description to cover a 

wide range of machine architectures found in HPC.  

The description of the target machine system for 

simulation is given to the simulator in an ASCII 

configuration file. The parameters include the number of 

nodes, the number of buses, and for each bus the 
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bandwidth and latency for inter-node communication. For 

each compute node, the user needs to specify the number 

of cores, the number of incoming and outgoing links 

from/to busses, bandwidth and latency for intra-node 

communication, CPU ratios for each core with respect to 

base system. The simulator uses the CPU ratios to 

estimate the computation time. The ratio is used as a 

factor to project the speed of CPU burst on target system 

relative to the base system. Prior research [2, 3] has 

shown that CPU ratio is an effective means to predict 

CPU burst. The user can also specify the task to node 

mapping for each SHMEM task, if not given a default 

round robin mapping is assumed. 

B. Simulation Overview 

The simulator has been implemented as an event queue 

simulator based on priority queues and replays the entire 

input event trace. When an event is read from the input 

trace its priority is calculated based on the earliest time it 

will be ready for execution. This is calculated using the 

events task timer to calculate the priority at the time of 

insertion of the event in the queue. If the event is not 

ready to execute for example a blocking event such as a 

barrier or global reduction, then the event is reinserted 

into the event queue with reduced priority. When an event 

executes, it is deleted from the event queue and its time is 

tagged with the execution time plus the time it had to 

wait. The wait time of an event is the time an event had to 

wait to begin execution, for example global events such as 

barriers may have to wait for other tasks to reach the 

barrier. The execution time of the event is also used to 

update its task timer.  

The execution of an event during simulation depends 

on the type of the event and the state of the system at each 

event execution such as the load on the network, 

contention and so forth. CPU burst events use the CPU 

ratio for calculating the execution time. Peer to Peer 

communications are posted as soon as the event is ready 

to execute. While blocking events such as global 

synchronization and reductions are kept in the queue until 

all participating tasks post the same event. When the 

events are ready to execute, the execution time for the 

events are calculated using the communication models 

which are described in Section VC.  

The simulator also includes a statistics module to report 

detailed information about the simulation. The statistics 

module collects information such as frequencies of 

execution per event; break down of compute and 

communication times per task, and the execution time for 

each event type on the target system. It also reports the 

waiting time for each event which can be used to indicate 

the load imbalance in a system. The module also reports 

metrics such as average communication size by event, by 

task, and on node and off node communication. The 

detailed report provides valuable insights about 

bottlenecks in the system and opportunities for 

optimization. 

C. Communication Models 

The communication models are used to calculate the 

execution time of an event. We provide built in models for 

SHMEM simulation. In addition the PSINS framework 

allows a user to easily define new models. 

 

1) Built-in Models 

We implement a simple model for our built-in model. 

The simple models uses the best bandwidth and latency 

and assume that infinite resources are available, that is we 

assume that there is not contention for network resources 

such as buses and a task can send messages without any 

contention. For peer to peer communication for blocking 

events the execution time is the latency plus the time to 

transfer the message, whereas for non-blocking the time is 

calculated as simply the latency. For collective 

communication the time for each event is either linear, 

logarithmic or some other scaling factor with respect to 

the number of participating tasks. In this sense our simple 

model simply gives the lower bound on execution time. 

While this model is simplistic, it is sufficient to 

demonstrate the simulator and we leave addition of more 

complex models as part of future work.  

 

2) Adding new models 

The simulation framework allows user to easily add 

new models. The simulator provides the base class 

SHMEMModel, with some C++ virtual methods. The user 

need only implement the virtual methods to implement the 

calculation of execution time and scheduling of resources. 

The models can be added as an extension of the base class 

and implement the virtual functions. The design of the 

virtual functions is model specific and can be done in few 

hundred lines of code.  

V. EXPERIMENTS AND RESULTS 

To demonstrate the efficacy of our tracing and 

simulation tools we used them to trace and simulate a 

parallel 3dfft (p3dfft) application [10]. P3dfft is a library 

to perform 3DFFT operation using 2D decomposition. 3D 

FFT is an algorithm widely used in fields such as 

turbulence studies, climatology and material science. The 

P3dfft library has been optimized for large data sets and 

has been shown to scale to large core counts [10]. In our 

research we used a driver which is available with the 

library. The driver program uses the library to perform a 

forward transform and then a backward transform on a 3D 

array.  

The traces were collected on two large Cray HPC 

machines Hopper and Jaguar.  Hopper is a Cray XE6 

supercomputer hosted at NERSC with a peak performance 

of 1.26 petaflops. Hopper has 6,384 compute nodes, with 

each node made up of 2 twelve-core AMD MagnyCours 

processors. The nodes are interconnected by a custom 

cray network and uses Cray Gemini network to route 

communication.  Jaguar is a Cray XK6 supercomputer 

hosted by NCCS with a peak performance of 3.3 



 

 

 

petaflops. Jaguar is composed of 18,688 compute nodes, 

with each node made up of a single 16-core AMD 

processor. Jaguar also uses the Gemini interconnect to 

route communication. Both hopper and Jaguar support 

RMA operations.  

