

Abstract— SHMEM communication library provides a

low-latency one-side communication paradigm for parallel

applications to co-ordinate their activity. Hence a trace of

SHMEM calls is an important tool towards understanding

and tuning SHMEM applications communication

performance. Towards this end we present a suite of tools to

benchmark, trace, and simulate SHMEM communication

speedily and accurately.

Specifically, in this paper we present the following three

tools: (1) ShmemBench – a benchmark generator that

generates user specified APIs and communication sizes to

benchmark SHMEM communication, (2) ShmemTracer – a

lightweight library to trace SHMEM calls in a running

application, and (3) Shmem Simulator – a tool to accurately

and speedily simulate SHMEM traces for different target

HPC systems. The three tools presented provide a powerful

experimentation tool for users to analyze and optimize

performance of SHMEM applications.

I. INTRODUCTION

Two-sided communication has been the dominant

protocol for developing high performance applications.

However the cost of synchronization for point to point

communication makes it challenging when developing

systems with more than 100,000 cores. This problem will

further be exacerbated when scaling for exascale systems

where core counts may exceed 2
30

. One-sided

communication has been developed as a response to

reduce cost of synchronization. One of the earliest

implementation is the SHMEM one-sided communication

library, available on Cray and SGI systems, providing a

low latency mechanism for parallel tasks to co-ordinate

their activities. One sided communication can take

advantage of the RMA operations available to perform

remote load and store operations without interrupting the

remote processor. Thus, there is increasing research

interest in using one sided communication such as

SHMEM, UPC, to develop HPC applications.

While the choice of using SHMEM over two sided

communication maybe apparent, however choice of a

system to run a given SHMEM application may not be so

apparent. Moreover the choice is not easy to deduce

without actually running the application or in some cases

the machine may not exist as maybe the case when

designing new hardware. In such situations performance

modeling can help the user decide about the choice of

machine. For the performance model to be useful it should

be accurate and with reasonable speed. To solve this issue

in this paper we present a set of tools that can be used to

benchmark, trace, and simulate SHMEM applications. In

particular we present three tools that provide a powerful

experimentation tool for users to analyze and optimize

performance of SHMEM applications and summarized

below:

 ShmemBench, a configurable benchmark generator

that generates C, C++, and Fortran 90 benchmarks.

This tool takes as input a user specified subset of

SHMEM APIs and their corresponding message sizes

and generates as output C, C++, and Fortran90

benchmarks with the specific APIs; each API call is

timed. Hence, a user can run the benchmark on a

target Cray System to benchmark its SHMEM

communication performance.

 ShmemTracer, a lightweight tracing library that traces

SHMEM API calls in a running SHMEM application.

The library generates trace records for each SHMEM

call and stores them in a compact binary format. Each

trace record encapsulates the parameters passed to the

call and time spent to complete the call. The tracing

library can be used without binary modification and

adds very little overhead. Additionally, we also

provide a reporting utility that converts the binary

trace into human readable ASCII text. The report

provides detailed summary of each API call and as

such users can easily parse the report to generate

more complex reports.

 Shmem Simulator, a simulation framework that

consumes SHMEM traces and applies user specified

communication models to calculate applications

communication time on a target system. The

simulator is developed within the open source PSINS

framework which is a network simulator for parallel

architectures. The simulator takes as input SHMEM

traces and a target system configuration and replays

the traces and reports an applications communication

time on the target system.

The outline of the rest of the paper is as follows:

Section II describes ShmemBench, Section III describes

ShmemTracer, and Section IV describes the Shmem

Simulator. Experiments demonstrating the usability,

efficiency and accuracy of the Tracer and Simulator are

described in Section V Finally we discuss related work in

Section VI and conclusions and future work is discussed

in Section VII.

Tools for Benchmarking, Tracing, and Simulating SHMEM

Applications

Mitesh R. Meswani
1
, Laura Carrington

1
, Allan Snavely

1
, Stephen Poole

2

1
San Diego Supercomputer Center,

2
Oak Ridge National Laboratory

mitesh@sdsc.edu, lcarring@sdsc.edu, allans@sdsc.edu, stephen.w.poole@ugov.gov

mailto:mitesh@sdsc.edu
mailto:lcarring@sdsc.edu
mailto:allans@sdsc.edu
mailto:stephen.w.poole@ugov.gov

II. SHMEMBENCH

ShmemBench is a configurable benchmark generator

designed to allow a user to verify and validate the

installation of the ShmemTracer tool. The design of the

benchmark is shown in Figure 1. The benchmark

generator, written in python, takes as input a configuration

file and test templates. The configuration file is used to

specify one of five classes of SHMEM API calls,

described below, and supply appropriate parameters for

them. While, the test templates, one for each SHMEM

API class, are used to store the static portion of the source

code as well as place holders to allow the generator to

write the dynamic portion of the code. Based on the

configuration the generator produces the corresponding

source code in C, C++, and Fortran90. The user need only

compile the source codes and run it on the target system.