The traces were collected for processor counts from 

128 to 16,386. The data sets were scaled with core count. 

The 3dfft test application is a small kernel that runs within 

minutes. However, the test produces at the largest core 

count approximately 1 billion events which is a 

reasonable problem size to test scalability and overhead of 

the tools. In future full application tests are planned.  The 

traces were then simulated on the login nodes of Jaguar 

and Hopper. However we only simulated processor counts 

1024 to 4096. For larger CPU counts we found that we are 

limited by the number of open file handles that are 

allowed to user program. We are working to find a 

workaround around these limitations in the simulator.  

A. Trace Size and Simulation Times 

Shown in figure 6 is the number of SHMEM events 

collected per CPU count. This figure illustrates that the 

number of events is a linear multiple function of CPU 

count. The sizes of traces collected for each event count is 

given in figure 7. The figure illustrates that the size of 

event traces grows linearly as the event count grows. The 

sizes range from 0.008GB to 56GB. 

 
Figure 6. SHMEM Events Per CPU Count. 

 

 
Figure 7. Trace Size (GB) as function of event count. 

 

The traces are then fed to the simulator and the time for 

running the simulation is shown in Figure 8. The figure 

plots the time to finish the SHMEM simulation for CPU 

counts 128 to 4096. The results show that simulation in 

the worst case takes about 15X time than actually running 

the application. The simulation time grows linearly with 

increasing CPU counts and suggests that a parallel 

implementation maybe required as we move towards 

larger CPU counts. Note that we are not able to simulate 

larger core counts because of limitations of number of 

open file handles per user program.  

 
Figure 8. Simulation time comparison for different CPU counts. 

 

It is also important to quantify the overhead of 

collecting traces by Shmem Tracer. We observed that the 

overhead for CPU counts below 4096 was negligible, and 

for the largest core count of 16384 cores the overhead was 

only 13%.  
 

B. Simulation Accuracy 

Next we show results of simulation accuracy. We 

investigate the prediction accuracy of the simple model 

for predicting times on Jaguar. We compare the prediction 

time for total communication time for a 128, 1024, and 

2048 core job. The results are shown in Figure 9. The 

error in the prediction stems from our usage of the simple 

model, and we can improve upon the model to improve 

accuracy of prediction. Complex models are planned as 

part of future work. 

 
Figure 9. Prediction accuracy. 

VI. BACKGROUND 

Profiling and tracing of SHMEM one-sided 

communication is supported in Kojak [8] and Tau [9] 
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frameworks. Tau traces and profiles entry and exit of 

SHMEM call and however, it does not record the transfers 

in tracing mode. While Kojak profiles both SHMEM enter 

and exit calls and records transfer statistics in traces. The 

profile information collected by Kojak is then post 

processed to identify areas of performance bottlenecks 

and other performance properties which may provide 

insight into the behavior of programs. However, both 

TAU and Kojak do not provide a network simulator and 

to the best of our knowledge ours is the first work 

implementing a network simulator for SHMEM.   

There have been numerous efforts for tracing and 

simulating parallel architectures. Proteus [4] was one of 

the earliest to implement parallel architecture simulation. 

The design of the simulator was modular in nature and 

this separation allowed it to be easily customized. Some 

of these design principles have been followed in PSINS 

[1] framework with support for MPI simulation. PSINS 

allows a user to customize many pieces of the 

architecture. PSINS also allows users to define their own 

parser and communication model modules. In this 

research we have incorporated SHMEM simulation within 

the PSINS framework. We implemented our own parser, 

models, and reused the general simulation flow in PSINS.  

Simulators such as LAPSE [5], MPI-SIM [6] and 

Wisconsin Wind Tunnel [7] implemented parallel 

simulations but typically are execution driven and full 

system simulators. These simulators are more complex 

and generally simulation time grows because of the need 

to simulate the entire system. The Dimemas [3] project 

separates network simulation from the remaining system 

and has been implemented and has many similarities to 

PSINS. However, Dimemas is not open source and may 

not be suitable for community development. 

VII. CONCLUSIONS AND FUTURE WORK 

Performance modeling can be a valuable tool to provide 

insights about tuning of application and systems and help 

design future systems. Fast accurate simulations can be a 

valuable resource when evaluating choice of current and 

future systems. One-side RMA communications can 

reduce the time spent in communication and possible 

scale to exascale architectures. Modeling and simulating 

tools for one-sided communications such as SHMEM may 

prove valuable to improve understanding of RMA 

operations.  

The tools presented in this paper are a first at 

simulating SHMEM applications. We provide a low 

overhead tracing too and fairly fast simulation tools and 

simple models for prediction. The framework itself allows 

users to add more powerful complex models and tracers. 

In the future we will add support for Open SHMEM and 

continue adding complex communication models.  
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