The configuration file has the following format. Each

line specifies the test number, test class, number of

elements to transfer, and stride. The test number is used to

uniquely identify the test and thus allowing a user to test

the same test class with different transfer size and strides.

The test class specifies one of five tests: #1 – shmem put

calls, #2 – shmem get calls, #3 – collective calls including

reductions broadcasts and barriers, #4 – synchronization

calls include fence, quiet, and wait calls, and finally #5 –

atomic operations. The transfer size specifies the number

of elements to be used by put, get, and collective calls; it

is ignored by synchronization and atomic calls. The stride

is used for strided iput and iget calls; stride is ignored for

other calls. A typical configuration file is shown in figure

2. In this figure we specify 3 tests, test 1 and test 3 are

used to specify put calls to transfer 100, 5000 elements

and stride 1, 4 respectively, while test 2 is used to specify

collective calls to transfer 900 elements.

Figure 1. High-level design and flow of information of ShmemBench.

Figure 2. ShmemBench Configruation.

III. SHMEMTRACER

ShmemTracer is a tracing tool to collect information

about SHMEM events in a running application. The tracer

is built as a shared library and uses the LD_PRELOAD

mechanism to trace SHMEM events. Briefly each

SHMEM api call made by a task is captured by the tracer

library, and the relevant parameters are stored in an event

record and the tracer then redirects to allow the original

SHMEM call to proceed. Those calls are timed, within the

tracer and are also included in the event trace record.

The tracer has been designed to be flexible. The events

of interest are listed in an XML specification file. To

specify an event to be traced, relevant information about

the event parameters are included in the XML

specification file. The most relevant tags and an example

specification for shmalloc is shown in figure 3. Based on

the specification a python script then constructs the event

wrappers. Thus, adding or deleting an event is easily

facilitated by the XML specification and promotes greater

code maintainability.

Figure 3. XML Specification for Tracer.

For each event to be traced, the tracer builds an event

wrapper with the same function signature. When the tracer

library is loaded using LD_PRELOAD, the function calls

are first redirected to the tracer. The event wrappers store

the arguments for each call in an event record. The calls

are then redirected to call the original SHMEM library

and those calls are timed and recorded in the event trace.

Additionally, the tracer also times spent between SHMEM

communication events, or CPU time called as CPUBurst.

To gather CPUBurst events, the library uses timers at the

end and the beginning of each SHMEM routine

replacement so that when a SHMEM function is called,

the time spent since the end of the last SHMEM call to the

current call is recorded in the trace.

Given n parallel SHMEM tasks, the tracer generates n

trace files, one for each task. In order to inspect the traces

we have provided a utility called shmembin2txt which

parses the binary trace file and produces a user readable

ASCII text report file. This file contains for each event the

parameters passed to the SHMEM function and also

reports the wall clock time spent executing the particular

function call. A user may gather valuable statistics by

parsing the ASCII report file.

In order to run simulations, the n binary trace files are

post processed by another utility called shmem2PSINS

which converts the trace and converts into a format that

can be read by the network Simulator. The conversion

utility reads the n trace files and repackages the events

into a single trace file which can then be passed as input

Benchmark

Generator

TESTNUM TESTCLASS NELEMS STRIDE

1 1 100 1

2 3 900 1

3 1 5000 4

TAG DESCRIPTION

Function Declares the name of the SHMEM API

Arg The arguments accepted by the function

Trace The trace record destination to store argument

 <function ret="void*"> shmemalloc

 <arg type="size_t"> size </arg>

 <trace dest="bytes"> size </trace>

 </function>

Configuration Test Templates

C, C++, F90

Benchmarks

to the SHMEM Simulator. In addition to the events the

conversion utility also performs certain book keeping

operations that are required by the SHMEM simulator.

IV. SHMEM SIMULATOR

Shmem Simulator is an event simulator and developed

as part of the PSINS [1] framework. The flow of

information in the network simulator for SHMEM is

shown in figure 4. The simulator takes as input SHMEM

communication event traces of an application and

parameters that model the target machine and replays the

trace in the simulator. The simulator simulates both the

computation and communication time of an application

and at the end of the simulation provides detail statistics

and predicted runtime.

Figure 4. Design of SHMEM Simulator and flow of information.

Figure 5. Simulation architecture.

The original PSINS framework supported only

simulation of MPI communication and in this research we

have added support for SHMEM. The SHMEM

simulation shares many components of the MPI

simulation such as the representations of the target

machine described in Section VA and the general event

queue implementation of the simulation described in

Section VB. The major difference between MPI and

SHMEM simulation is the communication model which is

described in Section VC. Additionally we also developed

a parser for SHMEM traces.

A. Machine Representation

To simulate the target system, the network simulator

assumes that the machine is composed of compute nodes

interconnected by global buses as shown in figure 5. Each

compute node is made up of processing elements that are

connected to the global buses by ingoing and outgoing

links. The description of the machine model is flexible

and the user can configure the number of each individual

elements. Hence, for example the user can specify

different speeds for each individual processing element or

specify different number of ingoing and outgoing bus

links. This flexibility allows the description to cover a

wide range of machine architectures found in HPC.

The description of the target machine system for

simulation is given to the simulator in an ASCII

configuration file. The parameters include the number of

nodes, the number of buses, and for each bus the

Application

ShmemTracer

Core 0

Trace Converter

Core 1

SHMEM Trace

Core N

SHMEM Trace Parser

Statistics Module

Core 0

Predicted Time, Detailed Result, Statistics

Core 1

SHMEM Simulator

Core N

Machine

Configuration

SHMEM

Communication

Model

Core 0

Simple

Shmem

Model

Core 1

User

Defined

Model

Core N

Compute Node 0 Compute Node 1 Compute Node N

Ingoing

links
Outgoing
links

Ingoing
links

Outgoing
links

Outgoing
links

Ingoing
links

Global Buses

bandwidth and latency for inter-node communication. For

each compute node, the user needs to specify the number

of cores, the number of incoming and outgoing links

from/to busses, bandwidth and latency for intra-node

communication, CPU ratios for each core with respect to

base system. The simulator uses the CPU ratios to

estimate the computation time. The ratio is used as a

factor to project the speed of CPU burst on target system

relative to the base system. Prior research [2, 3] has

shown that CPU ratio is an effective means to predict

CPU burst. The user can also specify the task to node

mapping for each SHMEM task, if not given a default

round robin mapping is assumed.

B. Simulation Overview

The simulator has been implemented as an event queue

simulator based on priority queues and replays the entire

input event trace. When an event is read from the input

trace its priority is calculated based on the earliest time it

will be ready for execution. This is calculated using the

events task timer to calculate the priority at the time of

insertion of the event in the queue. If the event is not

ready to execute for example a blocking event such as a

barrier or global reduction, then the event is reinserted

into the event queue with reduced priority. When an event

executes, it is deleted from the event queue and its time is

tagged with the execution time plus the time it had to

wait. The wait time of an event is the time an event had to

wait to begin execution, for example global events such as

barriers may have to wait for other tasks to reach the

barrier. The execution time of the event is also used to

update its task timer.

The execution of an event during simulation depends

on the type of the event and the state of the system at each

event execution such as the load on the network,

contention and so forth. CPU burst events use the CPU

ratio for calculating the execution time. Peer to Peer

communications are posted as soon as the event is ready

to execute. While blocking events such as global

synchronization and reductions are kept in the queue until

all participating tasks post the same event. When the

events are ready to execute, the execution time for the

events are calculated using the communication models

which are described in Section VC.

The simulator also includes a statistics module to report

detailed information about the simulation. The statistics

module collects information such as frequencies of

execution per event; break down of compute and

communication times per task, and the execution time for

each event type on the target system. It also reports the

waiting time for each event which can be used to indicate

the load imbalance in a system. The module also reports

metrics such as average communication size by event, by

task, and on node and off node communication. The

detailed report provides valuable insights about

bottlenecks in the system and opportunities for

optimization.

C. Communication Models

The communication models are used to calculate the

execution time of an event. We provide built in models for

SHMEM simulation. In addition the PSINS framework

allows a user to easily define new models.

1) Built-in Models

We implement a simple model for our built-in model.

The simple models uses the best bandwidth and latency

and assume that infinite resources are available, that is we

assume that there is not contention for network resources

such as buses and a task can send messages without any

contention. For peer to peer communication for blocking

events the execution time is the latency plus the time to

transfer the message, whereas for non-blocking the time is

calculated as simply the latency. For collective

communication the time for each event is either linear,

logarithmic or some other scaling factor with respect to

the number of participating tasks. In this sense our simple

model simply gives the lower bound on execution time.

While this model is simplistic, it is sufficient to

demonstrate the simulator and we leave addition of more

complex models as part of future work.

2) Adding new models

The simulation framework allows user to easily add

new models. The simulator provides the base class

SHMEMModel, with some C++ virtual methods. The user

need only implement the virtual methods to implement the

calculation of execution time and scheduling of resources.

The models can be added as an extension of the base class

and implement the virtual functions. The design of the

virtual functions is model specific and can be done in few

hundred lines of code.

V. EXPERIMENTS AND RESULTS

To demonstrate the efficacy of our tracing and

simulation tools we used them to trace and simulate a

parallel 3dfft (p3dfft) application [10]. P3dfft is a library

to perform 3DFFT operation using 2D decomposition. 3D

FFT is an algorithm widely used in fields such as

turbulence studies, climatology and material science. The

P3dfft library has been optimized for large data sets and

has been shown to scale to large core counts [10]. In our

research we used a driver which is available with the

library. The driver program uses the library to perform a

forward transform and then a backward transform on a 3D

array.

The traces were collected on two large Cray HPC

machines Hopper and Jaguar. Hopper is a Cray XE6

supercomputer hosted at NERSC with a peak performance

of 1.26 petaflops. Hopper has 6,384 compute nodes, with

each node made up of 2 twelve-core AMD MagnyCours

processors. The nodes are interconnected by a custom

cray network and uses Cray Gemini network to route

communication. Jaguar is a Cray XK6 supercomputer

hosted by NCCS with a peak performance of 3.3

petaflops. Jaguar is composed of 18,688 compute nodes,

with each node made up of a single 16-core AMD

processor. Jaguar also uses the Gemini interconnect to

route communication. Both hopper and Jaguar support

RMA operations.

The traces were collected for processor counts from

128 to 16,386. The data sets were scaled with core count.

The 3dfft test application is a small kernel that runs within

minutes. However, the test produces at the largest core

count approximately 1 billion events which is a

reasonable problem size to test scalability and overhead of

the tools. In future full application tests are planned. The

traces were then simulated on the login nodes of Jaguar

and Hopper. However we only simulated processor counts

1024 to 4096. For larger CPU counts we found that we are

limited by the number of open file handles that are

allowed to user program. We are working to find a

workaround around these limitations in the simulator.

A. Trace Size and Simulation Times

Shown in figure 6 is the number of SHMEM events

collected per CPU count. This figure illustrates that the

number of events is a linear multiple function of CPU

count. The sizes of traces collected for each event count is

given in figure 7. The figure illustrates that the size of

event traces grows linearly as the event count grows. The

sizes range from 0.008GB to 56GB.

Figure 6. SHMEM Events Per CPU Count.

Figure 7. Trace Size (GB) as function of event count.

The traces are then fed to the simulator and the time for

running the simulation is shown in Figure 8. The figure

plots the time to finish the SHMEM simulation for CPU

counts 128 to 4096. The results show that simulation in

the worst case takes about 15X time than actually running

the application. The simulation time grows linearly with

increasing CPU counts and suggests that a parallel

implementation maybe required as we move towards

larger CPU counts. Note that we are not able to simulate

larger core counts because of limitations of number of

open file handles per user program.

Figure 8. Simulation time comparison for different CPU counts.

It is also important to quantify the overhead of

collecting traces by Shmem Tracer. We observed that the

overhead for CPU counts below 4096 was negligible, and

for the largest core count of 16384 cores the overhead was

only 13%.

B. Simulation Accuracy

Next we show results of simulation accuracy. We

investigate the prediction accuracy of the simple model

for predicting times on Jaguar. We compare the prediction

time for total communication time for a 128, 1024, and

2048 core job. The results are shown in Figure 9. The

error in the prediction stems from our usage of the simple

model, and we can improve upon the model to improve

accuracy of prediction. Complex models are planned as

part of future work.

Figure 9. Prediction accuracy.

VI. BACKGROUND

Profiling and tracing of SHMEM one-sided

communication is supported in Kojak [8] and Tau [9]

0

200

400

600

800

1000

1200

1400

128 1024 2048 4096 8192 16384

N
u

m
b

e
r

o
f

SH
M

EM
 E

ve
n

ts

(M
ill

io
n

s)

CPU Count

Events Traced

0

10

20

30

40

50

60

Tr
ac

e
 S

iz
e

 (
G

B
)

Number of Events

Event Trace Size (GB)

0

50

100

150

200

250

128 1024 2048 4096

Ti
m

e
 (

se
co

n
d

s)

CPU Count

Simulation Time

Actual Runtime

0

1

2

3

4

5

6

7

8

9

128 1024 2048

Ti
m

e
 (

Se
co

n
d

s)

CPU Count

Actual

Predicted

frameworks. Tau traces and profiles entry and exit of

SHMEM call and however, it does not record the transfers

in tracing mode. While Kojak profiles both SHMEM enter

and exit calls and records transfer statistics in traces. The

profile information collected by Kojak is then post

processed to identify areas of performance bottlenecks

and other performance properties which may provide

insight into the behavior of programs. However, both

TAU and Kojak do not provide a network simulator and

to the best of our knowledge ours is the first work

implementing a network simulator for SHMEM.

There have been numerous efforts for tracing and

simulating parallel architectures. Proteus [4] was one of

the earliest to implement parallel architecture simulation.

The design of the simulator was modular in nature and

this separation allowed it to be easily customized. Some

of these design principles have been followed in PSINS

[1] framework with support for MPI simulation. PSINS

allows a user to customize many pieces of the

architecture. PSINS also allows users to define their own

parser and communication model modules. In this

research we have incorporated SHMEM simulation within

the PSINS framework. We implemented our own parser,

models, and reused the general simulation flow in PSINS.

Simulators such as LAPSE [5], MPI-SIM [6] and

Wisconsin Wind Tunnel [7] implemented parallel

simulations but typically are execution driven and full

system simulators. These simulators are more complex

and generally simulation time grows because of the need

to simulate the entire system. The Dimemas [3] project

separates network simulation from the remaining system

and has been implemented and has many similarities to

PSINS. However, Dimemas is not open source and may

not be suitable for community development.

VII. CONCLUSIONS AND FUTURE WORK

Performance modeling can be a valuable tool to provide

insights about tuning of application and systems and help

design future systems. Fast accurate simulations can be a

valuable resource when evaluating choice of current and

future systems. One-side RMA communications can

reduce the time spent in communication and possible

scale to exascale architectures. Modeling and simulating

tools for one-sided communications such as SHMEM may

prove valuable to improve understanding of RMA

operations.

The tools presented in this paper are a first at

simulating SHMEM applications. We provide a low

overhead tracing too and fairly fast simulation tools and

simple models for prediction. The framework itself allows

users to add more powerful complex models and tracers.

In the future we will add support for Open SHMEM and

continue adding complex communication models.

ACKNOWLEDGMENT

This research used resources of the National Center for

Computational Sciences at Oak Ridge National

Laboratory, Supported by the Extreme Scale Systems

Center at ORNL, which is supported by the Department of

Defense.

REFERENCES

[1] Mustafa M. Tikir, Michael Laurenzano, Laura Carrington, and Allan

Snavely, “PSINS: An Open Source Event Tracer and Execution

Simulator for MPI Applications,” in Proceedings of Euro-Par, 2009.
[2] D.H. Bailey and A. Snavely, “Performance Modeling: Understanding

the Present and Predicting the Future”, EuroPar, 2005.

[3] R. Badia, J. Labarta, J. Giménez and F. Escalé. "Dimemas: Predicting
MPI Applications Behavior in Grid environments," Workshop on Grid

Applications and Programming Tools, 2003.

[4] E. Brewer, C. Dellarocas, A. Colbrook and W. Weihl. "Proteus: A
High-Performance Parallel Architecture Simulator," MIT Technical

Report MIT/LCS/TR-516, 1991.

[5] P. Dickens, P. Heidelberger and D. Nicol. "A Distributed Memory
LAPSE: Parallel Simulation of Message-Passing Programs,"

Proceedings of the 8th Workshop on Parallel and Distributed

Simulation, 1994.
[6] S. Prakash and R. Bagrodia. "MPI-SIM: Using Parallel Simulation to

Evaluate MPI Programs," Proceedings of the Winter Simulation

Conference, 1998.
[7] S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis and D. Wood.

"The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel

Computers," Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 1993.

[8] Mohr, B., Kühnal, A., Hermanns, M.-A., Wolf, F. "Performance

Analysis of One-sided Communication Mechanisms," Mini-
Symposium "Tools Support for Parallel Programming", Proceedings

of Parallel Computing (ParCo), Malaga, Spain, September, 2005.

[9] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S.
Karmesin. Portable Proling and Tracing for Parallel Scientic

Applications using C++. In Proceedings of the SIGMETRICS

Symposium on Parallel and Distributed Tools, pp. 134–145. ACM,
Aug. 1998.

[10] http://code.google.com/p/p3dfft/

http://code.google.com/p/p3dfft/

